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Abstract 
 

Re-identification is the process of relating unique and specific entities to seemingly anonymous 

data, and as such, is an attack on the privacy of a data collection. This work introduces a new re-

identification attack, termed the trail problem, for data distributed over multiple locations.  

Through the use of data trails an adversary can independently reconstruct the trails of locations that 

identified entities and their un-identified data visited, which can then employed for re-identification 

via trail matching.  The attack strategy is based on the premise that data collecting institutions 

partition and release a dataset as multiple subsets, such that one release contains identifying 

attributes (e.g. name, social security number, phone number) and a second is devoid of these 

attributes (e.g. DNA sequences).  The trail attack is dependent on whether the identified data is 

always collected with the un-identified data, termed complete, or whether one of the attributes is 

under-collected, termed incomplete.  Both the complete and incomplete trail problems are 

formalized and several novel algorithms for re-identification are introduced.  Examples are drawn 

from the areas of clickstream, DNA sequence, health, and video data. 
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1 Introduction 
 
 In recent times, our society has witnessed a dramatic increase in the ability to collect, record, 
and store entity-specific information as an individual entity proceeds through their daily routine.  
This proliferation can be attributed to several factors; most notably the propagation of low-cost 
storage computing and the development of technologies for relative ease in the computer-based 
collection and dissemination of various types of data.  As a result, the collection of entity-specific 
data has become ubiquitous in a diverse range of environments, including various levels of 
government, the medical community, and private corporations [4].  Along with entity-specific data 
collections comes a vast array of research possibilities at a micro-managed level that up until 
recently resided beyond the auspices of many communities.  In many situations, a collection is 
useful to researchers and institutions outside of the original collector.  Thus, while the application 
and analysis of such collections may be performed by the collecting institution, where the identities 
associated with the information is known to the researchers, collections are often sold for profit, 
shared, or released for public review.  When releases of entity-specific collections are made 
available, the identities of the entities which make up the collection must be protected to prevent 
the misuse and abuse of such granular and sensitive information corresponding to an entity [6].  
 Until recently, it was the belief that if data simply looked anonymous, then it actually was 
anonymous.  This assumption is not true and the fallacy has been exposed with respect to de-
identified data that, while devoid of explicit identifiers, such as name, address, and phone number, 
includes additional attributes useful for establishing identity.  For example, publicly available 
hospital discharge databases are devoid of explicit identifiers, yet still incorporate date of birth, 
gender, and zip code, which in combination is uniquely distinguishing for approximately 87% of 
the individuals in the United States [30].  The identities of the transactions in such a collection 
could be determined, with relative ease, by linking the data to an external dataset containing these 
attributes, such as a voter registration list [29].  Formally, the process by which seemingly 
anonymous data is related to unique and specific entities, that are the subjects of the data, is 
referred to as re-identification and is a direct way of compromising the privacy within a data 
collection.  To prevent unwanted re-identifications, computational and statistical privacy protection 
algorithms and protocols, also known as disclosure control or privacy preserving algorithms, have 
been developed to prevent unwanted disclosure of various types of data or identities in the data. 
 However, this work introduces a new re-identification attack strategy not addressed in prior 
privacy analysis that compromises the protection of identity via the releases of collections from 
multiple institutions.  The basic outline of the attack proceeds as follows.  Institutions collecting 
data record identified transactions.  Each institution releases their collection as two subcollections, 
such that one subcollection contains identifying attributes and the second contains the de-identified 
set of attributes.  For the releases of any single institution, the records of the latter collection can 
not be uniquely matched to the records of the previous collection.  However, an attacker can collect 
releases from multiple institutions and reconstruct the locations that a particular entity visited, and 
likewise for unidentified data with a static or traceable component.  We refer to such 



 

reconstructions as data trails, and it is through the trails that a relationship is established between 
identities and their unidentified data via the uniqueness of trails.  Such an attack we term the trail 
privacy problem.  This problem is a bit more complex when dealing with institutions that may 
record/release one type of data (identifiable vs. unidentified) and not the other, which we also 
address in this paper.   
 To make the problem more concrete and establish real-world significance, consider an 
introductory example of a hospital that maintains a database corresponding to the medical records 
of visiting patients.  In such a database, the hospital records contain personally identifying 
information, such as name, address, and phone number of its visiting patients.  Specific medical 
information about the patients, such as diagnoses provided by attending physicians, is also 
recorded.  For diagnostic or research purposes, DNA can be sequenced and the data is additionally 
documented in the electronic medical records.  The DNA sequence data, devoid of the additional 
recorded information, might be thought of as anonymous data simply because there are no explicit 
identifiers.  While an individual’s DNA sequence may be unique, if it is not accompanied by any 
explicit demographics, how could the person who is the subject of the DNA be determined?  No 
centralized registry exists that matches up sequence data with the names of individuals.  Therefore, 
if the hospital releases a dataset consisting only of DNA data, the DNA should remain 
unidentifiable.  If the inherent relationships between certain genetic disorders and DNA are not 
considered (or are vague) this belief would hold when the release of a single hospital is considered.  
Yet, the individuals who leave behind their sequence at this particular hospital can visit multiple 
hospitals, and at each hospital, they can leave behind data (via a new sequencing or passing of the 
medical record), thus creating a trail of data.  Each hospital releases 1) a DNA database consisting 
of sequence data only and 2) a database of diagnosis information, which has the actual identities of 
individuals, possibly for discharge evaluation or quality assurance analysis.  Since the DNA data 
for an individual is static, one can determine the set of hospitals, or the hospital trail, that each 
DNA sequence was collected at.  Furthermore, it is also possible to determine the hospital trail that 
an individual visited, based on their directly identifying information.  With the constructed trails 
from the two types of seemingly disparate databases, DNA can be matched to an identity based on 
uniqueness of the trails.  The concept of the trail problem permeates many areas of data privacy, 
including DNA, clickstream, and video surveillance data.  
 The remainder of the paper is organized as follows.  Section 2 provides background in 
disclosure control methodologies, which have been developed to protect data when released by 
collecting institutions and discusses how the trail re-identification problem relates to such schemas.  
Section 3 defines relational database concepts, definitions, and functions for the trail problem.  The 
trail-based re-identification algorithms, REIDIT-Complete, REIDIT-Incomplete, and REIDIT-
Multiple are formalized in sections 4 and 5.  An analysis of REIDIT on real world data is provided 
in section 6, while in section 7 a novel implementation of the algorithm is proposed.    Related 
work in re-identification methods is offered in Section 8.  A discussion of the limitations, further 
development of the algorithms, and its implications is discussed in Section 9. 

