
A Method for Automatically Finding Interpretations of

Reduced Dimension Representations

Marc Fasnacht Rich Caruana

March 2002

CMU-CALD-02-104

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Methods such as FastMap and Multidimensional Scaling often are used to project data to a

lower dimensional subspace to make the data easier to understand. One drawback of these

methods is that although it is easier to see patterns in the reduced dimension representation,

interpreting the new dimensions is diÆcult. We present an automatic method for �nding

mappings (associations) between reduced dimension representations and auxiliary features

that describe the data. Our approach �nds groups of dimensions that taken together preserve

local structure in the auxiliary feature space. Unlike previous approaches to this problem,

this method works well in the non-linear mappings that often arise with reduced dimension

projections. We use the method to assign meaning to dimensions resulting from applying MDS

to protein helix pairs.
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1 Introduction

Assume we have the following problem: we are given a set of points and a matrix of pairwise

distances between the points with respect to some measure. A �rst step in better understanding

the dataset is to apply multidimensional scaling (MDS) to the distance matrix to �nd a low-

dimension coordinate representation of the distance relations among the set of points. This

low-dimension vector representation allows easier visualization of the data, in part because it is

a vector representation, and in part because it is low dimension. Unfortunately, the coordinate

representation found by MDS does not come with a labeling of the coordinates. It may be

easy to �nd patterns in the MDS coordinates, but interpreting these patterns can be diÆcult.

Suppose we also have a separate set of descriptive features for each point. These auxiliary

features may relate to the distance metric in some fashion, but not necessarily in a simple or

known way. Given the auxiliary descriptive features for the data, we do not a priori know

if and how these feature are related to any of the MDS coordinates. Finding relationships

between the auxiliary features and (some of) the MDS coordinates can help us understand the

coordinates.

As a concrete example, suppose the objects are countries, and the pairwise distances are

subjective similarities between pairs of countries as might be obtained from a questionaire.

The auxiliary features would be attributes of the countries such as their population size,

GNP, political system, land mass, length of coastline, etc. The goal of applying MDS to

this data would be to �nd a small set of dimensions that faithfully capture the measured

subjective similarities between countries[11][10][14]. Once MDS has reduced the data to a

low dimension representation, the problem is to �nd interpretations of the MDS coordinates.

Finding relationships between auxiliary features and the MDS coordinates can help us interpret

the coordinates. For example, we might �nd that the �rst two MDS coordinates are most

strongly related to the auxiliary attributes \political system" and \GNP".

If there is a linear relationship between the MDS coordinates and some of the features,

we can �nd these automatically using linear regression. Unfortunately, as our examples show

later, MDS often �nds coordinates that do not have strong linear relationships to the auxiliary

features. In the absence of an automatic way of �nding relationships, users of MDS often resort

to tedious manual methods of trying to establish an interpretation of the coordinate space.

Manual approaches are impractical if there are many auxiliary features (common), if there are

many dimensions in the MDS coordinate representation (less common), or if combinations of

the MDS coordinates need to be considered (the usual case).

In this paper we describe a method that aids �nding interpretations for MDS coordinates

by automatically detecting linear and non-linear relationships between combinations of MDS
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coordinates and a set of auxiliary features. Notable features of the method are:

1. it depends on non-parametric nearest neighbor models of the data and thus makes few

assumptions about the relationships and does not require that a parametric model be

speci�ed

2. unlike regression, it works with both numerical and discrete auxiliary attributes

3. it depends only on the low dimension representation, not on the method used to �nd

it. Thus it can be used for reduced dimension representations found with MDS, PCA,

non-linear PCA, etc.

The method works by analyzing the variance of k-nearest neighbor prediction from the MDS

coordinates to the auxiliary attributes. Large reductions in variance (compared to random

prediction) suggest a strong association between the coordinates and the auxiliary feature.

The reduction in variance is qualitatively similar to the r2 coeÆcient in regression, but applies

equally well for linear and non-linear relationships.

The �rst part of this paper gives an overview of multidimensional scaling and FastMap.

We then present our method for detecting relationships between MDS coordinates and other

features. The third part presents results with synthetic data that highlight the inadequacy

of linear models. The next part describes the results we obtained with the method on two

real world protein datasets. On one dataset the method automatically rediscovers in several

minutes an association that was laboriously previously discovered manually by an expert in

protein data analysis after several days of work[8]. It also discovers several new important

relationships that were not discovered manually.

