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Abstract. A cognitive model is a set of production rules or skills encoded in 
intelligent tutors to model how students solve problems. It is usually generated 
by brainstorming and iterative refinement between subject experts, cognitive 
scientists and programmers. In this paper we propose a semi-automated method 
for improving a cognitive model called Learning Factors Analysis that 
combines a statistical   model, human expertise and a combinatorial search. We 
use this method to evaluate an existing cognitive model and to generate and 
evaluate alternative models.  We present improved cognitive models and make 
suggestions for improving the intelligent tutor based on those models.

1 Introduction

A cognitive model is a set of production rules or skills encoded in intelligent tutors 
to model how students solve problems. (Production, skill, and rule are used 
interchangeably in this paper.) Productions embody the knowledge that students are 
trying to acquire, and allows the tutor to estimate each student’s learning of each skill 
as the student works through the exercises [4]. 

A good cognitive model captures the fine knowledge components in a curriculum, 
provides tailored feedback and hints, select problem with difficulty level and learning 
pace matched to individual students, and eventually, improves student learning. 
However, initial models are usually generated by brainstorming and iterative 
refinement between subject experts, cognitive scientists and programmers. These first 
pass models are best guesses and our experience is that such models can be improved.

In this paper, we propose a method called Learning Factors Analysis (LFA) and 
use it to answer three questions relevant to the field of intelligent tutoring systems. 

1. How can we describe learning behavior in terms of an existing cognitive model?
We need to identify the initial difficulty level of each production and how fast can a 
student learn each rule (i.e., what is the learning rate).  We can then provide 
parameters that indicate student performance on this set of rules and how that 
performance improves with practice and instruction on those rules.

2. How can we evaluate and improve a cognitive model in an inexpensive way?
We need to identify the causes of the deviation from the deterministic cognitive 
model, define the measures of a model’s complexity and fit, and mine the student-
tutor log data.



3. How can we use the information from LFA to improve the tutor and the 
curriculum? We need to identify over-taught or under-taught rules, and even “hidden” 
knowledge components within them. As a result, we can adjust their contribution to 
curriculum length without compromising student performance.

2 Literature Review

One measure of the performance of a cognitive model is how the data fit the 
model. Newell and Rosenbloom found a power relationship between the error rate of 
performance and the amount of practice [13]. Depicted by equation (1), the 
relationship shows that the error rate decreases according to a power function as the 
amount of practice increase. The curve for the equation is called a “learning curve”.

baXY  . (1)

where
Y = the error rate
X = the number of opportunities to practice a skill
a = the error rate on the first trial, reflecting the intrinsic difficulty of a skill
b = the learning rate, reflecting how easy a skill is to learn

Fig. 1. A power law learning curve

The learning curve model has been used to visually identify non-obvious or 
“hidden” knowledge components. Corbett and Anderson observed that the power 
relationship might not be readily apparent in some complex skills, which have blips in 
their learning curves [5], as shown in figure 2. They also found the power relationship 
holds if the complex skill can be decomposed into subskills, each of which exhibits a 
smoother learning curve.

                                                                   

Fig. 2. A learning curve with blips (left) split into two smoother learning curves (right)

As seen in the graphs above, the single production Declare-Parameter produces a 
learning curve with several blips.  However by breaking it into two more specific 



productions, Declare-First-Parameter and Declare-Second-Parameter, the model 
becomes more fine-tuned and recognizes that the skills are different. The knowledge 
decomposition (considering parameter position) that was non-obvious from the 
original model became revealed on closer inspection of learning curve data. 

Other approaches to model refinement include having a simulated student to find 
incorrect rules and to learn new rules via human tutor intervention [16], using theory 
refinement to introduce errors to models incorrect student behaviors [1] and using Q-
matrix to discover knowledge structure from student response data [15,2]. Compared 
with the simulated student approach, our method does not require building a 
simulated student. The theory refinement approach starts with an initial knowledge 
base and keeps correcting errors in the knowledge base from error examples until the 
knowledge base is consistent with the examples. It may lead to overfit the examples.  
The Q-matrix approach was used to automatically extract features in the problem set. 
The model found by this approach may be similar to the model adding or merging 
difficulty factors in our method. 