 



 

2 Disclosure Control and Privacy Preservation 
 
 Privacy protection models have been addressed in several related fields, including access 
control, statistical disclosure control, computational disclosure control, and data mining.  While 
each of the communities offers viable models and methods for protecting data, no explicit 
discussion of the privacy compromising abilities of the trail problem have been addressed.  Here 
fields related to data protection are discussed with respect to the extent that the trail problem does 
not fall under the protection models. 
 Traditional access control, also referred to as query restriction, attempts to manage the data that 
can be provided (released) given a query (request) to a multi-level relational database system 
(MDB) [5, 7, 12, 13, 19, 22, 24, 26].  Denning and Lunt [7] describe a MDB as a relational 
database with data classified into a hierarchy of security access levels.  For any given query and a 
security level, the goal is to return a dataset, such that information at the given security level is 
viewable, but information at a more restricted level of security is obscured and can not be inferred.  
The main method for protection in a MDB is suppression, where sensitive information, as well as 
information that can be used to infer sensitive information, is withheld from the release.  In the trail 
problem, at any particular institution, the relationship between the unidentifiable dataset and 
identifiable dataset is such that there does not exist a direct inference to map the records from one 
set to the other.  There is no protocol to suppress values in the records of a released unidentified 
registry of data.  The suppression of an entire attribute would prevent any release of the dataset 
when there is only one attribute. 
 The field of statistical disclosure control (SDC) attempts to protect data utilizing a variety of 
protection techniques, which are based on the following dogma. The receiver of the released data 
should be able to reconstruct accurate aggregate distributions, while identities of the record of the 
entities can not be inferred [8, 10, 14, 17, 34].  Many of the established methods in this community 
are based on suppression, addition of noise, or perturbing the records in a released collection. The 
released dataset contains individual records, and while the aggregate statistical distributions can be 
preserved, the accuracy of the relationships within a particular record can be eroded.  Consider that 
the set of unidentified tables are registries of collected unidentified information, such as IP 
addresses that visit a particular website.  At a particular website, the perturbation of an IP addresses 
may falsify the information.  Perturbing an IP address ip into ip′ can protect the identity of ip, but 

will falsely denote ip′ as a visitor of the website.  Furthermore, if ip′ is listed in a released 

collection from another website, then a false trail may be established representing multiple 
addresses. 
 Computational disclosure control (CDC) techniques attempt to prevent the direct linking of the 
records from one unidentified collection to the records of an identifiable collection.  The 
methodology of this field protects data by releasing a dataset in a manner such that each record is 
the same as k-1 other records on a specified set of fields.  Records are made to look the same 
through the generalization and suppression of a predefined set of attributes [27, 28, 29, 33].  Thus, 
the released table adheres to a level of k-anonymity. The problem of re-identification by linking on 



 

combinations of values from common attributes is exemplified by the work of Sweeney [30].  In 
this work, publicly available hospital discharge records were purchased from the Group Insurance 
Commission of Massachusetts.  The fields of information included zip code, birth date, and gender 
which, in combination, often served as unique identifiers for individuals.  When this list was linked 
to identifiable voter registration data on the common fields used for the unique identifier in the 
discharge data, the identities of the records were uniquely re-identified. 
 Several proposals for protection have been emerged from the data mining community, usually 
referred to as privacy preserving algorithms.  Certain methods have been proposed that employ 
perturbation techniques, similar to those of SDC [2, 3, 9, 25].  Other techniques have been offered 
under the guise of multi-party computation for data distributed over multiple institutions [15, 17, 
32]. The work most related to the trail problem is that of the learning algorithms for horizontal- 
(same attributes - different transactions) [15], and vertical-partitioned (same transactions – different 
attributes) [32]. In this latter category, no data is released; rather cryptographic approaches are used 
to learn aggregate association rules. While privacy may be preserved in the latter techniques, 
neglecting leakage via collusion and other features, no specific information is ever released from an 
institution, which does occur in the trail problem. 
 

3 Definitions and Identifying Relations 
 
 In this section, terminology formal definitions for the trail problem are introduced.  The basic 
definitions used are a derivation of those in relational database theory.  The term data refers to 
entity-specific information, which is organized as a table of rows (records) and columns (fields).  
Each row of the table is referred to as a tuple and each column is referred to as an attribute.  Each 
attribute can be thought of as a semantic category of information with a set of values.  Since this 

work is concerned with the relationships between tables, let us define a table as Wc(A
c
1, A

c
2,…,Ac

m), 
where the set of attributes for table Wc is Ac

τ = {Ac
1, A

c
2,…,Ac

m}.  A tuple t of the table Wc is defined 

as t[ac
i,…,ac

j] and represents the sequence of values, vc
i∈Ac

i,…,vc
j∈Ac

j.  The size of the table is 

simply the number of tuples and is represented |W|. 

 

3.1 Identifying attributes 
 
Attributes may exhibit several different types of identifying properties.  An explicit-identifying 
attribute consists of information that reveals the identity of an individual.  Examples of such 
attributes include name, address, and phone number.    Alternatively, an attribute may be quasi-
identifying, such that alone it may not be unique and linkable to external information that contains 
explicit-identifying attributes, however, when utilized in combination with additional attributes it 
can be used for such linkage purposes.  An example of such an attribute is the date of birth of an 
individual, which could be used in conjunction with the zip code and gender attributes of a table to 
uniquely define an individual.  The set of attributes, for a particular table, that when used in 
combination permit linking to external identifying information has been termed a quasi-identifier 



 

[27].  A dataset containing explicit-identifying attributes, or linkable to a dataset that contains such 
attributes, will be referred to as identified data. Attributes that are neither explicit- or quasi-
identifying are referred to as non-identifying attributes. 

