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Abstract

A lot of work has gone into predicting the secondary (small scale) structure of proteins from

their amino acid sequence. Current research indicates that there are limits on how well sec-

ondary structure can be predicted from local sequence information. To further advance predic-

tion, the interactions between elements of secondary structure which are inherently non-local,

have to be better understood.

This project studies a special case of secondary structure interaction, coupled helical motifs,

consisting of two interacting helices. The underlying hypothesis of this work is that there are

di�erent types of coupled helical motifs, which can be characterized by di�erent sets of rules

governing the underlying amino acid sequence of the protein. In order to learn such rules, a

classi�cation of the coupled helical motifs needs to be introduced. This can be achieved by

unsupervised learning methods such as clustering.

We present a method to automatically extract structural motifs in proteins. The method uses

hierarchical agglomerative clustering to �nd structurally equivalent sets of motifs in proteins.

These motifs can be used for study of the underlying amino acid sequence. We test the method

on a set of coupled helical motifs from the globin family of proteins. It rediscovers important

aspects of the well known structural hierarchy of this protein family.

Keywords: data mining, agglomerative clustering, cluster validation, cluster visualization,

protein structure, protein structure classi�cation
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1 Introduction

Understanding and predicting the structure of proteins is one of the most important problems

in modern biology. Chemically, proteins are polypeptides - linear chains of amino acids - which

fold into complex three-dimensional structures. (see �g. 1 for examples). Each protein has a

unique sequence of amino acids. The so-called \Second Central Dogma" of molecular biology

states that the amino acid sequence of a protein completely determines its three-dimensional

structure and that it is this structure that determines the function of the protein [3]. It is

relatively easy to measure the amino acid sequence of a protein experimentally, so that most

protein sequences are known. On the other hand it is extremely costly and time intensive to

determine the three dimensional structure [7]. Only about 18000 structures, a small fraction

of the total number of proteins, has been solved.

Proteins molecules play important roles in most biological processes. Given this, it is es-

sential for any kind of biological or medical applications to know and understand the three-

dimensional structure. Most drugs work by interfering with the function of speci�c proteins

in the body. The discovery of drugs is much easier if the structure of the protein is known.

Molecules can then be speci�cally designed to bind to certain parts of the protein to block or

enhance its functions (e.g. blocking the docking of AIDS viruses to cells). The current method

for drug discovery is to systematically screen hundred thousands of chemical compounds ex-

perimentally with a trial and error method, which is very costly. Computational methods

for structure prediction from sequence are therefore extremely valuable in pharmaceutical

research.

Given that there is a suÆciently large number of known protein structures, one of the

main approaches to protein structure prediction is based on machine learning and data mining

techniques [1]. Since directly predicting the structure is much too diÆcult (some studies

suggest NP-hard [8]), it is important to solve intermediate steps such as �nding repeating

structural motifs that can be predicted from the sequence. If a suÆcient number of these

motifs can be identi�ed for a given sequence, they could be used as building blocks of sorts to

determine the structure of the protein.

An equally important task is the inverse prediction problem. Here the task is to �nd

sequences that fold into a given three dimensional structure. This approach might be used to

�nd sequences in a database that fold into a particular three-dimensional structure. It is also

important in designing proteins to perform a speci�c function, which requires them to fold in

a certain way.

The �rst step in solving the inverse folding problem is to understand how elements of

secondary structure interact and form speci�c motifs. In order to study this problem, we need
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Figure 1: Di�erent schematic representations of protein structures. The protein is represented by the helical

thin bands on the �rst picture from the left. We can see several coupled helical motifs (helices crossing at

di�erent angles). The middle picture shows a coiled coil (much smaller scale). The protein on the right has

helices as well as sheets (colored)

to have speci�c examples of secondary structure. Given enough examples of a certain type of

secondary structure motifs, we can use statistical and machine learning tools to analyze the

characteristics of these amino acid sequences and derive rules about what amino acid patterns

de�ne these motifs.