3 The Cognitive Model and its Data under Investigation 

We illustrate the LFA methodology using data obtained from the Area Unit of the 
Geometry Cognitive Tutor (see http://www.carnegielearning.com). The initial 
cognitive model implemented in the Tutor had 15 skills that correspond to 
productions or, in some cases, groups of productions. The productions are

Circle-area – Given the radius , find the area of a circle
Circle-circumference – Given the diameter, find the circumference of a circle.
Circle-diameter -- Given the radius or circumference, find the diameter of a circle.
Circle-radius -- Find the radius given the area, circumference, or diameter.
Compose-by-addition – In a+b=c, given any two of a, b, or c, find the third.
Compose-by-multiplication – In a*b=c, given any two of a, b, or c, find the third.
Parallelogram-area – Given the base and height, find the area of a parallelogram.
Parallelogram-side – Given the area and height (or base), find the base (or height).
Pentagon-area – Given a side and the apothem, find the area of a pentagon.
Pentagon-side – Given area and apothem, find the side (or apothem).
Trapezoid-area – Given the height and both bases, find the area of a trapezoid.
Trapezoid-base – Given area and height, find the base of a trapezoid.
Trapezoid-height – Given the area and the base, find the height of a trapezoid.
Triangle-area – Given the base and height, find the area of a triangle. 
Triangle-side – Given the base and side, find the height of a triangle. 
Our data consist of 4102 data points involving 24 students, and 115 problem steps. 

Each data point is a correct or incorrect student action corresponding to a single 
production execution. Table 1 displays typical student action records in this data set. 
It has five columns – student, success, step, skill, and opportunities. Student is the 
names of the students. Success is whether the student did that step correctly or not in 
the fist attempt. 1 means success and 0, failure. Step is the particular step in a tutor 
problem the students are involved in. “p1s1” stands for problem 1 step 1. Skill is the 
production rule used in that step. Opportunities mean the number of previous times to 



use a particular skill. It increments every time the skill is used by the same student, 
and can be computed from the first and fourth columns.

Table 1. The  sample data

Student Success Step Skill Opportunities
A 0 p1s1 Circle-area 1
A 1 p2s1 Circle-area 2
A 1 p3s1 Circle-area 3

4. Learning Factor Analysis

LFA has three components: a statistical model that quantifies the skills, the 
difficulty factors that may affect student performance in the tutor curriculum, and a 
combinatorial search that does model selection. 

4.1 The Statistical Model
The power law model applies to individual skills and does not typically include 

student effects. Because the existing cognitive model has multiple rules, and the data 
contains multiple students, we made four assumptions about student learning to 
extend the power law model.

1. Different students may initially know more or less. Thus, we use an intercept 
parameter for each student.

2. Students learn at the same rate. Thus, slope parameters do not depend on 
student. This is a simplifying assumption to reduce the number of parameters in 
equation 2. We chose this simplification, following Draney, Wilson and Pirolli [7], 
because we are focused on refining the cognitive model rather than evaluating student 
knowledge growth. 

3. Some productions are more likely to be known than others. Thus, we use a 
intercept parameter for each production

4. Some productions are easier to learn than others. Thus, we need a slope
parameter for each production

Based on the assumptions, we developed a multiple logistic regression model.

  jjjjjiip
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  Where
p = the probability to get an item right
X = the covariates for students
Y = the covariates for skills
T = the covariates for the number of opportunities practiced on the skills
Y T = the covariates for interaction between skill and the number of practice 

opportunities for that skill
α = the coefficient for each student, i.e. the student intercept
β = the coefficient for each rule, i.e. the production intercept
γ = the coefficient for the interaction between a production and its opportunities, 

i.e. the production slope



4.2 Difficulty Factors
A difficulty factor refers specifically to a property of the problem that causes 

student difficulties (e.g., first vs. second parameter in figure 3). By assessing the 
performance difference on pairs of problems that vary by one factor at a time, we can 
identify the hidden knowledge component(s) that can be used to improve a cognitive 
model [9]. Difficulty factors have been used to empirically evaluate a small number 
of alternative models [6, 10, 11]. 