 

3.2 Linking attributes 
 
To establish a link between two tables Wi and Wj, it need not be the case where a quasi-identifier of 

table Wi is equal to a quasi-identifier of table Wj. Rather, it is sufficient to define the quasi-identifier 

for table Wi that is useful for linking to table Wj through the existence of a relationship between the 
attributes of the two tables. Thus, a set of attribute pairs from tables A and B can be defined, such 
that each pair consists of one attribute from each table.  The following defines the attribute linkage 
set: 
 
Definition 3.1 (Attribute Linkage Set) Let Qi and Qj be the attributes of the quasi-identifiers for 

tables Wi and Wj.  The attribute linkage set (ALSij) is defined as the set of pairs <Ak,Al>  such that 

Ak∈Qi, Al∈Qj, and there exists a relation AiRAj that is non-null. 

 

Example 3.1  Given two tables, Wi(name, date of birth, gender, zip code) and Wj(year of birth, 
gender, IP address).  Under the assumption that the IP address has not been spoofed, a relationship 
between the IP address of a computer and the geographic zip code can be established.  As such, the 
linkage attribute set Sij is defined as: 

Sij={<date of birth, year of birth>, <gender, gender>,  <zip code, IP address>} 

 

3.3 Partitioned tables 
 
 Now that the concepts of tables, attribute identifiability, and inter-table relationships have been 
defined for linkage purposes, the definitions for features specific to the trail privacy problem are 
presented.  For a particular collecting institution, we are concerned with the release of a table as 
two subtables, one containing identified data and the other devoid of identified data.  The subtables 
are a partitioning of the attributes of the table maintained by the collecting institution.  The 
properties of the partitioned release are formalized in definition 3.2. 
 

Definition 3.2 Given a table W maintained by a collecting institution, let W - and W+ be referred to as 

the negative and positive subtables of W, such that 

  (i)  A- ∩ A+
 = ∅ 

 (ii)   A- is devoid of a quasi-identifier that is linkable to an explicit identifier 
(iii)  A+ includes either 

  (a) explicit identifying attributes 
   or 
  (b) a quasi-identifier that is linkable to an explicit identifier 



 

 
The third concept of definition 3.2 is for re-identification completeness.  It states that the positive 
table is identifiable if it contains any explicit identifying attributes or could have an explicit 
identifying attribute appended via linkage to external information containing explicit identifying 
attributes. 

 

3.4 Models of data collection 
 
 Re-identification through trails is dependent on the manner in which data is collected.  Here 
several models for data collection are presented.  First, several assumptions crucial to 
understanding the environment upon which the presented version of the REIDIT algorithms 
function are made evident. 
 
Assumption 3.1 (Per Institution Release) Each institution c releases data that was collected at c 

and from no external source. 
 
Assumption 3.2  (Single Entity Per Tuple) Each tuple in a table, either original or released, 
represents one entity only. 

 
Definition 3.3 (Complete-Collecting Model) Let C be the set of collecting institutions, let Ac+ be 
the set of identifying attributes, and Ac- be the set of non-identifying attributes for institution c.  
Under the complete-collecting model, every instance of the collection of identifiable data (+) is 

collected with non-identifiable data (-), such that an arbitrary collected tuple t[Ac+, Ac-] has non-
null values for both Ac+, Ac-. 
 
Lemma 3.1 (Complete Subtable) If the collected quasi-identifier is unique for each entity at an 

institution, then |W-| = |W+| = |W|.  The released positive and negative subtables are called complete. 
 
 Let C represent the set of collecting institutions and let T- signify the set of all released negative 
tables provided by the collecting institutions.  Since all tables in the set of negative tables are of the 

same structure, such that Ai-=Aj- is the same for all Wi
-,Wj

-∈T-, there must exist a quasi-identifier that 

exists in each negative table.  This quasi-identifier is referred to as Q-.  Under the per-institution 
release assumption, the institution itself can be utilized as an attribute in the positive and negative 
tables.  Therefore, location-specific attribute can be appended onto each table, such that the set of 
attributes for a released subtable is {Ai- ∪ loci}, where loci is what we term the location-specific 

attribute for location i.  It is not explicitly represented in the released table, however it is implicit 
due to the fact that the provider of the releasing institution is known.  For our proposed attack, the 
location-specific attribute is permitted to consist of binary values, representing the presence (1) or 
absence (0) of information collected on an entity at a particular institution.  The set of tables with 
the appended location-specific attributes is termed Tc

-.  It is obvious that every tuple in the released 



 

table must correspond to information that was collected by the releasing institution, and as such 
each tuple in the table consists of t[vi-

1,…,vi-
n,1].  Similar construction is performed for the 

generation of Tc

+. 
 With the establishment of the fact that Q- exists, a single table to represent the information 
from each of the tables in the set Tc

- can be constructed. Let us define a new negative table N as the 
union of all tables in Tc

- on the attributes in Q-.  The resulting table has the attribute set  

�
Ci

iN AA
∈

−=  

Furthermore, |N| is equal to the number of distinct quasi-identifier values that exist in the union of 
all tables in Tc

-.  Each tuple in N represents all released information that has been collected about 
one of the entities with the quasi-identifier in the set of collecting institutions.  Similarly, a table P 
for the positive table set Tc

+ can be constructed. 
 Within the attribute set AN is included the set of location-specific attributes and, by the above 
description, the value of each location-specific is binary.  It is from the joined set of location-
specific attributes that the data trail is derived from. 
 
Definition 3.4  (Data Trail) A data trail, henceforth referred to as a trail, corresponds to the 

values of the attributes for the location specific attributes of a tuple, t[ai,…,aj], vi∈loci,…,vj∈locj. 

 
There are several types of trails that may exist.  Based on the complete-collecting model, we 
introduce the first type, which is referred to as the complete trail. 
 
Definition 3.5 (Complete Trail)  A complete data trail consists of values, such that each value is 
correctly provided without ambiguity; 0 signifies not present and 1 signifies present. 
 
Lemma 3.2  If the collected quasi-identifier is unique for each entity at an institution, then for 

every tuple n∈N, ∃ p∈P, such that trail(n) = trail(p). The function trail returns the trail of the 

provided tuple. 
 