There are several known examples of such motifs, however currently there is no systematic

classi�cation of the motifs. The set of known protein structures is too large to do this by

hand and automated techniques will need to be applied. The method we present in this paper

addresses this problem: it automatically extracts instances of a speci�c type of secondary

structure motifs from a protein structure database, and groups them by similarity using clus-

tering methods. The members of the resulting groups belong to the same secondary structure

motif, and can be used for further study. In this project we examine a particular subset of

structural motifs: coupled helical motifs. We de�ne coupled helical motifs as motifs consisting

of two helices in contact with each other (e.g. parallel or crossing at a certain angle). Examples

can be seen in �gure 1. In order to avoid confusion, we will use the term helix couple to refer

to two helices in contact from now on.

The remainder of this paper is organized as follows: the section2 gives background informa-

tion on protein structure. It is followed by a detailed description of the individual steps of our

method. The fourth section presents and discusses our results from applying the method to a

dataset with proteins from the globin family. We conclude with a summary and a discussion

of future work.
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Figure 2: Systematic representation of a myoglobin, a protein responsible for oxygen storage in muscle tissue.

The colored segments, labeled A-H, represent helical sections of the protein backbone

2 Background

In biology the spacial structure of proteins is classi�ed at di�erent levels: Primary structure

refers to the amino acid sequence (i.e. directly adjacent to each other). Secondary structure

refers to the relative spacial arrangement of amino acids that are near each other in the

sequence. Typical examples of secondary structure are helices or sheets (see �gures 1 and 2).

Tertiary structure describes the spatial arrangements of amino acids that are far apart in the

sequence.

Proteins can be classi�ed into di�erent families. One such classi�cation, which we have used

extensively in this project, is the CATH protein structure classi�cation at

http://www.biochem.ucl.ac.uk/bsm/cath new/.

It groups proteins hierarchically at four major levels. The top level, the Class-level (C),

describes secondary structure composition and packing. There are three major C-classes:

mainly alpha helix, mainly beta-sheet and mixed, alpha-beta. Figure 2 shows a protein made

up mainly of alpha helices. The next level, Architecture (A), depends on the overall shape of the

structure (i.e. the relative orientations of the secondary structure, ignoring their connectivity).

The Topology (T), or fold family level, describes both, the overall shape and connectivity of

the secondary structure. The last major level, the Homologous Superfamily or H-level, groups

structures that are thought to have a common evolutionary ancestor into families. Typically,

structures with the same H-level classi�cation have certain degree of sequence similarity. There
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are further sub-levels in the CATH classi�cation. We have used the S-level, which demands

sequence similarity of at least 35%, and, the N-level requires yet an even higher sequence

identity. Domains in the same H-level class virtually have the same sequence.

3 Approach

3.1 Overview

The goal of the method introduced here is to automatically �nd structural motifs in proteins.

The approach we take can be summarized as follows:

� De�ne a general type of motif we are interested in. For this project we focussed on the

family of coupled helical motifs, which we de�ne as motifs consisting of two helices in

contact with each other, or helix couples

� Scan the protein deposited in the Protein Database for motifs that fall into the selected

category (helix couples in our case).

� Extract the coordinates of the atoms making up the helix couple and calculate the

pairwise rms-distances, as de�ned in equation 1 below, between all helix couples found.

� Use the rms-distances to cluster the data using hierarchical agglomerative clustering.

This results in clusters of helix couples that are similar to each other.

� Use multidimensional scaling to visualize and interpret the data.

� Identify interesting clusters by looking for jumps in the mean internal distance (MID).1

The details of the di�erent steps in the method are described in more detail in the remainder

of this section.

3.2 Selection of data

As mentioned above, we have focussed our work on coupled helical motifs. The �rst step in

identifying sub-structures that �t this description is to �nd all the helices in a protein structure

�le. We do this with a structure analyis program such as the de�ne structure program by

Richards and Kundrot (1988). This program will examine the atomic coordinates of the

protein and on the basis of bonding angles of the backbone return a list with all the starting

and end points of helices in the �le. This step is fairly fast, since it is linear in the number

1The mean internal distance of a cluster is de�ned as the weighted mean of the average pairwise distance

between points in a cluster, over all the clusters.
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of protein structures we examine. It took less than an hour on an Intel Pentium based Linux

machine to do this for our data-set.