In our study, subject experts identified four multi-valued factors for the Area Unit 
of the Geometry Tutor. Table 2 lists their names and values. 

Table 2. Factors for the Area Unit and their values

Factor Names Factor Values
Embed alone, embed
Backward forward, backward
Repeat initial, repeat

FigurePart
area, area-difference, area-combination, diameter, circumference, 
radius, side, segment, base, height, apothem

“Embed” indicates whether a shape is embedded in another shape. Consider two 
tutor problems requiring the same production rule CIRCLE-AREA at some step in the 
problem. In one of the problems, the circle is embedded in a square; while in the other 
one, the circle is presented alone. Students may find it harder to find the area of circle 
when it is embedded in another figure because extra effort is necessary to find the 
circle and its radius. “Backward” means whether the production rule to be used is in
its backward form of a taught formula, or its forward form. The forward form of 
Compose-by-addition is S = S1 + S2, and its backward forma is S1 = S - S2. “Repeat” 
indicates whether the production rule has been used previously in the same problem. 
“FigurePart” indicates the part of the figure in the geometry shape to be computed. 

4.3 Combinatorial Search 

The goal of the combinatorial search is to do model selection within the logistic 
regression model space [8]. Difficulty factors are incorporated into an existing 
cognitive model through a model operator called Binary Split, which splits a skill a
skill with a factor value, and a skill without the factor value. For example, splitting 
production Circle-area by factor Embed with value alone leads to two productions: 
Circle-area with the factor value alone (called Circle-area*alone), and Circle-area 
with the factor value embed  (Circle-area*embed). Table 3 shows the data before and 
after a split with Embed. 

Table 3. The data before and after split. Factors are incorporated in column Skill (after split). 
The opportunities (after split) change accordingly.

Student Step Skill OPT Factor Skill (after split) OPT
A p1s1 Circle area 1 alone CA-alone 1
A p2s1 Circle area 2 embed CA-enbed 1
A P3s1 Circle area 3 alone CA-alone 2



A* search is the combinatorial search algorithm [14] in LFA. It starts from an 
initial node, iteratively creates new adjoining nodes, explores them to reach a goal 
node. To limit the search space, it employs a heuristic to rank each node and visits the 
nodes in order of this heuristic estimate. 

In our study, the initial node is the existing cognitive model. Its adjoining nodes 
are the new models created by splitting the model on the difficulty factors. We do not 
specify a model to be the goal state because the structure of the best model is 
unknown. We do specify the stopping criterion by setting the upper bound of the 
number of node expansions, for this paper to 50 node expansions per search. 

The heuristic guiding the search is one of the two scoring functions for regression 
models – AIC (Akaike Information Criterion) and BIC (Bayesian Information 
Criterion) Each search is run twice, guided by a different heuristic each time. A good 
model captures sufficient variation in the data but is not overly complicated by 
balancing between model fit and complexity minimizing prediction risk [17]. AIC and 
BIC are two estimators for prediction risk, and hence used as heuristics in the search.

AIC = -2*log-likelihood + 2*number of parameters. (3)

BIC = -2*log-likelihood + number of parameters * number of observations. (4)

where log-likelihood measures the fit, and the number of parameters, which is the 
number of covariates in equation 2, measures the complexity. Based on these two 
formulas, the lower the AIC or BIC, the better the balance between model fit and 
complexity. BIC puts a more severe penalty for complexity, leading to a smaller 
model than other methods.

A more interpretable metric for fit is Mean Absolute Deviance (MAD) -- the 
average of the absolute values of the differences between observed values and 
predicted values. We do not use it as a heuristic because it leads to over fitting. We 
include it as a measure of the improvement in the model fit. 

Figure 4 illustrates A* search with AIC as the heuristic. The original model is 
evaluated and AIC is computed. The model is then split into a few new models by 
incorporating the factors. AICs are computed from each of the new model. A* selects 
the best one (the shaded node with value 5301) for the next model generation. A* 
does not always go down. It may go up to select a model (the shaded node with value 
5312) to expand if all the new models have worse heuristic scores than a previous 
model has. After several expansions, it finds a best node with the lowest AIC value. 