Furthermore, in some cases the partitioned tables may stipulate a non-null attribute linkage set, 
ALS+-, which might allow a small number of re-identifications without the use of trails.  For 
example, consider the online consumer scenario, where ALS+- = {<zip code, IP address>}.  Let X1 

be the set of tuples in Wi
+ with t+[zip], zip equal to 15213, and let Y1 be the set of tuples in Wi

- that 

have  t-[IP∈ zip 15213]), which returns IP addresses that exist within the zip code 15213.  If it is 

the case that |X1| = |Y1| = 1, then it must be true that the tuple in set Y1 can be re-identified with 
information from the lone tuple within X1. 
 
There is a second type of collection model, under which there is no guarantee that an entity’s data 
is collected a visited institution. For example, if one type of data, such as IP address, was collected 
about an online shopper, it is possible that the identifiable information was not recorded due to lack 
of purchase.  It could be equally true, that identified information could be collected more often than 



 

the unidentified information.  Consider n example scenario from the healthcare community.  A 
patient can be treated at many hospitals, and at each hospital visited the patient’s identifiable data is 
recorded for purposes of processing insurance reports and simple reference to the patient for 
physicians, nurses, and other care providers with a legitimate necessity for access.  When the 
patient is thought to harbor a genetic disorder, DNA may be sequenced for diagnostic or research 
purposes.  For a particular patient, the DNA, which is the unidentified data, may not be recorded in 
every visited hospital’s database.  The trails that are constructed from such data , where the positive 
and negative tables may be of unequal size, are what we term incomplete trails. 
 Before a formal definition for incomplete trails is provided, it is imperative to understand the 
concept of an incomplete table.  In the above scenarios, either of the positive or the negative tables 
could consist of less tuples than the other.  For re-identification purposes, it is inconsequential 
which of the tables are smaller, but for the proposed re-identification algorithm to correctly link 
tuples across tables it must be the case that all tables of a certain type are not larger than their 
counterparts. 
 
Definition 3.5 (Incomplete-Collecting Model) Let C be the set of collecting institutions, let Ac+ be 
the set of identifying attributes, and Ac- be the set of non-identifying attributes for institution c.  
Under the incomplete-collecting model, values collected for one of either Ac+ or Ac- are permitted 
to be null, such that for all institutions in C, the same attribute is permitted to be null. 
 
Lemma 3.3 (Incomplete Subtable) If the collected quasi-identifier is unique for each entity at an 

institution, then it must be true that for an arbitrary institution c, either ∀c∈C: |Wc
-| ≥ |Wc

+|  or 

∀c∈C: |Wc
-| ≤ |Wc

+|.  The smaller of the released subtables is termed called incomplete. 
 
The existence of incomplete information allows for an extension to the above definitions for 
negative and positive complete tables to incomplete tables. 
 
Definition 3.6  (Incomplete Table) Let N and P be the union of the negative and positive released 

tables, respectively.  The constructed table N is negative incomplete if ∀c∈C, |Wc
+| ≥ |Wc

-|. The 

constructed table P is positive incomplete if ∀c∈C, |Wc
+| ≤ |Wc

-|. 

 
 Based on the above definitions, an incomplete table must provide less information about the 
true set of institutions that all entities visited than its complete counterpart.  The lack of information 
can be characterized by the difference in the trails that reside in the tables.  While it is not 
necessarily the case that every trail in the incomplete table must be devoid of information that 
exists in its corresponding complete trail, it must be the case that there exists a minimum of one 
trail that contains less information.  Such trails that are information lacking are termed incomplete 

trails. 
 



 

Definition 3.7 (Incomplete Data Trail) A trail is incomplete if for every attribute in the trail, the 
following holds true: 
  (i) A value of 1 must be unambiguous; it is definitely a value of 1 

(ii) A value of 0 is ambiguous; it may represent a value of 0 or 1 
 
Though an incomplete trail is relatively easy to define, there may be no direct way to match up an 
incomplete trail with its complete counterpart.  There may be multiple complete trails that an 
incomplete trail can be mapped onto.  The ambiguity leads us to the definition of a subtrail in 
Definition 3.8.  An incomplete trail is basically a skeleton of a complete trail.  The subtrail 
provides us with a simple relation between incomplete and complete trails.   
 
Definition 3.8 (Subtrail / Supertrail) An incomplete trail x, is a subtrail of a complete trail y 

(x≤y),  if for every value of 1 in the incomplete trail, the complete trail has a value of 1. Similarly, 

the complete trail y of this relation is the supertrail of x. 
 
Example 3.1 Let Nt = {[0,1,0]; [1,1,0]; [0,1,1]} be the set of trail from incomplete table N and 
Pt={[1,1,0]; [1,1,1]; [0,1,1]} be the set of trails from complete table P.  For a complete trail, 
trail(p)=[1,1,0], the set of subtrails is {[0,1,0]; [1,1,0]}.  For incomplete trail, trail(n) = [0,1,1], the 
set of supertrails is {[1,1,1]; [0,1,1]}. 

 
4 REIDIT Algorithms 
 
The trail re-identification problem can be defined as follows.  Consider a set of subjects S and a set 

of data collectors C.  Each of the collectors ci∈C releases a partition of their collection {di
1,d

i
2}.  

An adversary collecting data from multiple institutions appends loci to the attribute set of each 
release.  The constructed table from the multiple releases of partitioned tables is equal to: 

�
Ci

idD
∈

= 11
  �

Ci

idD
∈

= 22
 

From these unioned tables, trails corresponding to the presence or absence of each unique subject 
are found, as depicted in Figure 1. 
 

trail1     0000000000000000000000001000 
trail2     0001000000100000000000000000 
trail3     0000000000000000001000000000 
trail4     0000000000000011000000000000 

Figure 1. Sample of constructed household trail data for online household purchasers. 
 

Let there exist a relation D2RD1.  Since not all subjects visit all data collectors, a re-identification for 
a subject s∈S can be made when there exists a unique occurrence of an s∈D2RD1. 
 