2 Background

2.1 Multi-Dimensional Scaling (MDS)

One of the main purposes of multidimensional scaling (MDS) is to provide a coordinate rep-

resentation of the similarity or distance relations among a set of objects. Often it also results

in a dimensionality reduction of the problem. This allows easier visualization of the data and

also allows the application of methods that rely on a coordinate representation (e.g., k-means

clustering). The description of MDS given below closely follows the one given by Cox [4].

Suppose we are given a set of N objects for which we do not have a coordinate representation

but are instead given a matrix of pairwise distances Æij . MDS allows us to �nd a set of N points

fxig, i = 1; 2; : : : ; N in a p-dimensional Euclidian space such that the distances between the
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points in that space dij obey

dij � f(Æij): (1)

Here f is a monotonic function of the distances. There are several methods of solving this

problem. Given a set of coordinates fxig for the points, we can de�ne a stress function which

measures how well the spatial con�guration of the points satis�es equation 1. A commonly

used function is

S =

P
i6=j(dij � f(Æij))

2P
i6=j d

2

ij

(2)

Finding a coordinate representation fxig of the data with the desired distances then corre-

sponds to minimizing this stress function. Minimization can be done in standard fashion by

using gradient descent or annealing techniques.

Another approach is the following: Let us de�ne the matrix A as Aij = �1=2Æ2ij , with Æij

as de�ned above. We de�ne a second matrix B as B = XXT where X = [x1;x2; : : : ;xp]
T.

These are the coordinates of the points we want to determine. It can be shown (c.f.[4]) that

B = HAH (3)

where H is given by H = I � N�111T with the length-N vector 1 = (1;1; : : : ;1)T. B is

symmetric and positive semi-de�nite of rank p. So it can be decomposed into

B = V �V T (4)

where � is the diagonal matrix of eigenvalues �i and V = [v1; : : : ;vN] is the matrix of

eigenvectors of B. The problem of �nding the coordinates xi therefore reduces to solving the

decomposition problem in equation 4, since X = V�
1

2 : This is a standard problem in linear

algebra. Generally, some of the eigenvalues are small so that they can be neglected. This

simpli�es the numerical solution of the problem. The advantage of this approach over direct

minimizion of the stress function 2 is that the eigenvectors found are equivalent to those found

by a principal component analysis in the projection space. This often simpli�es interpretation

of the data.

2.2 FastMap

FastMap [6] is an approximate but faster alternative to MDS. Given a set of N points and

an N � N distance matrix, it �nds approximate positions for the points in a p-dimensional

Euclidian space such the relative distances are conserved. The basic idea of the algorithm is

the following: We can pretend that the points are embedded in an unknown n-dimensional
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space and try to project them onto p-mutually orthogonal directions. In order to do this,

we select two 'anchor' points that are far away from each other. The line between these two

points in n-d space is our �rst direction. If we assume the space is Euclidian and that the

triangle inequality holds for the points, we can use the cosine law from basic trigonometry to

project the other points onto this line. We thus obtain the corresponding coordinates in the

�rst direction. Given these coordinates, we can calculate the distances between all points in

the hyperplane orthogonal to the �rst direction. The procedure is then repeated with these

new distances until we have p orthogonal directions. This method is not quite as accurate as

MDS, but the big advantage is that the complexity of the algorithm is O(Np) whereas MDS

is O(N2).

2.3 Interpretation of dimensions

Once we have a coordinate representation of the data, we can visualize it more easily. However,

we do not usually know what the di�erent MDS coordinates mean. Sometimes it is possible to

�nd an interpretation by visual inspection [3], but this is not very practical even for a modest

number of dimensions. For example, even if the MDS coordinates have only 10 dimensions,

there are still 90 2-D projections and 720 3-D projections one would need to examine manually

and interpret. Usually this is not feasible.

Methods that are often used in place of manual interpretation are multiple regression and

cluster analysis [3][5][11][13]. Multiple regression can detect linear relationships between MDS

coordinates and auxiliary features, but it does not work very well if the relationship is nonlinear.

In cluster analysis, the data is clustered in the MDS space, and then the clusters are ex-

amined to see if they can be interpreted in terms of the auxiliary features. The good news

is that it is possible to automate the cluster analysis to see what dimensions yield clusters

that associate with some of the auxiliary attributes. The bad news is that often points do not

cluster well even when there is a strong relationship between the coordinates and the auxiliary

attributes. For example, the existence of a linear relationship between coordinate ci and aux-

iliary feature fj does not imply that the data will cluster on the projection ci in a way that

maps well to aj { correlation between attributes does not imply clumpiness. See for example

the synthetic data in Figure1 which exhibits strong relationships that would not cluster well.