Fig. 3. Using A* algorithm search through the model space

5. Experiments and Results

5.1 Experiment 1

This experiment addresses the question -- How can we describe learning behavior 
in terms of an existing cognitive model? Specifically, we want to find out the learning 
rate and initial difficulty level of each rule, and the initial performance of students, 
given the data. The question is answered by fitting the logistic regression model in 
equation 2 and getting the coefficients. The coefficient estimates for the skills and 
students, and the overall model statistics are summarized in table 4. 

Table 4. Statistics for a partial list of the skills, students and the overall model. Intercept for 
skill is the initial difficulty level for each skill. Slope is the learning rate. Avg Practice 
Opportunties is the average amount of practice per skill across all students. Initial Probabltiy is 
the estimated probability of getting a problem correct in the first opportunity to use a skill 
accross all students. Avg Probability and Final Probability are the success probability to use a 
skill at the average amount of opportunities and the last opportunity, respectively.

Skill Intercept Slope
Avg 
Opportunties

Initial 
Probability 

Avg 
Probability

Final 
Probability

Parallelogram-
area 2.14 -0.01 14.9 0.95 0.94 0.93

Pentagon-area -2.16 0.45 4.3 0.2 0.63 0.84

Student Intercept

student0 1.18

student1 0.82

student2 0.21

Model Statistics

AIC 3,950

BIC 4,285

MAD 0.083
The higher the intercept of the each skill, the lower the initial difficulty the skill 

has. The higher the slope of the each skill, the faster students learned the skill. 
Pentagon-area is the hardest skill with the intercept of -2.16. Parallelogram-area is the 
easiest skill with the intercept of 2.14. Three skills have small slopes close to zero --



Compose-by-addition (-.04) and Parallelogram-area (-.01), Triangle-area (.03). 
Parallelogram-area was already mastered with an initial success probability .95. It 
appears that more practice on those skills does not lead to much learning gain. 
Interestingly, although PENTAGON-AREA is the hardest skill among all, it has the 
highest learning rate .45, leading to bigger improvement with more practice. 

The coefficients for students measure each student’s overall performance. The 
higher the number, the better the student performed. The AIC, BIC and MAD 
statistics provide a baseline for evaluating alternative models discussed below. 

5.2 Experiment 2

This experiment addresses the question -- How can we improve a cognitive model? 
The question is answered by running LFA on the data including the factors, and 
searching through the model space. The improved models by LFA with BIC are 
summarized in table 5. The improved models by LFA with AIC is summarized in the 
interpretation.

Table 5. Top three improved models found by LFA with BIC as the heuristic. The table shows 
the history of splits and model statistics. 

Model 1 Model 2 Model 3

Number of Splits:3 Number of Splits:3 Number of Splits:2

1. Binary split compose-
by-multiplication by 
figurepart segment

2. Binary split circle-
radius by repeat repeat

3. Binary split compose-
by-addition by 
backward backward

1. Binary split compose-by-
multiplication by 
figurepart segment

2. Binary split circle-radius 
by repeat repeat

3. Binary split compose-by-
addition by figurepart 
area-difference

1. Binary split compose-
by-multiplication by 
figurepart segment

2. Binary split circle-
radius by repeat repeat

Number of Skills: 18 Number of Skills: 18 Number of Skills: 17
AIC: 3,888.67
BIC: 4,248.86
MAD: 0.071

AIC: 3,888.67
BIC: 4,248.86
MAD: 0.071

AIC: 3,897.20
BIC: 4,251.07
MAD: 0.075

LFA suggests better models, which make finer distinctions on some skills in the 
original model and identify which difficulty factors the subject experts thought would 
turn out to be psychologically important. All the better models found by AIC and BIC 
have better (i.e. lower) statistical scores than those of the original. For the best BIC 
model, its BIC is reduced by 37, and AIC by 62. The fit of the new model, as 
measured by MAD, is reduced by .012. The best AIC model reduces AIC by an even 
larger amount of 83, and increases BIC by 18. Its MAD is reduced by .02.