 Given the set of partitioned tables, we can employ the uniqueness of the trails to match the 
seemingly anonymous data to the identified data.  The proposed algorithms are variations on what 
we refer to as Re-identification of Data in Trails (REIDIT).  First an informal description of the 



 

algorithms is provided.  Following such descriptions, the algorithms are then logically formalized.  
Notation for the following algorithms is provided in Table 1. 
 

QI+, QI- set of quasi-identifying attributes for T+, T- 
R the set of re-identified tuples t[AN ∪ AP] 
Mn set of tuples in table P that trail(n) is a subtrail of 

Table 1. Notation legend. 
 
4.1 REIDIT-Complete 
 
 For every tuple n in N, we determine if there exists one and only one tuple p in P, such that the 
data trails of the two tuples are equal.  Equality is defined by the following feature, when an 
unidentified trail has a negative value for institution i, the identified trail has a negative value for 
institution i.  The same must hold true for a positive value.  Note, that if the attribute linkage set for 
tables within T- and T+ is nonnull, then these relations must be accounted for as well. When there is 
an exact matching of tuples, and this matching is unique, then n is re-identified with the explicit 
identifying information in p.  The uniqueness constraint derives from the fact that re-identification 
can only occur when an unambiguous linkage is possible.  If a trail(n)∈N is equal to a trail(p)∈P, 

but there is an additional trail(p′)∈P that equals trail(n) as well, then there is an ambiguity and no 

re-identification can occur for the individual under REIDIT-C. 
 The formalization of the REIDIT-C algorithm is provided in Figure 2.  
 
Algorithm: REIDIT-C(N, P) 
Input: Negative and positive complete tables N and P 
Output: the set of re-identified tuples R 
Steps: 
 let R = ∅ 

 for each tuple n∈N 
  for each tuple p∈P 
   Mn = ∅ 

   if trail(n) ≡ trail(p) 

    Mn = Mn ∪ p 
  if |Mn| ≡ 1   
   R = R ∪ t[n[aN– aL] ∪ (p∈Mn)[a

P– aL]] 
 return R 

Figure 2. Pseudocode for REIDIT-C. 
 
Complexity.  The first step in the algorithm simply appends a single value onto each tuples in the 

set of tables.  This step is linear in the size of the tables, or O(|W1
-|+|W2

-|+…+|WC
-|).  Since the number 

of tuples in each table is maximized when each table contains every known quasi-identifying value, 
these steps are on the order of O(|QI|2), where |QI| is the number of unique quasi-identifying 
values.  Similarly, construction of the tables N and P is also linear in the size of the tables and thus 
complexity is still O(|QI|2).  In the remaining section of the algorithm, there are two loops to 
consider.  First, the outer loop iterates over all of the tuples in N, which is |N| iterations.  Second, 
for each iteration in N, the algorithm can iterate a maximum of |P| times.  This maximum is reached 



 

when no re-identifications are made.  Furthermore, if each entity has a distinct quasi-identifying 
value, the second assumption confirms that |N|=|P|=|QI|. Thus, the maximum number of iterations 
is |QI|2, and the order of complexity for this section is O(|QI|2).  Since all sections of the algorithm 
are approximately quadratic in the number of distinct quasi-identifiers, the entire algorithm must be 
quadratic O(|QI|2). 
 
Theorem 4.1 Returned tuples from REIDIT-C are correctly re-identified to one identity. 

 PROOF:  First, recall the underlying assumption of the complete-collecting model: tuples of 
both tables N and P consist only of complete trails. Therefore, at an institution i, a visit from an 
entity must be recorded in both Ti

- and Ti
+.  Since this holds true for every institution, for each 

trail(n)∈N, there must exist at minimum one equivalent trail(p)∈P.  Now, if there exists greater 

than one equivalent trail in P for trail(n), then tuple n could be assigned to multiple trails, and 
subsequently multiple identities from P.  However, the entity that generated trail(n) could only 
have generated one trail in P.  Thus, there is an ambiguity in identity and we can not represent one 
entity as multiple entities.  Yet, if there exists only one equivalent trail for n in P, then the identity 
of trail(p) must belong to n.  

 

4.2 REIDIT-Incomplete 
 
The REIDIT-C algorithm is limited in its application, due to the fact that it is derived from the 
assumption that the data trails constructed from each set of subcollections are complete.  In other 
words, if an entity left a unidentified type of data at an institution, such as IP address, then the 
identified type of data, such as name, must also have been collected.  As such, a re-identification of 
unidentified data could only occur if each part of the associated data trail is the same as a data trail 
for an identified data.  Yet, such an assumption of the existence of complete data trails in both sets 
of released subcollections is not always valid.  For example, consider an online consumer who 
visits several online retail websites before making a purchase.  At each website the consumer’s IP 
address is logged, however, the identifying information is only recorded at the website where the 
purchase is made.  The same set of websites may be visited by a different online consumer, but 
their purchase is made at one of the sites that the first consumer visited without making a purchase.  
When the data trails are constructed from the released data, there now exists a trail for each data 
type that is not equal, despite the fact that they correspond to the same entity.  How would one 
make a re-identification if the trails are not the same?  If the receiver of the data had omniscience, 
then one option would be to simply drop an entity’s data from a released table if one type of data 
was collected and on the entity and not the other.  This would be ideal, however, in lieu of 
omniscience, there is no way of determining which entities are missing from an institutions data 
release. 
 To circumvent this problem, we introduce REIDIT-Incomplete (REIDIT-I).  The main premise 
of this algorithm is similar to REIDIT-C in that it constructs data trails from a set of released 
datasets from multiple institutions.  However, the re-identification step is contingent on the belief 



 

that when an institution collects one type of data, it may not collect the second type of data.  Thus, 
data trails generated from one set of released tables are always complete, while data trails generated 
by the second set of released tables can be incomplete, or underreported.  When an incomplete trail 
can be matched to a single complete trail, a re-identification occurs.  Given a table of negative 
trails, N, and positive trails, P, we wish to determine the identity of the data for which the trails 
within N correspond.  In the REIDIT algorithm, the requirement for re-identification was rooted in 
the assumption that if one trail and only one trail in P was equal to the considered trail in N, then 
the considered trail was re-identified by the trail from P.   However, in the case where trails from 
one of the databases are incomplete, the equality of trail requirement is revoked.  Instead, the 
requirement of a subtrail is substituted.  While the subtrail requirement is less strict a requirement 
than equality, through an iterative re-identification process, certain ambiguities can be resolved and 
incomplete trails can be matched to their complete counterparts.  For each trail in the incomplete 
table, the set of trails from the complete table for which the trail is a subset of is determined.  If 
there is only one trail in this set, then the entity of the trail from the incomplete table is re-identified 
with the identifiable data associated with the trail from the complete table. Also, the re-identified 
tuples from N and the re-identifying tuples from P are removed.  When, no more re-identifications 
can be made, the re-identification process is re-iterated.  This iterative process continues until 
either one of two conditions is satisfied; 1) if |N| or |P| is equal to 0 or 2) there are no re-
identifications made in the current iteration. 
 The formalization of REIDIT-I is provided in Figure 3. 
 