3 Approach

In this section we present an alternate way of detecting relationships between the MDS coor-

dinates and auxiliary features. Let (c1; : : : ; cp) be the p coordinates from an MDS calculation

and let F = ff1; : : : ; fAg be a set of A auxiliary attributes. Assume that we are interested in

5



the relationship between auxiliary feature fi and the a subset of MDS coordinates fci; : : : ; cjg.

The intuition behind our approach is the following: Suppose two points are near each other

in a subspace de�ned by coordinates fci; : : : ; cjg. If this subspace is well characterized by

feature fi, the points should have similar values of fi.

This property can be measured by looking for the nearest neighbor in the MDS subspace

and calculating an average distance with respect to feature fi over all the data. We then

compare this value to the average distance between points in fi.

If we are interested in a feature fi, and want to test if it is related to a subset fci; : : : ; cjg

of the MDS coordinates, we measure

v1 =

PN
s=1(fi;s � fi;nn)

2

N
(5)

The subscript nn refers to the nearest neighbor of point s in terms of the euclidian distance

in the space fci; : : : ; cjg. fi;nn is the value of that point for feature fi. We also measure

v2 =

PN
s;t=1;s 6=t(fi;s � fi;t)

2

N(N � 1)
(6)

which gives a measure of the average distance between pairs.

If the space fci; : : : ; cjg is unrelated to fi, then v1 and v2 will be similar. Picking the

closest point in that space would be equivalent to picking a random point. If there is a strong

relationship, picking a close point in fci; : : : ; cjg should correspond to picking a point that is

close in terms of fi too, so v1 should be much smaller than v2. We can measure this in terms

of

r
0 = 1�

r
v1

v2
(7)

This quantity will be close to 1 for strong associations, and around zero for weak association.

The main property of this measure is that it measures how well local structure is preserved

between the MDS-coordinate space and the auxiliary feature space. If the data is suÆciently

dense so that local neighborhoods of points are connected, the measure will also take into

account the preservation of the overall structure of the data.

3.1 Alternate approaches

We can user other topological mappings that preserve neighborhoods for our purposes. The

simplest extension would be to use k-nearest neighbors, instead of just nearest neighbors. We

can also apply a kernel method, where look at a weighted average of neighboring points rather

than nearest neighbors.
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3.2 Time complexity

The method considers models from all subsets of coordinates to each of the auxiliary attributes.

Although this is a large number of models, in practice it usually is computationally feasible

to examine them and we have not found it necessary to develop a more eÆcient approximate

algorithm. There are two reasons why examining all models is feasible. First, usually a

reduced dimension representation has relatively few dimensions or it would not be useful for

visualization. Second, we are not interested in discovering models that require large numbers of

dimensions because these will not be intelligible. Thus the original goal of �nding intelligible

reduced dimension representations saves us from having to consider combinatorially many

models. If there are p dimensions in the representation, A attributes in the auxiliary set, and

we are interested in relationships that use no more than l dimensions at a time, then we only

have to explore

A

lX
i=1

�
p

i

�
(8)

models.

For example if we have A = 10 attributes and p = 8 MDS dimensions and we want models

with l = 3 or fewer attributes we would have to check only 920 cases. A more signi�cant

computational cost than evaluating z models is the cost of performing KNN once with N data

points. A naive implementation of KNN is O(N2). If N is large, this cost quickly becomes

the computational bottleneck. When N is large, there are two solutions to this problem. One

is to use a better implementation of KNN such as kd-trees [1][2] to reduce the computation to

O(N logN). For the higher dimensional cases more general data structures such as the ones

described in [15] [9][12] can achieve similar performance. Even (N log n) can be expensive when

N is large and may require more memory than is available. Another approach is to sample the

data. Since we are looking for strong relationships from the dimensions carrying the majority

of the variance in the original dataset, sampling is a simple and e�ective procedure. For this

task we are not so concerned about small clusters of atypical points that might be lost by

sampling.