The next step was to �nd which helices are in contact and make up a helix couple. By being

in contact, we mean that the helices have some amount of buried surface area.2 We calculated

the buried surface area for each possible pair of helices for a given protein using the naccess

program by S. Hubbard and J. Thornton and kept the pairs with a buried surface greater

than a certain threshold. We also imposed a �xed length for the helices in order to have a

constanct number of atoms for the distance calculation. Finding helix couples is quadratic

in the number of helices per protein structure and linear in the number of protein structures

examined. However, since there are usually only few helices per protein3, this step took just

a bit over an hour on an Intel Pentium based Linux machine for our data-set.

3.3 Similarity Measure: rms-distance

In order analyze the data-space, we need to have a distance metric to compare pairs of helix

couples. Given two helix couples, di�erent similarity measures between the pairs of couples

are possible. The most general and most widely used measure in structural biology is the

rms-distance. It is determined as follows: the two pairs of helix couples are ridigly rotated

and translated on top of each other such that the root-mean-square (rms) distance between

corresponding atoms on the helices is minimized. (This corresponds to �nding the orientation

of maximal overlap.) Mathematically, for a pair of structures, i and j, the rms-distance is given

by

drms;ij = min
rot;trans

sP
N

k=1
kri;k � rj;kk2

N
(1)

where ri;k and ri;k are the position vectors of the k-th atom in the respective structure.

The sum runs over pairs of equivalent atoms. The minimal rms-distance is unique and it

is used as the distance function. We have calculated the rms-distance between all helix

couples using the ProFit program by Dr. Andrew C. R. Martin which can be obtained at

http://www.biochem.ucl.ac.uk/ martin/. This step is by far the computationally most inten-

sive of our method. It took on the order of two days, using all nodes on an eight node, 1.2

GHz AMD Athlon based Beowulf cluster, to do this calculation for our data-set.

2The buried surface area of two objects is de�ned as the sum of the surace areas of the individual objects

minus the surface area of the two objects put in contact.

3globin, which is a alpha-helical protein, has eight helices.
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3.4 Multi-Dimensional Scaling (MDS)

The calculation of all the pairwise distances in the previous step results in a very large4

distance matrix. It is diÆcult to analyze and visualize such a table. One of the main purposes

of multidimensional scaling (MDS) is to provide a coordinate representation of the similarity

or distance relations among a set of objects. Often it also results in a dimensionality reduction

of the problem. This allows easier visualization of the data and also allows the application of

methods that rely on a coordinate representation (e.g., k-means clustering). The description

of MDS given below closely follows the one given by Cox [5].

Suppose we are given a set of N objects for which we do not have a coordinate representation

but are instead given a matrix of pairwise distances Æij . MDS allows us to �nd a set of N points

fxig, i = 1; 2; : : : ; N in a p-dimensional Euclidian space such that the distances between the

points in that space dij obey

dij � f(Æij): (2)

Here f is a monotonic function of the distances. There are several methods of solving this

problem. Given a set of coordinates fxig for the points, we can de�ne a stress function which

measures how well the spatial con�guration of the points satis�es equation 2. A commonly

used function is

S =

P
i6=j

(dij � f(Æij))
2P

i6=j
d2
ij

(3)

Finding a coordinate representation fxig of the data with the desired distances then corre-

sponds to minimizing this stress function. Minimization can be done in standard fashion by

using gradient descent or annealing techniques.

Another approach is the following: Let us de�ne the matrix A as Aij = �1=2Æ2
ij
, with Æij

as de�ned above. We de�ne a second matrix B as B = XXT where X = [x1;x2; : : : ;xp]
T.

These are the coordinates of the points we want to determine. It can be shown (c.f.[5]) that

B = HAH (4)

where H is given by H = I � N�111T with the length-N vector 1 = (1;1; : : : ;1)T. B is

symmetric and positive semi-de�nite of rank p. It can be decomposed into

B = V �V T (5)

where � is the diagonal matrix of eigenvalues �i and V = [v1; : : : ;vN] is the matrix of

eigenvectors of B. The problem of �nding the coordinates xi therefore reduces to solving

43459 by 3459 in the case of our data set.
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Figure 3: Systematic representation of a helix couple as two cylinders.

the decomposition problem in equation 5, since X = V�
1

2 : This is a standard problem in

linear algebra. Generally, some of the eigenvalues are small so that they can be neglected.

