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Abstract

Voice conversion (VC) has drawn people’s attention for years however the current VC
systems are far from good. In this paper, we explore VC systems based on deep neural
networks. We show that most of the inter-gender generations sound muffled and do not carry
speaker-specific characteristics such as stress, accents and emotions. In our experiment, we
use a highway network as the baseline and add a discriminator to it to perform adversarial
learning. We find the adversarial part greatly boosts the quality of generations by increasing
the global variance. Further study on mel-cepstral distortions indicates that it is possible to
make improvements by learning different coefficients following an appropriate weighting
scheme.

1 Introduction

Speech signals contain a great amount of information such as contexts, identities and mood. In reality, speaker
identities are important when it comes to leaving a voice message, media talks, concerts and so on. Under
those circumstances, differentiating among speakers or even generating one person’s speeches are particularly
interesting problems. Voice conversion is a technique of transferring one person’s voice style to another
person’s while preserving linguistic information. This technique is widely applied to a variety of fields
including speaker verification [3, 4, 8, 35], speaker recognition [17, 19], text-to-speech systems [14] and
speech enhancement [13, 33, 32].

Technically, voice conversion problems aim to find a good regression function which maps the source to the
target speech. A variety of statistical methods have been explored such as Gaussian mixture models (GMMs,
[26, 32, 9]), recurrent neural networks (RNNs, [23, 27]), convolutional neural networks (CNNs, [16]) and
non-negative matrix factorization (NMF, [29, 37]).

From the perspective of signal processing, speech signals are presented as a sequence of numbers ranged
from -1 to 1 and sampled in a specific rate (16 kHz in this paper). These data are in time domain and called
waveforms. These data could be further broken up into chunks in the time domain. For each chunk, the Fourier
transform is performed to calculate the magnitude of the frequency spectrum. In this way, speech signals are
presented as a sequence of spectral vectors. This time-frequency representation is called spectrogram [5], in
which phones and their properties are better observed. Additionally, the peak of the spectrums in each chunk,
called formants, carry the information of the identity of the sound and constitute spectral envelopes. Spectral
envelopes are extracted by inverse Fourier transforms, in which way Cepstrums are constructed. The cepstral
coefficients from inverse Fourier transforms are referred to as Mel-Frequencies cepstral coefficients, denoted
by MFCC. Also perceptual experiments indicate human ear concentrates more on lower frequency regions.
MFCC is a powerful tool for speech recognition purpose.

This paper is organized as follows. In Section 2 we review related work of deep neural networks on voice
conversion directly from extracted features. Based on the model that provides the best quality, in Section 3 we
modify its architecture and describe the whole pipeline. In Section 4, we describe the experimental setups and
evaluate the results. In Section 5 we talk about the lessons we learned and summarize our work in Section 6.
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2 Related Work

There have been many results during past years especially in computer vision with the introduction of deep
neural networks. However, there were much fewer generative models on audio signals until quite recent. The
traditional models used to dominate over deep learning techniques as traditional features of temporal structures
of audios contain so much information. Unlike pixels in computer vision, those features including speaker
characteristics, linguistic, emotions and accents are much more difficult to disentangle. There have been some
successful text-to-speech models Tacotron [36] and Wavenet [34] that are capable of generating very high
quality human speeches since 2016, but style transforms directly from source waveforms or extracted features
to target’s have much worse performance in both parallel and non-parallel data.

17 groups submitted their own VC systems for paired data in Voice Conversion Challenge 2016 [31], using
a data set with 216 utterances in each of the selected 5 male and 5 female speakers (see VCC summary for
selected samples). Though those voice conversion systems are able to convert the fundamental frequencies
from one source to one target while preserving the linguistic content, the speech style (stress) is clearly not
learned and converted.

Besides, variational autoencoders (VAEs) are also applied in voice conversion problems ([11, 2]). As mentioned
in variational autoencoding Wasserstein generative adversarial network (VAW-GAN) [12], VAEs simplify the
problem by assuming the observed data is normally distributed and uncorrelated across dimension, leading
to muffled converted voice. Therefore they incorporate a Wasserstein GAN into the decoder by assigning
VAE’s decoder as Wasserstein GAN’s generator to form a VAW-GAN. Their features are STRAIGHT spectra,
aperiodicities and pitch contours. samples are listed here. Unfortunately, from my subjective evaluations, the
quality of VAW-GAN outputs are even worse than the previous submitted VCC VC systems.

CycleGAN-VC [15], inspired by CycleGAN [39] in the image domain, is proposed to convert unparalleled
speech data using simultaneous forward and inverse learning procedures with adversarial loss and cycle-
consistency loss Equation 1.

L = Ladv(Gsource,target, Dtarget) + Ladv(Gtarget,source, Dsource) + λcycLcyc(Gsource,target, Gtarget,source), (1)

where λcyc is a trade-off parameter to control cycle-consistency loss, which force the system to learn consistent
contextual information. The generator uses gated 1D CNN to preserve temporal structure and allow the
information to be selectively propagated by the states of the previous layer. The features they used are 24
Mel-cepstral coefficients, logarithmic fundamental frequencies, and aperiodicities extracted every 5 ms. They
also provide there samples here. We can see the same problem as submitted VCC VC systems here, the speech
style (stress) is not well converted.