4 Experiments

4.1 Synthetic Data

To evaluate how much bene�t our approach might yield over linear methods, we tested tested it

on a synthetic dataset. We simulated MDS data by generating points from a uniform as well as

a normal distribution in one and two dimensions. To model a set of auxiliary features, we used
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feature f � r
0

r
2

noise1 0.00 0.0031 0.0000

noise2 0.00 0.0689 0.0003

lin 0.00 0.9862 1.0000

lin 0.05 0.9708 0.9992

lin 0.25 0.8723 0.9805

quad 0.00 0.9714 0.0010

quad 0.05 0.9394 0.0010

quad 0.25 0.7414 0.0006

sin 0.00 0.9986 0.6015

sin 0.05 0.9277 0.5990

sin 0.25 0.6593 0.5365

exp 0.00 0.9934 0.8009

exp 0.05 0.9747 0.8003

exp 0.25 0.8790 0.7871

r 0.00 0.9736 0.0001

r 0.05 0.8703 0.0000

r 0.25 0.4568 0.0012

� 0.00 0.9035 0.5679

� 0.05 0.8616 0.5706

� 0.25 0.8536 0.5473

Table 1: Results for 3000 data points. For the �rst two lines, the feature is completely unrelated

to the simulated MDS coordinate (uniform and normal noise). The remaining rows give the

performance for functions of the type f = ax+b+�, f = bx
2+b+�, f = sin(x) and f = exp(x),

with � � N(0; �). (r; �) correspond to polar coordinates in the 2D case.
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Figure 1: Plots of 1-dimensional arti�cial data. The horizontal axis corresponds to the 'MDS

coordinate', the vertical axis to the 'feature' values. For the plots on the left hand side, there

is no noise (� = 0:00), for the plots on the right hand side, � = 0:25

simple functions of the data, such as linear, quadratic, sinusoidal and exponential functions.

Noise also was added to some features, and some features contain only noise. Figure 1 shows a

subset of the one dimensional data used. Table 1 shows the results of applying linear regression

as well as the new method to a set of 3000 sample points. Both methods perform as expected.

When there is no relationship between MDS coordinate and feature (i.e. just noise), the r0 and

r
2 values both are close to zero. Not surprisingly, regression gives very high r

2 values if the

feature is a linear function of the coordinates. For the purely quadratic case, linear regression

does not detect any correlation, since the function is symmetric around the origin. For the

sinusoidal function, regression detects some correlation, but the value drops from the value

shown in the table to much lower values even in the case without noise if the data is spread

over more than one period or the phase is shifted. The exponential is a monotonic function,

so regression detects some correlation. In the two dimensional case the results are similar.

Table 1 also shows results for feature that are polar coordinates (r; �) of each point. We

included polar coordinate features in our synthetic data because we observe similar polar

relationships in the real protein data in the next section. The results clearly indicates that

r
2 is a bad measure for automatically detecting polar-like relationships. The r

0 on the other

hand shows high local correlations independent of the functional form, as long as there is not

too much noise. If the noise has a similar amplitude than the total range of the feature value,
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Figure 2: Schematic illustration of a helix pair. Descriptive features include crossing angle � ,

axial distance, daxis and o�set (only shown for one helix) of two helices. The minimal distance

dm (not shown) refers to the smallest distance between two atoms from each helix) The buried

surface is the surface where the two helices touch each other

the r0 signal starts to decrease, as expected from its de�nition. This shows that a high r
0-value

is a good indication that there is a relationship between the simulated MDS coordinates and

the corresponding feature values.

The observation that KNN outperforms linear regression for prediction on non-linear datasets

is, of course, not surprising. We include results on these synthetic datasets because we observe

similarly \shaped" relationships when working with real data, but the patterns sometimes are

more diÆcult to recognize when working with the real data.

4.2 Protein Helix Data

We apply our method to two datasets ultimately derived from the Protein Data Bank [7], a

large database containing structural data of proteins and other biological macromolecules. Pro-

teins are polypeptides - linear chains of amino acids, which fold into complex three-dimensional

structures. While the overall structure of a protein is relatively complex, locally, the chain

forms simple motifs, such as helices, sheets and loops. The relative spacial arrangement of

such structural motifs is very interesting to structural biologists, since this information helps

in understanding the function of the protein.