This simpli�es the numerical solution of the problem. The advantage of this approach over

direct minimization of the stress function 3 is that the eigenvectors found are equivalent to

those found by a principal component analysis in the projection space. This often simpli�es

interpretation of the data.

3.5 Interpretation of dimensions

Once we have a coordinate representation of the data, we can visualize it more easily. However,

we do not usually know what the di�erent MDS coordinates mean. In the case of the helix

couples, we have auxiliary features, properties such as crossing angle, distance, etc (see �gure 3)

which describe the data. We would like to relate those features to the MDS coordinates.

Sometimes it is possible to �nd an interpretation in terms of auxiliary features by visual

inspection [2], but this is not very practical, even for a modest number of dimensions. In this

project we have used an approach based the nearest neighbor method to interpret the MDS

coordinates. The method allows us to �nd mappings between reduced dimension represen-

tations (MDS coordinates) and auxiliary features that describe the data. It �nds groups of

dimensions that taken together preserve local structure in the auxiliary feature space. We have

described this method in detail in an earlier report [6]. Here we only give a brief qualitative

summary.

The problem the method solves is to relate a set of MDS coordinates fc1; : : : ; cNg to some

auxiliary feature f . The intuition behind the approach is the following: Suppose two points

are near each other in a subspace de�ned by MDS coordinates fci; : : : ; cjg. If this subspace is
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well characterized by feature some f , the points should have similar values of f .

This property can be measured by looking for the nearest neighbor in the MDS subspace

and calculating an average distance with respect to feature f over all the data. We then

compare this value to the average distance between all the points in the feature space f .

If the space fci; : : : ; cjg is unrelated to f , then picking the closest point in that space

would be equivalent to picking a random point in f . The average f -distance of a nearest

neighbor point fci; : : : ; cjg should be similar to the average distance in the f . So the ratio of

the average f -distance over nearest neighbors to the average f -distance over the entire space

should be close to 1. If there is a strong relationship, picking a close point in fci; : : : ; cjg

should correspond to picking a point that is close in terms of f too. Therefore the average

nearest neighbor distance in terms of f should be much smaller than the average f -distance

over all the points, and the ratio of the two numbers should be small.

By looking at these ratios for all possible combinations of features and MDS coordinates,

we can identify the features that have a correlation with a given set of coordinates.

3.6 Hierarchical Agglomerative Clustering

The next step is to �nd sets of similar helix couples. We use Hierarchical Agglomerative

Clustering (HAC) for this purpose. Given a distance function de�ned between two points,

HAC starts putting all the points in the dataset in singleton clusters (i.e. number of clusters

equals number of data points). It then proceeds to merge the clusters that have the smallest

distance between each point in one and each point in the other. This corresponds to merging

clusters in such a way that the mean internal distance of the clusters is increased by the

smallest amount. This is repeated until we have one cluster containing all the points. HAC

can be described by a dendrogram or clustering tree which can serve to visualize the clustering.

(The description given here follows [4]). Figure 4 shows an example.

The main advantage of agglomerative clustering is that it gives a hierarchical clustering

tree, which will be useful for the rule learning stage of the problem. Other clustering methods

are worth exploring, but this will be left to a later stage of the project.

3.6.1 Importance of mean internal distance

During HAC, the mean internal distance of the clustering monotonically increases as more

and more clusters are merged. If two merged clusters are very similar, joining them will

not increase the mean internal distance by much. If two very di�erent clusters are merged,

as often happens towards the end of the clustering algorithm, there will be a large jump in

mean internal distance. We can systematically look for such jumps to �nd interesting merges.
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One Cluster with all points

One point per Cluster

Figure 4: Schematic picture of an agglomerative clustering tree. The leaf nodes correspond

to \clusters" consisting of only one data point. The root node represents one single cluster

containing all the points.