To the best of our knowledge, the outputs with the best sound quality could be found here. [38, 24]. The source
and target samples are selected to be so close to each other and they do not include inter-gender conversion.
We have applied their model for inter-gender voice conversion, modified their architecture and compared
different results.

3 The Model

There are 3 main steps in our model, preprocessing, deep neural networks and postprocessing. The preprocess-
ing stage pairs the source and the target speech based on the contents, extracts the MFCCs and pitches from
both source and target speeches and aligns both audios by applying dynamic time wrapping (DTW, [18]) on
spectrogram features (see Figure 1. After features are extracted, the models try to learn the mapping from
source features to target features in the training stage. For the evaluation, the features from test samples go
through trained models and synthesize back to waveforms. Note that in this case, the model only maps the
aligned training features, at the evaluation stage, since test source and target audios are not pre-aligned or
silence-trimmed (see Section 3.1), the generated audio does not have to be the same as the corresponding test
target.

3.1 Features

We use PYWORLD to extract features. We first read in waveforms, extract pitches f0s and spectrograms. Then
we trim silence from spectrograms, align source and target spectrograms using DTW and convert spectrogram
to MFCCs to the 59th order. We drop 0th coefficient and append pitches to the rest 58 MFCCs. [30] compared
the mel-cepstral and spectral differences between target and converted samples based on GMM and found many
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Figure 1: The preprocssing stage

mismatching local patterns. They suggested adding dynamic (delta and delta of delta) features incorporating
temporal correlations among frames. Therefore we add dynamic (delta and delta of delta) features on the
above 59 columns. In this way we obtain 177 features (59 static columns and 118 dynamic features) for each
speech. The global minima, maxima, means and standard deviations of each column are saved separately
for further re-scaling. Source and target pairs are selected based on the texts. Equation 2 is used to compute
dynamic features.

δt =
ΣN

i=1n (ct+i − ct−i)

2ΣN
i=1i

2
, δ2t =

ΣN
i=1n (δ(c)t+i − δ(c)t−i)

2ΣN
i=1i

2
, (2)

where subscript t denotes time frames, c is the quantity to which the deltas are applied (in this case, ms and
f0).

3.2 Baseline

Our baseline model is a Highway feed-forward networks [25], which could be a good substitution of a much
deeper network but is able to be trained efficiently using stochastic gradient descent (SGD). Highway networks
regulate the information flow using transform and carry gating units.

y = H(x,WH)T (x,WT ) + xC(x,WC), (3)

where x and y are the input and output, WH and WT are the weights of the non-linear layer and the transform
gate. Note that y = x when carry gates are fully open C(x,WC) = 1 transform gates are closed and
T (x,WT ) = 0, y = H(x,WH) while carry gates are closed but transform gates are fully open.

In our baseline model, C(x,WC) = 1, T (x,WT ) = σ(xstatic) and H(x,WH) is a network with 4 hidden
layer with hidden units 512, 256, 256, 512 and 1 last linear layer mapping last 512 hidden units to the same
dimension as inputs (177, see Figure. 2). The hidden layers use ReLu (0.01) as activation functions with
dropout probability 0.5. During the training process, we apply the Adagrad optimizer with learning rate 0.02
on L1 loss between the source and target feature maps. We consider L1 loss because L1 loss is generally less
sensitive to outliers.

3.3 The Model

3.3.1 Generative Adversarial Network

We use the generative adversarial network (GAN) in the model. GAN is first proposed in [7]. It consists
of two networks: the generator network (G) and discriminator network (D). During training the GAN, two
networks are competing against each other where G is trying to generate better images to fool D and D is
trying to get better in classifying whether an image is real of generated from G. During training, the two
networks are optimized in an iterative manner. GANs are later extended to conditional GANs [21, 6] where
the generation process can be guided by the input classes or images.

3.3.2 Multi-loss Optimization

Motivated by [20, 10], we not only apply the adversarial loss during training but also apply the L1 loss at the
end of the generator, enforcing the outputs to be close to the target. The loss can be formulated as,

LG(y,xtarget) = λstaticL(ystatic,xstatic,target) + λL(y,xtarget), (4)
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Figure 2: The baseline model

where L represents the loss in general, λstatic and λ are constant weights used to balance the two losses.
Through our experiments, we realize that it is very important to choose λ so that the gradients back propagate
from the two sides have similar norms. By combining this loss with the adversarial loss, we can represent the
whole loss for the generator as,

L(y,xtarget) = LG(y,xtarget) + Ladv(D(xtarget, G(xsource), 1). (5)

3.3.3 The Architecture

Generator. We take the generator to be the same as the baseline model.

