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Abstract

We present an efficient algorithm to actively select queioedearning
the boundaries separating a function domain into regioresavhe func-
tion is above and below a given threshold. We develop expariselec-
tion methods based on entropy, misclassification ratemnea, and their
combinations, and show how they perform on a number of d&ta ¥
then show how these algorithms are used to determine sinealtesly
valid 1 — « confidence intervals for seven cosmological parameters. Ex
perimentation shows that the algorithm reduces the cortipotaeces-
sary for the parameter estimation problem by an order of ritadg

Introduction

In many scientific and engineering problems where one is fimaglsome function over an
experimental space, one is not necessarily interesteckipricise value of the function
over an entire region. Rather, one is curious about detémgihe set of points for which
the function exceeds some particular value. Applicatiortéude determining the func-
tional range of wireless networks [1], factory optimizatianalysis, and gaging the extent
of environmental regions in geostatistics. In this paperuse this idea to compute confi-
dence intervals for a set of cosmological parameters tfattahe shape of the temperature
power spectrum of the Cosmic Microwave Background (CMB).



In one dimension, the threshold discovery problem is a fiooling problem where no

hints as to the location or number of solutions are givenessmethods exist which can
be used to solve this problem (e.g. bisection, Newton-Raph$lowever, one dimensional
algorithms cannot be easily extended to the multivariage chn particular, the ideas of root
bracketing and function transversal are not well definefdd®En a particular bracket of a
continuous surface, there will be an infinite number of Sohg to the equatioffi(Z) — ¢ =

0, since the solution in multiple dimensions is a set of sw$acather than a set of points.

Numerous active learning papers deal with similar problanmaultiple dimensions. For
instance, [1] presents a method for picking experimentgterchine the localities of local
extremawhen the input space is discrete. Others have usgbnof techniques to reduce
the uncertainty over the problem’s entire domain to maptoaifanction (e.g. [3], and [4]),
or locate the optimal value (e.g. [5]).

We are interested in locating the subset of the input spa@reirthe function is above
a given threshold. Algorithms that merely find a local optimand search around it will
not work in general, as there may be multiple disjoint regiahove the threshold. While
techniques that map out the entire surface of the underfyimction will correctly identify
those regions which are above a given threshold, we assgnnithods can be developed
that are more efficient at localizing a particular contouthaf function. Intuitively, points
on the function that are located far from the boundary are ileeresting, regardless of
their variance. In this paper, we make the following conttidns to the literature:

e We present a method for choosing experiments that is moegffithan global
variance minimization, as well as other heuristics, whemisrsolely interested in
localizing a function contour.

e We show that this heuristic can be used in continuous valyaat spaces, without
defininga priori a set of possible experiments (e.g. imposing a grid).

e We use our function threshold detection method to deterinine simultaneously
valid confidence intervals of CMB parameters, making no mggions about the
model being fit and few assumptions about the data in general.

2 Algorithm

We begin by formalizing the problem. Assume that we are gavsample spacé c R"
and a scoring function;f : S — R, but possibly no data point{{, f(s)},s € S).
Given a threshold, we want to find the set of point$’ where f is equal to or above the
threshold: {s € S’|s € S, f(s) > ¢}. Now, if f is easily invertible, then the solution
is trivial. However, it is often the case thétis not trivially invertible, such as the CMB
model mentioned igl. In these cases, we can discorby modelingS given some
experiments. The question, then, is how to choose expetintleat help us determing
efficiently.

We assume that the cost to compyite) givens is significant. Thus, care should be taken
when choosing the next experiment, as picking optimum paimiy reduce the runtime
of the algorithm by orders of magnitude. Therefore, it isfarable to analyze current
knowledge about the underlying function and select expemisiwhich quickly refine the
estimate of the function around the threshold of interester® are several methods one
could use to create a model of the data, notably some formrafpetric regression. How-
ever, we chose to approximate the unknown boundary as a @awocess (GP), as re-
gression necessarily smooths the data, ignoring subttarsaof the function that may
become pronounced with more data. In particular, we useargikriging, a form of GPs,
which assumes that the covariance ker&l-(-)) is only a linear function of the distance
between samples; this estimation procedure assumes teartipded data are normal with
mean equal to the true function and variance given by the kagmise. Additionally, the