The datasets we created consisted of pairs of helices of �xed size. We created these datasets

for research we are doing in machine learning for structure prediction. The selection criteria for

the helix pairs was that they have to be in contact. We extracted two sets of helix pairs. The

�rst consisted of 7681 helix pairs representatively selected from the set of all known protein
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families. The second set consisted of 3459 helix pairs taken exclusively from proteins belonging

to the globin family1. Each helix pair is made up of 72 atoms. The PDB contains the spatial

coordinates of these atoms. To measure the similarity between two sets of helix pairs, we

calculate their rms distance. Rms distance is the measure most widely used in molecular

biology to compare the structure of biological molecules. It is determined as follows: the two

pairs of helixes are rotated and translated on top of each other such that the root-mean-square

(rms) distance between corresponding atoms on the helices is minimized2. This minimal rms

distance is used as the distance function.

We calculated the rms distance between all pairs using the ProFit program by Dr. Andrew

C. R. Martin. This rms-distance was then used to do a MDS calculation. The number of

dimensions in the MDS was 10. Besides the rms distance, we have a number of other features

that describe a helix pair i; j. Figure 2 gives a schematic view of some of these features. They

include crossing angle �, radius ri; rj , pitch pi; pj and o�set oi; oj of both helices in a pair, the

distance between the two helices (dm as measured by distance between the two closest atoms,

the distance between the axis of the helices, daxis, the buried surface area.

4.3 Results

For both datasets, we applied the nearest neighbor method from section 3 and compared it to

a multiple regression analysis.

Tables 2 and 3 show the results of applying linear regression as well as the KNN method

to the data set with 7681 helix pairs. When we map one MDS coordinate into one auxiliary

feature (Table 2 and the x's in Figure 3), the two methods produce roughly similar results. The

strongest correlations are between the minimal distance between two atoms from each helix

dm and the second MDS coordinate c2. There is also modest association between the angle �

and the �rst MDS coordinate, as well as between the axial distance and MDS coordinate c2.

The results for pairs of coordinates are shown in table 3. We can see that the similarity

between the two methods is no longer very strong. Both methods agree reasonably well when

there is a high degree of association. One important exception is the case of the crossing angle

�. The KNN method shows that there is a strong connection between the MDS coordinate

pair (c1; c3) and the crossing angle. The multiple regression r
2 value for this coordinate pair is

only slightly larger than the value for � and c1 alone. Figure 4 explains why this is the case:

the auxiliary feature that is the angle � shows up in a polar coordinate-like relationship in the

(c1; c3) cordinate plane. The data points lie on a clearly visible ring. Points that are close on

1The globin family of proteins is the family with the most entries in the PDB. The globin family contains

proteins such as hemoglobin and myoglobin, which are responsible for oxygen transport and storage

2This corresponds to �nding the orientation of maximal overlap. For identical structures it is zero
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feature ci r
0

r
2

dm 2 0.7264 0.8127

� 1 0.6215 0.5684

dax 2 0.5522 0.6937

dm 1 0.3119 0.0852

dax 1 0.2926 0.0693

� 3 0.2573 0.1187

� 2 0.1752 0.0196

dax 3 0.1531 0.0004

oi 1 0.1529 0.0006

oj 1 0.1512 0.0000

oi 7 0.1227 0.0087

Table 2: Association measures r0 and r
2 for single MDS coordinates for the 7681 dataset. The

�rst column is the 11 auxiliary descriptive features that are used to help provide interpretations

for the MDS coordinates.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nn
: r

’

regression: r2
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Figure 3: Association measures of the KNN method vs regression r
2 for the original dataset.

The crosses show mappings from one coordinate, the dots show mappings from paris of coor-

dinates. In the one coordinate case there is reasonable correlation. However, when there are

pairs of coordinates, there are many cases for which the regression has a very low r
2 value

whereas the r0 for the KNN is quite high. Figure 4 shows one such case.
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Figure 4: Plots of (c1; c3; �). The top �gure shows a projection into the (c1; c3) plane. The

feature \crossing angle" � is indicated by the tilt of the short line segments. The tilt of the

lines changes smoothly around the ring of data, which indicates that � is related in almost

polar coordinates to the MDS c1, c3 coordinates. The bottom graph shows a 3-dimensional

plot of (c1; c3; �). A shaodw of the data also is projected into the (c1; c3) plane. The angle

shows up in almost polar coordinates in the MDS c1, c3 coordinate system, so that the 3-d

plot looks like a spiral.
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Figure 5: Plots of (c1; c3; distance). This is a case for which r
0 = 0:7816 and the regression

r
2 = 0:0868. The top �gure shows a projection into the (c1; c3) plane. The distance is