Discriminator. The discriminator is applied on the static features only (i.e. the first 59 dimensions). The
generated feature maps go through 3 hidden layers, each with 256 hidden units. The output of the last layer is
a single bit for the 2-class classification task.

4 Experiments

4.1 Data Sets

We run the experiments on CMU ARCTIC Databases, constructed by the Language Technologies Institute at
Carnegie Mellon University. It consists of 1132 utterances from experienced speakers (US, Canadian, Indian,
male or female) selected from out-of-copyright texts from Project Gutenberg. It is publicly available here.
All recordings were recorded at 16 bit 32 kHz and then downsampled to 16 kHz. We mainly use US clb (US
female) and US awb (Scottish male) to see if accents are learned in the model.

4.2 Feature Maps

Figure 3 is one sample extracted feature map. On the top panel, from the top to the bottom row, we show
MFCC1 – MFCC58 and f0, followed by the magenta horizontal solid line, then δ(MFCC1) – δ(MFCC58)
and δ(f0), another magenta line and δ2(MFCC1) – δ2(MFCC58) and δ2(f0). The bottom panel is the
magnification of the green region on the top panel, showing the first 4 MFCCs. We can see these 4 MFCCs
correlated with each other and their magnitudes decrease with the order.

4.3 Training

Table 1 shows some training and test samples (use Adobe to open this pdf).
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Figure 3: The feature map

Table 1: Some samples

Source Target Baseline GAN

Training

Test

4.4 Objective Evaluation

4.4.1 Global Variance

Many voice conversion approaches suffer from the muffling effect [1], due to over-smoothing of spectral
envelopes. One approach to reduce the muffling effect is to encode the global variance (GV) in the features
[30] and another one is to put a GAN [12]. Figure 4 show the effect of GAN. The top panel from left to right
columns shows MFCC scatter plots of the target, VAE and VAW-GAN and the bottom panel shows MFCC
scatter plots of the target, baseline and (baseline+)GAN. In both cases, adding a GAN is helpful to enhance
the variances of MFCCs. The global variance could also be viewed as variances of MFCCs across different
orders (see Figure 5).

4.4.2 Modulation Spectrum

Similar to GV, modulation spectrum (MS) is another feature that tends to fill the large quality gap between
natural speech and synthetic speech [28]. It is defined as a the Fourier transform of the parameter sequence.
It is useful in discovering the wrong behaviour across frequency bands and providing possibilities to boost
performance using filtering algorithms. Here we use MS as a metric to evaluate the generations. Fig 6 shows
the averaged MS over generations in the test set. GAN is very close to the target.

4.4.3 Mel-cepstral Distortion

The Mel-cepstral distortion is defined as

MelCD[dB] =
10

ln 10

√√√√2

D∑
d=1

(mcd − m̂cd)
2
, (6)
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Figure 4: Scatter plots of MFCCs w/o GAN
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Figure 5: Global variances of MFCCs w/o GAN

Figure 6: Modulation Spectrum
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where mcd and m̂cd are dth coefficients of the target and converted spectra respectively. Interestingly, though
GAN gets a big performance boost in generating MFCCs, the mel-cepstral distortion is highly correlated and
roughly as the same level as the baseline model (see Figure 7). This might indicate different orders of MFCCs
has different significance levels to the final generation and putting different weights according to orders when
learning might be a good idea. We may leave this as one of the future plans.

Figure 7: Mel-cepstral distortion of the audios (first 500 time frames)

5 Discussion

There are still many unsolved problems existing in VC. A major issue lies in understanding the audio domain,
including waveforms, spectrograms and mel-cepstral features. As also mentioned in this blog and [22], audios
should not be treated the same as images whose algorithms could make the most use of local correlations in
features. Also various audio features have interpolation issues. For example if we interpolate two different
vowel regions, the result may sound terribly distorted, muffled or robotic. Unlike smooth, Gaussian-like
distributions of image pixels, the histograms (distributions) of audio features are spiky. Additionally, vision
problems usually have high tolerance. Two images that are visually the same may have quite different RGB
values but this is generally not the case with audios. Two spectrograms with slightly distorted values may lead
to bad quality after synthesizing.

6 Conclusion

In this paper, we modify and apply the model [38, 24] to inter-gender samples and compare the results with
those from Cycle-GAN, VAE, VAW-GAN. The (baseline+)GAN model generates the most authentic and
closest audios to the target, but all the models suffer from not learning the stress, accents and emotions from
targets. Although there is still a long way to go in the state-of-the-art deep VC models, we still have some
takeaways from this project.

• The synthetic speech has much less dependency on aperiodicities than spectrograms, mel-ceptral
and pitch contours. Also mel-ceptral is more efficient than spectrograms as they compress most
information of spectrograms into the first few coefficients.
• GANs are very useful in enhancement of GV.
• TTS models perform much better than VC models as they have generic features on the natural

pronunciations of targets.
• Audio features are not like image pixels. Breakthroughs are needed in understanding and modelling

stress, emotions and accents.
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