Algorithm: REIDIT-I (N, P) 
Input:  Negative and positive tables N and P. 
Assumes: N is a table of incomplete trails and P is a table of complete trails, though the converse could  
 just as easily be considered 
Output: the set of re-identified tuples R 
Steps 
 let R = ∅ 
 for each tuple n∈N 

  let Mn = ∅ 

  for each tuple p∈P 
   if trail(n) ≤ trail(p) 
    Mn = Mn ∪ p 
  if |Mn| ≡ 1 
   R = R ∪ t[n[aN – aL] ∪ (p∈Mn)[a

P – aL]] 
   N = N – n 
   P = P – Mn 
   R = R ∪ READIT-I(N,P) 
 return R 

Figure 3. Pseudocode for REIDIT-I. 
 
Complexity.  The complexity of the algorithm is best understood by studying an alternative 
representation of the one in the formal steps provided above.  Let Z be a matrix of size |N|×|P|, and 

S be a |N|×1 column vector. Let us populate Z with the values 0 and 1 via a simple indicator 



 

function, such that if trail(ni) ≤ trail(pj) set cell Z(i,j) to 1, otherwise set it to 0.  Let S(i) represent 

the rowsum of the ith row of Z.  Completion of this process is approximately O(|N||P|).  To 
determine if a re-identification has occurred for the ith entity, S(i) is checked to see if it equals 1.  If 
there is a value of 1, then ni is re-identified by linking with pj and remove the ith row and jth column.  
Let rx be the number of entities re-identified in the xth iteration. To prepare for the next iteration, all 
cells of S are decremented by rxj.  The maximum number of iterations of the algorithm occurs when 
r1 = r2 = … r|N| = 1. Under such conditions, the total number of cell checks is |N|+|P| in the first 
iteration, (|N|-1) + (|P|-1) in the second iteration, and (|N|-a) + (|P|-a) required by the ath iteration.  
So, for all iterations, the number of cell checks (operations) is: 

# operations ( )∑ −

=
−+= 1||

0
2

N
PN

i
i  NPN +=  

The re-identification process is dependent on both |N| and |P|. Complexity is O(|N||P|).  Overall, the 
total algorithm complexity of the REIDIT-I is O(matrix construction) + O(re-identification), which 
is  O(|N||P|) + O(|N||P|) = O(|N||P|). 

 
Theorem 4.2 Returned tuples from REIDIT-I are correctly re-identified to one identity. 
 PROOF:  For convenience, let us assume that N is an incomplete table and P is a complete 
table.  Under definition 3.7, there are no false 1’s in an incomplete trail, so it must be true that for 
an arbitrary tuple n∈ N, there must exist a non-null set of supertrails Mn (|Mn|≥1) for trail(n).  If 

|Mn| is equal to 1, then there exists only one complete trail that could be reconstructed from trail(n) 
through the replacement of 0’s with 1’s.  Therefore n is re-identified by the tuple in Mn. In the 
event when |Mn| > 1, then the algorithm can still converge to a correct re-identification.  This claim 
is quite simple and straightforward to prove.  Let |Mn| equal k.  When a re-identification is made for 
a tuple other than n, then |Mn| decreases by 1.  And since it is already known that |Mn| has a 
minimum of 1, if |Mn|-1 re-identifications are made for tuples of N, excluding n, each with a tuple 
from Mn, then the remaining tuple from Mn must re-identify n.  

 

4.3. REIDIT-Multiple 
 
 An entity may leave different values behind for identified or unidentified data.  In the event 
that the collection model is ICM, the REIDIT-I model can be augmented to re-identify multiple 
data sources to a unique entity.  The main assumption of the REIDIT-I is that each complete trail 
can have a maximum of one subtrail.  Yet, when an individual can leave behind multiple data vales 
for the same attribute is not necessarily true.  For example, a computer can be used by multiple 
individuals in a shared setting, such as a household, or there may be multiple DNA sequences that 
belong to the same individual.  The REIDIT-Multiple (REIDIT-M) algorithm relaxes the 
assumption that there must be a maximum of one subtrail per complete trail.  Thus, if an 
incomplete trail is a subtrail of only one supertrail, then a re-identification occurs via a linkage 
between these two trails.  Furthermore, multiple subtrails can map to the same supertrail and permit 
a re-identification.  The output of the following algorithm is in the same format as for the previous 
READIT variations. 



 

 The formalization of the REIDIT-M algorithm is provided in Figure 4. 
 
Algorithm: REIDIT-M (N, P) 
Input:  Negative and positive tables N and P 
Assumes: 1) N is a table of incomplete trails and P is a table of complete trails, though the converse is  
 equally feasible 
    2) Multiple subtrails can be derivative of the same supertrail 
Output: the set of re-identified tuples R 
Steps 
 let R = ∅ 

 for each tuple n∈N 

  let Mn = ∅ 

  for each tuple p∈P 
   if trails(n) ≤ trails(p) 
    Mn = Mn ∪ p 
  if |Mn| ≡ 1 
   R = R ∪ t[n[aN – aL] ∪ (p∈Mn)[a

P – aL]] 
 return R 

Figure 4. Pseudocode for REIDIT-M. 