The improved skills common to most of the better models are Compose-by-
multiplication, Compose-by-addition, Circle-area, and Triangle-area. We will discuss 
a few examples here.

All the new models suggest splitting Compose-by-multiplication into two skills –
Cmarea and CMsegment, making a distinction of the geometric quantity being 



multiplied. By examining the positions of these problems in the curriculum, CMarea 
at the 43rd step and CMsegement at the 90th. As seen in table 6, although the final 
probability of CMarea is high .96, the initial probability of CMsegment is low .32. 
This sudden drop in the success probability at later steps corresponds to a significant 
blip in the learning curve as illustrated in figure 2. The distinction between different 
geometric quantities suggests treating the original skill differently. LFA successfully 
identified the blip without the need of visually inspecting learning curves. 

Table 6. Success probabilities of CMarea and CMsegment

Initial Probability Avg Probability Final Probability

CM*area-combination .64 .89 .96
CM*segment .32 .54 .60

The subject experts thought embedding a shape into another shape would increase 
the difficulty of a skill and identified a factor “Embed”, hoping LFA could make a 
distinction on it. LFA split these two skills by Embed in all the top AIC models. The 
three probabilities of CAalone and CAembed are shown in table 7. Does Embed make 
find the circle area harder? Note that problems with CAembed are introduced later in 
the curriculum after students have had significant practice with CAalone, about the 
time CAalone has reached the average probability of .81.  At this point, CAembed has 
an initial probability of .71, indicating an increase in difficulty. 

Table 7. Success probabilities of CAalone and CAembed

Initial Probability Avg Probability Final Probability

CA*alone .42 .81 .93
CA*embed .71 .89 .92

5.3 Experiment 3

In experiment 2, LFA improved the original model by splitting skills. Experiment 
3 addresses model improvement even further -- Will some skills be better merged 
than if they are separate skills? Can LFA recover some elements of truth if we search 
from a merged model, given difficulty factors?  

We merged some skills in the original model to remove some of the distinctions, 
which are represented as the difficulty factors. Circle-area and Circle-radius are 
merged into one skill Circle; Circle-circumference and Circle-diameter into Circle-
CD; Parallelogram-area and Parallelogram-side into Parallelogram; Pentagon-area, 
and Pentagon-side into Pentagon; Trapezoid-area, Trapezoid-base, Trapezoid-height 
into Trapezoid. The new merged model has 8 skills -- Circle, Crcle-CD, Compose-by-
addition, Compose-by-multiplication, Parallelogram, Pentagon, Trapezoid, Triangle.

Then we substituted the original skill names with the new skill name in the data, 
ran LFA including the factors, and had the A* algorithm search through the model 
space. The improved models by LFA with BIC are summarized in table 8. The 
improved models by LFA with AIC are summarized in the interpretation. 



Table 8. Top three improved models found by LFA with BIC as the heuristic.

Model 1 Model 2 Model 3

Number of Splits: 4 Number of Splits: 3 Number of Splits: 4

Number of skills: 12 Number of skills: 11 Number of skills: 12

Circle *area

Circle *radius*initial

Circle *radius*repeat

Compose-by-addition

Compose-by-
addition*area-difference
Compose-by-
multiplication*area-
combination
Compose-by-
multiplication*segment

All skills are the same as 
those in model 1 except 
that 
1. Circle is split into Circle 
*backward*initial, Circle 
*backward*repeat, 
Circle*forward,
2. Compose-by-addition is 
not split

All skills are the same as 
those in model 1 except 
that 
1. Circle is split into 
Circle *backward*initial, 
Circle *backward*repeat, 
Circle *forward,
2. Compose-by-addition is 
split into Compose-by-
addition and  Compose-
by-addition*segment

AIC: 3,884.95 AIC: 3,893.477 AIC: 3,887.42

BIC: 4,169.315 BIC: 4,171.523 BIC: 4,171.786

MAD: 0.075 MAD: 0.079 MAD: 0.077

LFA fully recovered three skills (Circle, Parallelogram, Triangle), suggesting the 
distinctions made in the original model are necessary. LFA partially recovered two 
skills (Triangle, Trapezoid), suggesting the some original distinctions are necessary 
and some are not. LFA did not recover one skill (Circle-CD), suggesting that the 
original distinctions might not be necessary. LFA recovered one skill (Pentagon) in a 
different way, suggesting the original distinction may not be as significant as the 
distinction caused by another factor. We discuss a few examples here.