As long as the increases in mean internal distance are small, we are merging clusters that

are very similar, thus the points in the resulting clusters are very similar. During a jump,

dissimilar clusters are merged. The resulting cluster is not very homogeneous anymore. It is

then interesting to see if the jump in the mean internal distance can be explained by looking at

the points that are merged and in what ways they di�er. This will give an idea what features

are related to the jump.

4 Experiments

We tested our method on a set of protein structures from the globin family. We chose this set

of structures, because the globin family is extremely well studied. If our method works, we

should be able to rediscover some of the well known properties of helix couples in proteins.

4.1 Globin data set

4.1.1 Extraction of Data

Our data is derived from crystallographic structures publicly available in the Protein Data

Bank (PDB) (http://www.rcsb.org/pdb/). We used the CATH classi�cation of proteins to

�nd the proteins that belong to the globin family. The access code for globins in CATH is

1.10.490.10. This CATH code can be used to generate a list of access labels for the PDB for

the globin domains. With these access labels we then extracted 609 matching structures (i.e.
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the atomic coordinates) from the PDB. Following the procedure outlined in section 3.2 we

determined the location of all pairs of helices that �t our criteria for helix couples in these

proteins. Choosing a length of nine residues as our helix length, this procedure found a set of

3459 instances of helix couples. All the experiments described below were done on this data

set.

4.1.2 Labels

There is an extensive literature on the globin which we can use to describe our data set. This

was the main reason we chose globins: so much is known about them that they provide an

ideal test ground.

The globins have essentially the same overall fold and by extension essentially the same set

of helices. They are given speci�c labels in the globin literature: one of the letters A-H. Figure

2 shows an instance of a globin with labeled helices. Of course for any given structure, we do

not necessarily have these labels, but we can easily �nd them by doing a multiple sequence

alignment. Given the alignment, we compare each globin in the data set to a reference structure

with known labels to determine the label of each helix. Each helix couple is assigned a pair of

letters, corresponding to the labels of the constituent helices. We will refer to this letter pair

as 'helix couple label'.

We can also group the helix couples according to the globin from which it came. Using the

CATH S- and N-levels, we can label the globins according to sequence similarities. If two sets

of equivalent helix couples (same helix couple labels) come from proteins with the same CATH

S-level, we know that they must have relatively high degree of sequence similarity. The same

is true to an even stronger degree for helix couples with the same CATH N-level.

4.2 Results

4.2.1 Multidimensional Scaling

The results of the multidimensional scaling analysis has been described in a previous paper [6].

They can be summarized as follows: We used MDS to project the pairwise distance matrix

into a 10-dimensional euclidian space. Examining the space and a set of auxiliary features

using the KNN method showed that the main MDS coordinates5 are closely connected to

the crossing angle and the distance between the two helices in a couple. This is in line with

what we expect, since crossing angle and distance between helices are the main features that

structural biologists use to characterize a helix couple.

5A subset of coordinates that is suÆcient to reproduce the distance matrix up to a small error.
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Figure 5: Mean internal distance as function of number of clusters

4.2.2 Mean Internal Distance

Figure 5 shows a plot of the mean internal distance of the clustering as a function of the number

of clusters. As described in section 3.6.1, jumps in the mean internal distance indicate that two

dissimilar clusters are being merged, which in turn hints at something interesting happening.

It is easier to detect jumps in a plot of the di�erence in mean internal distance, which is shown

by the top curve in �gure 6. The bottom curve in the same �gure shows jumps in a measure of

the sequence di�erence, based on the BLOSUM62 similarity matrix. We can clearly see that

jumps in the mean internal distance coincide with jumps in the sequence distance between the

underlying helices. This indicates that the clustering in structure space captures important

information about the underlying amino acid sequence of the proteins.

4.2.3 Accuracy

To further validate our method we looked at a the following measure of accuracy of the

clustering: each cluster is assigned by the label of the majority of the points in the cluster.