 

5 Theoretical vs. Actual Re-identification 
 
In theory, an exact relationship between the number of entities that will be re-identified given the 
number of collecting institutions can not be established a priori, due to the reality that different 
entities access various institutions according to their own specific needs and constraints.  
Nonetheless, the theoretical maximum number of entities that can be re-identified given the 
number of institutions can be determined. For both READIT-C and READIT-I, the maximum 
number of re-identifications is dependent on the number of permutations of a binary string.  

Therefore, given the a set of subjects S and a set of collecting institutions C, if |S| ≤ |C|, then the 

maximum number of re-identifications is bounded by the number of subjects |S|, which implicates 
that all trails may be re-identified.  When |S| > |C|, the maximum number of re-identifications is 
bounded by the number of institutions in an exponential manner as 2|C|-1. Thus, when |S| > 2|C|, it 
will be impossible to re-identify all trails.  In contrast, for READIT-M, the number of re-
identifications is independent of the number of institutions, since it is possible for multiple 
identified trails to be mapped to a single unidentified trail.  As such, the maximum number of re-
identifications is |S|. 
 While the exact number of re-identifications can only be determined through application of 
the appropriate READIT algorithm, there is evidence that a probabilistic model, such as a 
multinomial function over each institution, can be used to estimate the likelihood of a particular 
trail be re-identified [19].    The intuition behind the model is based on the fact that, while an 
exponential number of trails may be constructed, only a fraction of the trails are ever observed.  
Under the proposed model, the probability of observing an audit trail is dependent on the number 
of individuals at each institution.  This theory is supported by empirical evidence of the uniqueness 



 

and re-identifiability of DNA sequence data trails constructed from information collected from 
patients with particular genetic disorders [19, 20]. 

 
6 Re-identification of IP Addresses 
 
 To evaluate the REIDIT algorithms, we determine the re-identifiability of IP addresses from 
real-world online transaction data.  The dataset chosen for this analysis was compiled by the 
Homenet project group at Carnegie Mellon University1 [15], who provide families in the Pittsburgh 
area with internet service via Carnegie Mellon in exchange for the monitoring and recoding of the 
families’ online services and transactions.  Our analysis is conducted on URL access data collected 
over a two month period that includes 86 households.  Since we are interested in re-identifying IP 
addresses to the entities using the computers, we chose to reconstruct purchase data and weblogs 
for websites accessed by this population.  During this time, 5116 distinct websites and 66,862 
distinct pages were accessed.  The URL data was manually labeled as “purchase made” or 
“purchase not made” for each accessed page.  For example, a purchase confirmation URL at 
Greyhound.com was labeled as a purchase, while the frontpage of the website was labeled as not 
being a purchase. It was determined that purchases were made at 28 distinct websites, including 
Amazon.com, Ticketmaster.com, and Hotwire.com.  We make the assumption that websites collect 
two types of data: 1) identifying information, such as name or address of the purchaser and 2) the 
IP address of computers visiting their site.  The websites release information partitioned into these 

two types of data, and as such Wc
- (N) is the IP address log list and Wc

+ (P) is the list of purchasing 
identities. 

 

6.1 Experiment 1: Complete Collection Re-identification 
  
In the first experiment we assume the following data release model.  Each website provides 
consumer lists of the individuals and their mailing address who made a purchase at the website, a 
table P={ website, name, address}, for market analysis and direct marketing.  In addition, each site 
separately provides a list of the IP address of customers who purchased over the web; a table 
N={ website, purchaser IP address}.  Under such a data collection model, we employ the use of 
REIDIT-C for re-identifying IP addresses to households.  There were 26 households that made 
purchases at a total of 28 websites.  Of these trails, 16 IP addresses (~62%) were re-identified to 
mailing address. 
 In this case, the reason for providing the list was for market analysts to learn what stores had 
visits from the same customer.  However, this experiment demonstrates that the IP address can be 
re-identification in some cases, thereby compromising the geographic privacy of the IP address. 

 

 

                                                        
1 For additional information about the Homenet project, we refer the reader to 
http://homenet.andrew.cmu.edu. 



 

6.2 Experiment 2: Incomplete Collection Re-identification 
 
The scenario for the second experiment, considers different data release model.  Under this model, 
each website releases the list of customers who made purchases over the web, P={website, name, 
address}.  Websites also separately provide lists of IP addresses of all visitors to their site, both 
purchasers and non-purchasers; N={website, IP address}.  As such, N provides complete trails and 
P may provide incomplete trails list.  The strategy in this experiment is to find a visit trail that can 
account for a distinct purchase trail, and for which no other trail can account for.  By account for, it 
is meant that 1) if no visit, no purchase in the trail, and 2) if a visit, a purchase may or may not be 
present.  The re-identification of IP addresses to households to is attempted through REIDIT-I.  For 
this experiment, there were 26 households that made purchases, however, IP address data was 
released for all 86 households.  Through REIDIT-I, 9 IP addresses (~35%) were re-identified to 
mailing address. 

  

6.3 Experiment 3: Multiple Identity Re-identification 
 
For certain households there exist multiple users of a particular computer.  In such a setting, it is 
possible for an IP address to be associated with multiple identified entities.  Here, we consider a 
model in which each website releases a list of customers who made a purchase at the website, 
where the list includes the email address, but not the mailing address; P={website, email address}.  
Websites also separately release lists of all visiting IP addresses; N={website, IP address}.  The 
strategy of this experiment is to find a visit trail that can account for one or more distinct purchase 
trails, and thereby associate multiple email addresses to the same IP address.  So, in this 
experiment, a person-specific list of purchasers is mapped to a household-based list of web visitors.  
In particular, the IP address listing for this experiment is the same as the one from the incomplete 
collection re-identification experiment. 
 There were 23 households consisting of a single purchasing individual and 3 households 
consisting of 2 distinct purchasing individuals, for a total of 29 purchasing individuals.  In total, 
there were 144 online individual visit trails. Re-identification was achieved for all three 
households.  It is interesting to note, that the households re-identified were unresolved via REIDIT-
I.  This result is due to the fact that in the Homenet dataset, the family members visited common 
sites, which under REIDIT-I remain ambiguous at the individual level, yet, at the household level 
became distinct. 