covariance betweefi(s;), f(s;), wheres;, s; € S, is assumed to be

1/2
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wherek is a constant — known as the kriging parameter — which is amagtd limit on

the first derivate of the function anrds the variance of the sampled points. Since, the joint
distribution of a finite set of sampled points for GPs is Gargghe predicted distribution
of a query points, given a known setl is normal with mean and variance given by

fs, = pia+X0 S04 (ya — pa) 1)

ol = YuTaaSag (2)

whereX 4, denotes the column vector with thith entry equal tdC(s;, s,), ¥ 44 denotes
the covariance matrix between the elementd gtheij element of 4 4 is KC(s;, s5)), ya
denotes the column vector with thi#l entry equal tof (s;), the true value of the function
for each pointinA, andu 4 is the mean of thg 4’s.

As given, prediction with GP requiré3(n?) time, as am x n linear system of equations
must be solved. However, for many GPs — and ordinary krigmgarticular — the
correlation between two points decreases as a functionstérdie. Thus, the full GP
model can be approximated well by a local GP, where onlyithreearest neighbors of
the query point are used to compute the prediction valus; réduces the computation
time toO(k3 log(n)) per prediction, sinc®(log(n)) time is required to find the k-nearest
neighbors using spatial indexing structures such as batbikad-trees.

Since we have assumed that experimentation is expensiveultl be ideal to iteratively
analyze the entire input space and pick the next experinmestich a manner that mini-
mized the total number of experiments necessary. If thecfitlee parameter spacgs()

is finite, such an approach may be feasible. Howeveég|ifs large or infinite, testing all
points may be impractical. Instead of imposing some antyisaucture on the possible ex-
perimental points (such as using a grid), the algorithm ske@andidate points uniformly
at random from the input space, and then selects the cardidatt with the highest score
according to the metrics given §2.1. This allows the input space to be fully explored (in
expectation), and ensures that interesting regions ofestiet would have fallen between
successive grid points are not missedgdnwe show how imposing a grid upon the input
space results in just such a situation. While the algoritarariable to consider the en-
tire space for each sampling iteration, over multiple iiere it does consider most of the
space, resulting in the function boundaries being quiaktglized, as can be seengid.

2.1 Choosing experiments from among candidates

Given a set of random input points, the algorithm evaluadet ®ne and chooses the point
with the highest score as the location for the next experiniggiow is the list of evaluation
methods we considered.

Random: One of the candidate points is chosen uniformly at randons fiethod serves
as a baseline for comparison,

Probability of incorrect classification: Since we are trying to map the boundary between
points above and below a threshold, we consider choosingdimé from our random sam-
ple which has the largest probability of being misclassifigcbur model. Using the dis-
tribution defined by Equations 1 and 2, the probabifitythat the point is above the given
threshold can be computed. The point is predicted to be ahewvareshold ip > 0.5 and
thus the expected misclassification probabilitynisi(p, 1 — p).



Entropy: Instead of misclassification probability we can considdraay: —plog,(p) —

(1 —p)logy(1 — p). Entropy is a monotonic function of the misclassificatioterso these
two will not choose different experiments. They are listeparately because they have
different effects when mixed with other evaluations. Botttrepy and misclassification
will choose points near the boundary. Unfortunately, thayenthe drawback that once
they find a point near the boundary they continue to choosetpaear that location and
will not explore the rest of the parameter space.

Variance: Both entropy and probability of incorrect classificatiorffsufrom a lack of
incentive to explore the space. To rectify this problem, wesider the variance of each
guery point (given by Equation 2) as an evaluation metridgs Tlnetric is common in active
learning methods whose goal is to map out an entire functince variance is related
to the distance to nearest neighbors, this strategy chqusets that are far from areas
currently searched, and hence will not get stuck at one kemymubint. However, it is well
known that such approaches tend to spend a large portioriottitme on the edges of the
parameter space and ultimately cover the space exhaydtjel

Information gain: Information gain is a common myopic metric used in activenes.
Information gain at the query point is the same as entropyircase because the observa-
tions are noiseless; the entropy at the query point will gze zero after an observation.
Computing a full measure of information gain over the whdégesspace would provide
an optimal 1-step experiment choice. In some discrete ealiproblems this can be done,
but it is intractable for continuous non-linear spaces. \&kele the good performance of
the evaluation metrics proposed below stems from theirgoké@uristic proxies for global
information gain or reduction in misclassification error.