Points that have the same label as their cluster are counted as correct, whereas points that

have a di�erent label are counted as wrong. Obviously, this measure is somewhat biased, since

clusters of size one will automatically have the correct label. We can deal with this in two

ways: we can either discount small clusters, or classify them as wrong, since small clusters do

not give us very much information.
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Figure 6: Change in mean internal rms and sequence distance as a function of cluster size
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We can then average the number of 'correct' labels over all the clusters. This measure of

accuracy will vary with the number of clusters we choose for the clustering, and also with

what labels we use. Figure 7 shows the accuracy as a function of the number of clusters for

two sets of labels. Small clusters were counted as wrong in this case. We can see that the

accuracy is fairly high as long as we chose a reasonable number of clusters. We are interested

in large clusters, the values the are towards the left of the curve. This is exactly the region

where the curves peak. As expected, the two curves peak at di�erent values. If we just use

the helix couple labels, we have only 12 di�erent classes, and a small number of clusters suÆce

to describe the data. We can reach accuracies of over 85%, if we choose between 25 and 100

clusters (random guessing would be 17% accuracy). If we use labels that are a combination

of helix couple and globin type, we have 97 di�erent labels. In this case, once we have fewer

clusters, we necessarily will start to see the accuracy decrease, since we do not have enough

clusters for all the classes. Here the accuracy is greater than 70% if we choose between 150

and 250 clusters (random guess: 10%). This clearly indicates that in both cases, the clustering

results in relatively pure clusters in terms of the known classes of helix couple labels and globin

types.

4.2.4 Clustering trees

We systematically looked for all merges that caused increases of the mean internal distance of

the clustering of more than 1%, and stored all the clusters (before the merge). We used these

clusters to build a simpli�ed clustering tree6. In order to better understand these clustering

trees, we can show the makeup of the clusters before the merge in terms of the various labels.

Figure 8 shows the this reduced clustering tree. Each cluster is indicated by a vertical bar,

the edges connecting the bars indicate which clusters merge. The vertical position of the bars

indicate the mean internal distance of a cluster, just before merging 7.

In �gure 8, the coloring of the bars shows the makeup of the clusters in terms of helix couple

labels. The helix couple labels cleanly split up among the di�erent sub-branches of the tree.

We can see that below a mean internal distance of about 0:6�A, the clusters are essentially

pure: i.e. all the points belonging to a cluster with less than 0:6�AMID are made up the same

helix couple type.

Another way of examining the makeup of the clusters is by looking at the globin types.

6We could construct the full clustering tree showing all the merges. But most of the merges are merges of

very small clusters, which make the tree very large without providing much additional information.
7Note that the parent cluster displayed does not necessarily have the exact same composition as right after

the merge that created it. Smaller merges, which did not create a large jump in the mean internal distance

might have occurred until the parent cluster is merged with another cluster. It is the composition right before

that merge which is displayed
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Figure 10: Reduced clustering tree. The bars indicate the makeup of each of the clusters with

respect to globin type.

We can do this at di�erent levels. At the coarsest level, we can simply distinguish between

hemoglobins and myoglobins. This is shown in �gure 9. On this tree, we can clearly see sub-

branches of the tree that are predominantly made up of hemoglobins or myoglobins respectively.

For example if we look at the child-nodes of the node at coordinates (150; 0:3), labeled with

(6; 106) we see that the left subtree consists mainly of helix couples from myglobins whereas

the right subtree mostly has helix couples from hemoglobin. By comparing with �gure 8, we

can see that these helices correspond to the 'BE' helix couple.

Figure 10 again depicts the reduced clustering tree with color showing the globin types as

given by the S-level of the CATH taxonomy. The S-level of CATH groups proteins according

to sequence homology. If we compare it with the simpler myoglobin-hemoglobins separation

on �gure 9, we can seen that S-level value 4 corresponds more or less to hemoglobin and

S-level value 6 mostly to myoglobins. In contrast to the tree with the helix couple labels,

the tree nodes here only become pure for mean internal distances smaller than 0:4�A. This is

reassuring, since we expect the di�erence between di�erent helix couples to be bigger than

between equivalent helix couples of di�erent globins.

We can look at an even �ner subdivision of the globins in the CATH classi�cation, the

N-level. Globin-domains that belong to the same N-level in CATH almost have identical

sequences. A reduced clustering tree colored according to the CATH N-level, is displayed

in �gures 11. For this sub-division, the nodes become only (mostly) pure for mean internal
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Figure 11: Mean Internal Distance vs cluster size

distance of less than 2 �A.