 

7 REIDIT as a Fraud Detection Tool 
 
The READIT algorithms demonstrate that the identities of complex data types, such as IP address 
and DNA sequence data, are not sufficiently protected by a simple partitioning of explicit 
identifying features from complex data.  While the presented methods of trail construction and re-
identification exemplify how privacy can be compromised, there exist additional non-malicious 



 

applications of the concepts and algorithms.  Here, the READIT algorithms can be utilized for 
applications devoid of malicious intent, such as fraud detection.  The goal of fraud detection is to 
determine when an anomalous event is occurring for a particular entity.  Since the goal of the 
READIT algorithms is to determine outlying features relating to an individual and their behavior 
(or dropping of their data), the algorithms can provide assistance in automating the process of 
certain types of anomaly detection.  Consider the problem of a malicious individual who engages in 
identity theft, where one individual assumes the identity of another individual.  Similarly, our 
detection model can determine if an individual has assumed multiple identities. Let the set of 

collecting institutions be retail stores who keep video surveillance on their consumers.  Let Wc
- be 

the set of distinct faces distilled from the video surveillance data from store c and let Wc
+ be the set 

of credit card purchases at the same store.  Under this collecting model, the incomplete data trails 
are the set of faces and complete trails will are constructed from the credit card purchases.  In other 
words, an individual must be at a store to purchase an item, yet while in the store the individual 
does not necessarily make a purchase.  When the READIT-M algorithm is used to re-identify faces 
to cards, it is possible that one may find multiple credit cards corresponding to the same face.  Such 
an event would be expected if related individuals use the same card, such as individuals from the 
same family, but when a relation can not be established, then a possible occurrence of identity theft 
or fraud may be taking place.   

 

8 Related Re-identification Methods 
 
In addition to trail re-identification, there have been several methods applied to the problem of re-
identification.  Mainly, the concept has been developed with respect to three main genres: record 
linkage, data linkage, and aggregation operations. The techniques of record linkage were initially 
introduced by Newcombe [23], Felligi, and Sunter [11] and have been ushered into the modern 
statistical era by the work of Winkler [35].  The problem that record linkage attempts to solve is 
how to automate the updating of two lists or the deduplicating of a single list.  To do so, several 
assumptions are made about the data.  First, it is assumed that there are two files with common 
variables and that there is typographical error in the files.  The process of record linkage 
corresponds to building a statistical model to group pairs for records into definite matches, definite 
non-matches, and pairs that need clerical review.  Currently, record linkage methods employ 
expectation-maximization algorithms for converging to classifications of record pairs. The process 
is not intended for compromising privacy, but rather to relate records of an individual for which 
minor corruption in one or both of the records has occurred.  While the technique does relate the 
records of a particular subject, for the most part, record linkage has not been associated with 
associating unidentified data to identified data.   
 Data linkage differs from record linkage in several fundamental ways, most notably the 
fact that data linkage has been specifically designed for re-identification purposes.  It is the 
intension of data linkage to make re-identifications for data devoid of an identity. In addition, the 
attributes of the two files are not required to be the same, but instead it is concerned with exploiting 



 

inferential relations between attributes of the two files.  A combination of the values in the 
attributes of a table is utilized to estimate the uniqueness of an entity’s identity in a known 
population, beyond that of the considered files [30].  The addition of related attributes allows for an 
increased probability for the uniqueness of records, provided the added attributes can be related to 
features of the identified population.  Yet still, such linkage is established through known 
attributes. When the uniqueness of a record can not be established based on related attributes, the 
re-identification process ceases for the considered record.  Trail re-identification is most related to 
data linkage, however, it extends such a procedure into a simultaneous evaluation of a large 
number of tables. 
 The third method of re-identification, ordered weighted aggregation (OWA) operators [31], 
is rooted in the data mining community.  While record and data linkage require that there are direct 
inferential relationships between attributes of two tables, this problem attempts to re-identify when 
there are no common attributes.  However, the problem makes several large assumptions.  First, 
there is an assumption that there are a large number of common individuals in the two datasets.  
Second, there is an implicit similar structure to information in the two tables.  Third, the datasets 
consist of numerical data.  The procedure takes a table of records and attempts to do dimensionality 
reduction by converting the data vector of a record into a weighted scalar that captures a relatively 
large quantity of the information in the original vector.  Currently, the technique creates several 
scalars, resulting from different parameterizations of the aggregation operator. Re-identification is 
then achieved by ordering the table and matching records that have similar resulting scalars.  The 
technique has been demonstrated to work well with the re-identification of attributes, where the 
data vectors are the values of an attribute for all records.  However, while the claim has been made 
that this technique can re-identify individual records in a table, corresponding to subjects and not 
attributes, no current research disputing or proving this claim exists. 
 

9 Concluding Remarks and Future Research 
 
The READIT algorithms provide deterministic methods for discovering how re-identifications can 
occur given independently released datasets from a set of collecting institutions.  The methodology 
is based on the construction of the set of institutions where an individual left behind their data, or 
the data trails. At this time, the algorithms are designed to re-identify binary data trails from data 
where, at maximum, one of the collected data types is incomplete or undercollected.  However, 
when the possibility exists for incomplete data trails to be in both the unidentified data trails and 
the identified data trails, or for there to be error in the databases (i.e. the patient name was falsely 
recorded) the READIT algorithms converge to incorrect re-identifications.  Thus, one possible 
extension of this research is in the design and evaluation of models that allow for the probabilistic 
qualification of data trail bits of the data trail.  This qualification would permit an interesting 
optimization problem for re-identification, where a bit value of 1 or 0 corresponding to one 
collecting institution may provide more information about a trail than another institution.  Future 
research will need to address such issues of error and multiple types incomplete data. 



 

 In addition to compromising privacy, the REIDIT algorithms provide a technique for 
evaluating the strength of privacy protection schemas.  Currently, there is no work documenting 
how particular protection schemas, such as k-anonymity or perturbation, affect the various trail re-
identification methods presented above.  If it is found that the current protection schemas do 
protect against one technique, for instance the complete trail problem, further attention must be 
devoted to considering protection against incomplete or multiple trail problems?  Thus, since trail 
re-identification is a novel strategy for re-identification, it provides a new and important direction 
for future research in data privacy. 
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