Products of metrics: One way to rectify the problems of point policies that focakely
on points near the boundary or points with large variancandigss of their relevance to
refining the predictive model, is to combine the two measukatsiitively, doing this can
mimic the idea of information gain; the entropy of a querymioneasures the classification
uncertainty, while the variance is a good estimator of hovelrimpact a new observation
would have in this region, and thus what fraction the unaetfavould be reduced. [1]
proposed scoring points based upon the product of theiogyptind variance to identify
the presence of local maxima and minima, a problem closddyer@ to boundary detec-
tion. We shall also consider scoring points based upon tbdyat of their probability of
incorrect classification and variance. Note that while @mtrand probability of incorrect
classification are monotonically related, entropy timesarece and probability of incorrect
classification times variance are not.

Straddle: Using the same intuition as for products of heuristics, winéestraddle heuris-
tic, asstraddle(sq) = 1.966, — ‘f(sq) - t], The straddle algorithm scores points highest
that are both unknown and near the boundary. As such, thag#gralgorithm prefers points
near the threshold, but far from previous examples. Theldkesscore for a point may be
negative, which indicates that the model currently estamaihe probability that the point
is on a boundary is less than five percent. Since the straediedtic relies on the variance
estimate, it is also subject to oversampling edge positions

3 Experiments

We now assess the accuracy with which our model reproduceswarkfunction for the
point policies just described. This is done by computingftaetion of test points in which
the predictive model agrees with the true function aboutctvtside of the threshold the
test points are on after some fixed number of experiments. droicess is repeated several
times to account for variations due to the random sampling®fnput space.
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Figure 1: Predicted function boundary (solid), true funetboundary (dashed), and exper-
iments (dots) for the 2D sinusoid function after A) 50 expegits and B) 100 experiments
using the straddle heuristic and C) 100 experiments usimgdhance heuristic.

Table 1: Number of experiments required to obtain 99% diaasion accuracy for the 2D
models and 95% classification accuracy for the 4D model fodoua heuristics. Heuristics
requiring more than 10,000 experiments to converge ardddbidid not converge”.

2D Sin.(1000 Cand.) 2D Sin.(31 Cand.) 2D DeBoor 4D Sinusoid

Random 614 158 617+ 158 772+ 987 6254+ 364
Entropy did not converge did not converge did not converge 21611740
Variance 207 22949 4306+ 573 2320+ 57
Entropyx Var 11745 138+ 6 1621+ 201 1210+ 43
Prob. Incorr<Std  113+11 129+ 14 740+ 117 1362+ 89
Straddle 1065 123+ 6 963+ 136 1265+ 94

The first model we consider is a 2D sinusoidal function given b

f(z,y) = sin(10z) 4 cos(4y) — cos(3zy) z€l0,1], ye€l0,2],
with a boundary threshold af = 0. This function and threshold were examined for the
following reasons: 1) the target threshold winds throughplot giving ample length to
test the accuracy of the approximating model, 2) the boyndatiscontinuous with several
small pieces, 3) there is an ambiguous region (arq0rfi] 1), where the true function is
approximately equal to the threshold, and the gradient @lisamd 4) there are areas in
the domain where the function is far from the threshold anttheve can ensure that the
algorithm is not oversampling in these regions.

Table 1 shows the number of experiment necessary to reacfoaa®8d 95% accuracy
for the 2D and 4D models, respectively. Note that pickinghposolely on entropy does
not converge in many cases, while both the straddle algoréghd probability incorrect

times standard deviation heuristic result in approxinregtithat are significantly better than
random and variance heuristics. Figures 1A-C confirms teastraddle heuristic is aiding
in boundary prediction. Note that most of the 50 experimsatspled between Figures 1A
and 1B are chosen near the boundary. The 100 experimentsttoasinimize the variance
result in an even distribution over the input space and aevoosindary approximation, as
seen in Figure 1C. These results indicate that the algoiighrorrectly modeling the test
function and choosing experiments that pinpoint the lacedif the boundary.