4.3 Discussion

From our experimental results we can conclude that our method works well. The multidimen-

sional scaling calculation and the analysis with the KNN method show that the rms-distance

accurately captures the main descriptive features of our selected motif type, crossing angle

and distance. It is important to notice that the rms-distance is a completely general distance

metric which can be applied to any kind of motif type. We did not have to specify any par-

ticular combination of features to do the clustering. This indicates that the method will work

well for other types of motifs, where we do not a priori know which combination of features is

most appropriate compare the structures.

As discussed in the introduction, the purpose of extracting these motifs is to �nd structurally

similar sets of motifs, which can the be used for a study of the characteristics of the underlying

amino acid sequences. To apply machine learning techniques or statistical methods, we will

have to �nd suÆciently large sets of examples of a given motif that are as pure as possible.

This means that we should evaluate the method based the results for the larger clusters. The

accuracy data indicates that the hierarchical clustering achieves a quite high degree of purity

for larger clusters. We conclude that the method will allow us to �nd the kind of large, pure

clusters that we need for the study of underlying amino acid sequences.

The clustering trees show that the method manages to reproduce important characteristics
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of the protein hierarchy automatically.

In particular, by looking at speci�c helix couples, such as the 'BE' or 'EG' helix couples,

we can see clear di�erences between couples coming from hemoglobins or myglobins. This

ability the di�erentiate between myoglobin and hemoglobin is a baseline test for the method,

which it clearly passes. It is diÆcult to relate the di�erences we see in the clustering tree to

speci�c structural di�erences between these two types of globins though. The main di�erence

between hemoglobin and myoglobin is that that hemoglobin is a tetramer, made up of two �

and � chains, whereas myoglobin is a monomer. We would expect that there might be some

di�erences in the regions where the chains are in contact in the hemoglobin. However, almost

all the helix couples in our dataset contain at least one of these helices ('B','G','H' and 'C'),

so it is not clear which of the helix couples should display the largest di�erence.

Another important point to notice is that depending on what level of mean internal focus,

we �nd di�erent levels of structural similarity. Each level of structural similarity can be related

to a level of sequence similarity: If we look a clusters with mean internal distance of 0:6�Aor

less, all the helix couples in a cluster will be identical in terms of the helix couple labels. This

means they perform the same function in the protein, and are located in the same range in

the sequence. However, they might come from di�erent sub-families of the globin family. This

is what we would expect: Di�erent helix couples within the same globin are not expected to

have any structural similarity, but for equivalent helix couples from di�erent globins there is

such a similarity. If we choose a cluster with mean internal distance of 0:4�Aor less, the helix

couples in the cluster not only have the same helix couple labels, but they will also belong to

the same S-level in CATH, indicating that they have a quite high degree of sequence identity.

Finally, all the point in clusters with mean internal distance of 0:2�Aor less, will have even

more similar sequences, since they will have the same or a very similar N-level classi�cation in

CATH. Again, the further down we travel, the more and more similar the helix couples get,

not only in terms of structure, as implied in the mean internal distance, but also in terms of

underlying amino acid sequence. This clearly shows that our method, using only structural

information, allows to �nd sets of helix couples that have a high degree of similarity in terms

of sequence. This is exactly the behavior we are looking for to automatically �nd sets of data

belonging to the same structural motif.

5 Conclusion and Future Work

We have presented a method that allows to automatically extract structural motifs in pro-

teins. The method is based on hierarchical agglomerative clustering and allows to �nd sets of

structurally equivalent points de�ning such motifs. These motifs can be used for study of the
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underlying amino acid sequence. The method is tested on set of coupled helical motifs from

the globin family of proteins. It rediscovers important features of the well known structural

hierarchy of this protein family.

The next steps of the project will involve applying this method to set of general proteins,

from all the di�erent levels of CATH. If the method performs as expected, we will be able to

�nd regions of proteins in di�erent types of proteins that all �t the same structural motif. Once

we have this data, we will use machine learning methods to look for the rules that characterize

the motifs found.
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