indicated by the tilt of the short line (pointing up: helices are close, pointing down, helices are

far apart). The second plot shows a three dimensional representation of the data as well as a

shadow projection onto the (c1; c3) plane on the bottom. The data seems to lie on a cylindrical

surface, with the distance c2 being almost parallel to the axis of the cylinder.
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feature ci cj r
0

r
2

� 1 3 0.9011 0.6871

dm 1 2 0.8959 0.8979

dm 2 3 0.8471 0.8143

� 1 6 0.8418 0.6003

� 1 2 0.8120 0.5880

dm 1 3 0.7816 0.0868

dax 1 2 0.7594 0.7631

dax 2 3 0.7307 0.6941

dax 1 3 0.7183 0.0697

� 2 3 0.6764 0.1383

dm 1 6 0.6311 0.0853

� 3 6 0.6269 0.1506

� 3 4 0.6247 0.1221

dm 1 7 0.5504 0.0859

� 3 7 0.5410 0.1228

dax 1 5 0.5389 0.0697

� 3 9 0.5384 0.1223

dax 1 9 0.5353 0.0713

dm 3 4 0.5221 0.0054

� 2 4 0.5152 0.0230

Table 3: Association measures r0 and r
2 for pairs of MDS coordinates for the 7681 dataset.
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Figure 6: Association measures of the KNN method vs regression r
2 for the globin only

dataset. The crosses show the one coordinate case, the dots the pairs of coordinates case.

The two methods seem to be only weakly correlated indicating that di�erent properties of the

dataset are measured. In particular there are some points for which the regression has a very

low r
2 value whereas the r

0 for the KNN is quite high. Figure 8 shows such a case

the ring have very similar angle �. On the other hand, the angle is not a linar combination of

c1 and c3, so that the r
2 value for the regression is very low.

Figure 5 shows a case for which the KNN method has a high r
0-value of r0 = 0:7816 whereas

the regression calculation gives a very low r
2 of r2 = 0:0868. This is due to the fact that

the data in the (c1; c2; c3) coordinate systems appears to lie on a cylinder. The axis is almost

parallel to c2, which is strongly correlated to dm (see table 2). However, the axis is not quite

along the c2 direction, but slightly tilted along c1. The projection of the cylinder into the

(c1; c3) results in a set of shifted rings, so that there is a local correlation of the distance along

c1. This can be seen on �gure 5 and is picked up by the KNN method.

The second set of tables shows the results of applying linear regression as well as the KNN

method to a set of 3459 helix pairs from proteins from the globin family. This dataset is

qualitatively di�erent from the 7681 dataset, since it contains a lot of very similar proteins.

We therefore expect the data contain a lot of large clusters. Tables 4 and 5 compare r0 and r
2

for the one, respectively 2 coordinate case. Figure 6 show a scatter plot of r0 vs r2. We can see

that if there is a strong correlation between the MDS coordinates and the auxiliary feature,

both measures agree reasonably well. Figure 7 shows the case with the highest r0 value. We

can see that clearly there is strong association between the crossing angle � and the position in
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feature ci r
0

r
2

� 1 0.9274 0.7467

dm 1 0.7287 0.3666

Ab 1 0.5964 0.3974

dax 1 0.5503 0.3107

oj 1 0.4737 0.0013

ri 1 0.4667 0.2304

dm 2 0.4487 0.3801

� 4 0.4289 0.0083

dax 3 0.4255 0.1654

dm 3 0.4107 0.1737

dm 6 0.4061 0.0003

oi 1 0.4007 0.0162

Ab 3 0.3843 0.1146

oj 7 0.3706 0.2500

Table 4: Subset association measures for 1 variable for globin dataset. The strongest correla-

tions are for the angle alpha and distance related measures
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feature ci cj r
0

r
2

� 1 3 0.9835 0.7469

� 1 10 0.9688 0.7498

dm 1 3 0.8777 0.5403

Ab 1 3 0.8611 0.5120

dm 1 7 0.8545 0.3668

dm 2 3 0.8260 0.5538

Ab 1 5 0.8251 0.3975

� 2 4 0.8237 0.0298

dax 1 3 0.8036 0.4761

dax 1 5 0.7951 0.3179

dm 3 4 0.7934 0.1823

� 2 3 0.7909 0.0217

� 4 5 0.7768 0.0103

oj 1 3 0.7522 0.0196

oj 1 7 0.7410 0.2513

oi 1 4 0.7279 0.1371

oi 1 3 0.7101 0.1978

Table 5: Association measures r
0 and r

2 for 2 variables for globin dataset. As for the one

variable case, the strongest correlations are for the angle � and distance related measures.