From the Equations 1 and 2, it is clear that the algorithm da¢slepend on data dimen-
sionality directly. To ensure that heuristics are not ekjplg some feature of the 2D input
space, we consider the 4D sinusoidal function

f(&) = sin(10z1) + cos(4x2) — cos(3z122) + cos(2x3) + cos(3z4) — sin(bzgxy)

whereZ € [(0,0,1,0), (1,2, 2,2)] andt = 0. Comparison of the 2D and 4D results in Ta-
ble 1 reveals that the relative performance of the heusisdmains unchanged, indicating



that the best heuristic for picking experiments is indegendf the problem dimension.

To show that the decrease in the number candidate points/esta the input parameter
space that occurs with higher dimensional problems is nidsare, we reconsider the 2D
sinusoidal problem. Now, we use only 31 candidate pointeatsof 1000 to simulate the
point density difference between 4D and 2D. Results showrable 1, indicate that re-
ducing the number of candidate points does not drastickily the realized performance.
Additional experiments were performed on a discontinudgction (the DeBoor func-

tion given in [1]) with similar results, as can be seen in &l

4 Statistical analysis of cosmological parameters

Let us now look at a concrete application of this work: a statal analysis of cosmolog-
ical parameters that affect formation and evolution of oniverse. One key prediction
of the Big Bang model for the origin of our universe is the prese of a2.73K cosmic
microwave background radiation (CMB). Recently, the Wildn Microwave Anisotropy
Project (WMAP) has completed a detailed survey of the thiatéon exhibiting small
CMB temperature fluctuations over the sky [7]. It is belietleat the size and spatial prox-
imity of these temperature fluctuations depict the typesratas of particle interactions in
the early universe and consequently the formation of lacgéesstructure (galaxies, clus-
ters, walls and voids) in the current observable univetde conjectured that this radiation
permeated through the universe unchanged since its famai billion years ago. There-
fore, the sizes and angular separations of these CMB fluohggive an unique picture
of the universe immediately after the Big Bang and have alargplication on our under-
standing of primordial cosmology.

An important summary of the temperature fluctuations is tBB@ower spectrum shown
in Figure 2, which gives the temperature variance of the CMBadunction of spatial
frequency (or multi-pole moment). It is well known that thepe of this curve is affected
by at least seven cosmological parameters: optical depthdark energy mass fraction
(©2,), total mass fraction({,,), baryon densityy,), dark matter densityw(y,,), neutrino
fraction (f,,), and spectral indexn(;). For instance, the height of first peak is determined
by the total energy density of the universe, while the theedlpis related to the amount of
dark matter. Thus, by fitting models of the CMB power spectfangiven values of the
seven parameters, we can determine how the parameterstltiee shape of the model
spectrum. By examining those models that fit the data, wettamestablish the ranges of
the parameters that result in models which fit the data.

Previous work characterizing confidence intervals for aasgical parameters either used
marginalization over the other parameters, or making apgons about the values of the
parameters and/or the shape of the CMB power spectrum. Howéy notes that “CMB
data have now become so sensitive that the key issue in cogival parameter determi-
nation is not always the accuracy with which the CMB powerctipen features can be
measured, but often what prior information is used or assiinhe this analysis, we make
no assumptions about the ranges or values of the paranstdrassume only that the data
are normally distributed around the unknown CMB spectrurtih wbvariance known up
to a constant multiple. Using the method of [9], we create a-parametric confidence
ball (under a weighted squared-error loss) for the unkngratisum that is centered on a
nonparametric estimate with a radius for each specified dende level derived from the
asymptotic distribution of a pivot statisticFor any candidate spectrum, membership in the
confidence ball can be determined by comparing the ballsisad the variance weighted
sum of squares deviation between the candidate functiothencenter of the ball.