In BIC model 1, Circle is split into Circle*area, and Circle*radius. The other two 
BIC models and all the AIC models split it into Circle*backward, and Circle*forward, 
which are equivalent to Circle-AR*area, and Circle-AR*radius because of the one-to-
one relationship between forward and area and between backward and radius. Thus, 
LFA fully recovers the Circle skills.

None of the models recovered Circle-CD. This suggests that it may not be 
necessary to have two separate skills for Circle-circumference and Circle-Diameter. It 
appears that once students learn the formula circumference = π*diameter, they can 
fairly easily apply it in the forward or backward direction. 

In one of the top AIC models, Pentagon is split into Pentagon*initial and 
Pentagon*repeat, instead of Pentagon*area and Pentagon*side. This suggests that the 
distinction between the first use of a Pentagon skill in a problem and later uses of that 
skill in the same problem may be more significant than the distinction between the 
area and the side.  Usually repeated use of a skill in the same problem is easier than 
the original use. For instance, once a student makes the initial relatively difficult 
determination that the Pentagon formula is relevant to a problem and recalls it, he 
need only use it again and perform easier arithmetic in repeated opportunities in that 
same problem.



5.4 Combining the results from experiment 1, 2, 3
By combining the results from the three experiments, we can address question 3 --

How can we use LFA to improve the tutor and the curriculum by identifying over-
taught or under-taught rules, and adjusting their contribution to curriculum length 
without compromising student performance?

Parallelogram-side has a high intercept (2.06) and a low slope (-.01). Its initial 
success probability is .94 and the average number of practices per student is 14.9. 
Much practice spent on an easy skill is not a good use of student time. Reducing the 
amount of practice for this skill should save student time without compromising their 
performance. Trapezoid-height has a low intercept (-1.55), and a positive slope (.27). 
Its initial success probability is .29 and the average number of practices per student is 
4.2. The final success probability is .69, far away from the level of mastery. More 
practice on this skill is needed for students to reach mastery.

The advantage of LFA goes even further. An original rule may have two split 
rules, each of which need decidedly different amounts of practice, because they have 
different initial difficulty and learning rates. However, students who have appeared to 
master the original rule in the curriculum before even reading the second split rule 
might not get enough practice on the second split rule. Compose-by-multiplication is 
such a case, as seen in table 9.

Table 9. Statistics of Compose-by- Multiplication before and after split

Intercept slope Avg Practice 
Opportunties

Initial 
Probability 

Avg 
Probability

Final 
Probability

CM -.15 .1 10.2 .65 .84 .92
CMarea -.009 .17 9 .64 .86 .96
CMsegment -1.42 .48 1.9 .32 .54 .60

With final probability .92 students seem to have mastered Compose-by-
multimplication. However, the decomposition of the skill shows a different picture. 
CMarea does well with final probability .96. But CMsegment has final probability 
only .60 and an average amount of practice less than 2. The knowledge-tracing 
algorithm in the tutor may let the student go after he reaches the mastery on 
Compose-by-addition in the original model. But with the model found by LFA, the 
knowledge-tracing algorithm will be able to catch the weakness of students in 
acquiring CMsegment. 

5 Conclusions and Future Work

Learning Factors Analysis is a way to combine statistics, human expertise and 
combinatorial search to evaluate and improve a cognitive model. The system we have 
developed is implemented in Java and is able to evaluate a model in seconds and 
conduct a search evaluating hundreds of models in 4-5 hours. The statistics for each 
model are meaningful, and the new improved models have better statistical scores and 
are interpretable. We are planning to use the method for datasets from other tutors to 
discover its potential for model and tutor improvement.  
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