The overall values are higher than for the 1D case, which is not surprising.
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Figure 7: Plots of (c1; c3; �) for the globin dataset. This combination showed the highest

values for both, r0 and r
2. The top �gure shows a projection into the (c1; c3) plane. The

feature 'angle' is indicated by the angle of the short line. The orientation of the line changes

smoothly, which indicates strong correlation. However, the relationship is not linear, due to

the periodic nature of the angle. The transition from 180Æ to �180Æ is around c1 = 0:0. This

results in a large jump, which explains the relatively low r
2 value. Regression would probably

do much better if the origin of the angle to 180Æ.
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Figure 8: Plots of (c2; c4; �) for the globin dataset. This combination had r
0 = 0:8237 and

r
2 = 0:0298. The top �gure shows a projection into the (c1; c3) plane. As seen in �gure 7,

the angle roughly divides into two regions or high and low values. On the �gure the high

values are represented by crosses, the low value by circles. The bottom graphs shows a three

dimensional representation of the same data (the relationship is much easier to see in color

graphs). There is a clear grouping of the data into regions with high and low value for the

angle, which explains the high r
0 value. However, there is no linearity at all, thus the low r

2

value.
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the (c1; c3) space. The r
2 value for the regression is not quite as high as one might expect. This

is due to the fact that the angle is a periodic measure, and the change from -180 to 180 occurs

in the center of the graph. The origin of the angle could be shifted such that the relationship

becomes globally very close to linear. There are a lot of cases for which the KNN method

indicate a strong association between the MDS coordinate pair and the auxiliary feature, but

the r2 value for the regression is very low for the same combination. These are cases where we

have a local clustering of the data, and the auxiliary feature varies little within the cluster. At

the same time, there is no overall linear relationship between the position of the cluster in the

MDS coordinate space and the feature value of points in the cluster. Figure 8, which shows

the relation between (c2; c4; �), is an example of this case: there are large clusters in which the

angle is very similar, but the position of the clusters clearly does not relation linearly to the

value of the angle. The new method is somewhat biased towards these cases. However, cases

like the one shown in �gure 8 show a clear structure and might help in discovering patterns in

the data.

5 Discussion

Using a non-parametric learning method such as k-nearest neighbors has several advantages.

The main advantage, of course, is that it can �nd non-linear relationships as easily as linear

relationships. A related advantage is that it does not require that an appropriate parametric

model be speci�ed. KNN is e�ective for a broad range of relationships. A third advantage is

that KNN forms local models. This is important because some of the patterns to be found in

reduced-dimensional representations form small, tight clusters such as those in Figure 8 that

would be diÆcult to model globally.

Often the method �nds nested sets of relationships between coordinates and descriptive

variables. For example, coordinate c1 may yield an r
0 of 0.75 to feature fa, coordinates c1 and

c2 together might yield r
0 of 0.90 to feature fa, and coordinates c1, c2,and c3 together might

yield and r
0 of 0.95. Adding more coordinates to c1, c2,and c3 might reduce r

0. c1, c2,and c3

form a nested set. It is up to the user to decide which element of this nested set best describes a

useful relationship. The r0 values alone are not suÆcient. A small set of coordinates with lower

r
0 might be more useful than a larger set of coordinates with higher r0 for interpretation. The

goal of the r
0 association measure to eÆciently focus the users attention on the associations

that are strongest and thus most likely to be interesting.
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6 Conclusion

A problem often encountered when applying dimensionality reduction methods such as Mul-

tidimensional Scaling or FastMap to a dataset is �nding meaningful interpretations of the

resulting low dimension coordinate representation. We have introduced an automatic method

for �nding associations between these coordinates and a set of descriptive auxiliary features.

The method is based on the variance of nearest neighbor prediction from subsets of the coor-

dinate representation to each of the auxiliary attributes.

We have applied the method to synthetic data as well as to two real protein structure

datasets. Our experiments show that the method works well and is capable of �nding non-

linear relationships when standard methods such as linear regression fail. The method has

successfully rediscovered an association that required several days to discover manually, and

also found several new strong associations that had been missed by the manual search.
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