One advantage of this method is that it gives us simultarigeatid confidence intervals

1See Appendix 3 in [9] for the derivation of this radius
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Figure 2: WMAP data, overlaid with re- Figure 3: 95% confidence bounds fog
gressed model (solid) and an example of aas a function ofup,. Gray dots denote
model CMB spectrum that barely fits at the models which are rejected at a 95% con-
95% confidence level (dashed; parameterfidence level, while the black dots denote
values arevpys = 0.1 andwp = 0.028). those that are not.

on all seven of our input parameters; this is not truelfer o confidence intervals derived
from a collection ofy? distributions where the confidence intervals often havestsuttially
lower coverage [10]. However, there is no way to invert thelelimg process to determine
parameter ranges given a fixed sum of squared error. Thussevtha algorithm detailed
in §2 to map out the confidence surface as a function of the inpaihpeters; that is, we
use the algorithm to pick a location in the seven dimensipagimeter space to perform
an experiment, and then run CMBFast [11] to create simulpdeeer spectrum given this
set of input parameters. We can then compute the sum of sjobeeror for this spectrum
(relative to the regressed model) and easily tell if the Aiutrpoint is inside the confidence
ball. In practice, we model the sum of squared error, not tirdidence level of the model,
This creates a larger more linear output space, as the canédevel for most of the models
is zero, and thus it is impossible to distinguish betweerr pod terrible model fits.

Due to previous efforts on this project, we were able to eslinthe covariance structure
of the GP from several hundred thousand random points aireadthrough CMBFast.
These points also gave a starting point for our algorfthrBubsequently, we have run
several hundred thousand more CMBFast models. We find ttedtds 30 seconds to pick
an experimentfrom among a set of 10,000 random candidak¢BF&st then takes roughly
3 minutes to compute the CMB spectrum given our chosen pojpaiameter space.

In Figure 3, we show a plot of baryon densitys) versus the dark matter densityr{y;) of
the universe over all values of the other five parametef3 6 g, Qs fn, ns). EXperiments
that are within a 95% confidence ball given the CMB data ardtguoin black, while
those that are rejected at the 95% level are gray. Note howe #ire areas that remain
unsampled, while the boundary regions (transitions batwgay and black points) are
heavily sampled, indicating that our algorithm is choosiegsonable points. Moreover,
the results of Figure 3 agree well with results in the literat(derived using parametric
models and Bayesian analysis), as well as with predictiavaréd by nucleosynthesis [8].

While hard to distinguish in Figure 3, the bottom left grodpoints above the 95% confi-
dence boundary splits into two separate peaks in paranpeteesThe one to the left is the
concordance model, while the second peak (the one to thi isgiot believed to represent
the correct values of the parameters (due to constraints étber data). The existence of
high probability points in this region of the parameter sphas been suggested before, but
computational limitations have prevented much charaédn of it. Moreover, the top

2While initial values are not required (as we have seefd it is possible to incorporate this
background knowledge into the model to help the algorithnvecge more quickly.



Table 2: Number of points found in the three peaks for the lgaised approach of [8] and
our straddle algorithm.

Peak Center # Points in Effective Radius
WDM wB Grid Straddle
Concordance Model 0.116 0.024 2118 16055
Peak 2 0.165 0.023 2825 9634
Peak 3 0.665 0.122 0 5488
Total Points 5613300 603384

right portion of Figure 3 was basically ignored by the gricséd approach. Comparison
of the number of experiments performed by our straddle &lyarwith the grid based ap-

proach used by [8] is shown in Table 2. Even with only 10% ofdkeeriments used in the
grid approach, we sampled the concordance peak 8 times megpeeitly, and the second
peak 3.4 times more frequently than the grid based approsiciieover, it appears that
the grid completely missed the third peak, while our methed@ed it over 5000 times.

These results dramatically illustrate the power of our édapnethod, and show how it

does not suffer from assumptions made by a grid-based agipreaWe are following up

on the scientific ramifications of these results in a sepasttephysics paper.

5 Conclusions

We have developed an algorithm for locating a specified eordba function while min-
imizing the number queries necessary. We described andeshbew several different
methods for picking the next experimental point from a grofigandidates perform on syn-
thetic test functions. Our experiments indicate that thedstie algorithm outperforms pre-
viously published methods, and even handles functions laftfe discontinuities. More-
over, the algorithm is shown to work on multi-dimensionaajaorrectly classifying the
boundary at a 99% level with half the points required for aace minimizing methods.
We have then applied this algorithm to a seven dimensioatisstal analysis of cosmo-
logical parameters affecting the Cosmic Microwave Backgrh With only a few hundred
thousand simulations we are able to accurately describiatédr@lependence of the cosmo-
logical parameters, leading to a better understandingrafdmental physical properties
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