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Abstract

A major source of information (often the most crucial and informative part) in scholarly articles
from scientific journals, proceedings and books are the figures that directly provide images and
other graphical illustrations of key experimental results and other scientific contents. In bio-
logical articles, a typical figure often comprises multiple panels, accompanied by either scoped
or global captioned text. Moreover, the text in the caption contains important semantic entities
such as protein names, gene ontology, tissues labels, etc., relevant to the images in the figure.
Due to the avalanche of biological literature in recent years, and increasing popularity of var-
ious bio-imaging techniques, automatic retrieval and summarization of biological information
from literature figures has emerged as a major unsolved challenge in computational knowledge
extraction and management in the life science. We present a new structured probabilistic topic
model built on a realistic figure generation scheme to model the structurally annotated biolog-
ical figures, and we derive an efficient inference algorithm based on collapsed Gibbs sampling
for information retrieval and visualization. The resulting program constitutes one of the key IR
engines in our SLIF system that has recently entered the final round (4 out 70 competing sys-
tems) of the Elsevier Grand Challenge on Knowledge Enhancement in the Life Science. Here
we present various evaluations on a number of data mining tasks to illustrate our method.
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1 Introduction
The rapid accumulation of literatures on a wide array of biological phenomena in diverse model
systems and with rich experimental approaches has generated a vast body of online informa-
tion that must be properly managed, circulated, processed and curated in a systematic and
easily browsable and summarizable way. Among such information, of particular interest due
to its rich and concentrated information content, but presenting unsolved technical challenges
for information processing and retrieval due to its complex structures and heterogeneous se-
mantics, are the diverse types of figures present in almost all scholarly articles. Although there
exist a number of successful text-based data mining systems for processing on-line biological
literatures, the unavailability of a reliable, scalable, and accurate figure processing systems still
prevents information from biological figures, which often comprise the most crucial and infor-
mative part of the message conveyed by an scholarly article, from being fully explored in an
automatic, systematic, and high-throughout way.

Compared to figures in other scientific disciplines, biological figures are quite a stand-
alone source of information that summarizes the findings of the research being reported in
the articles. A random sampling of such figures in the publicly available PubMed Central
database would reveal that in some, if not most of the cases, a biological figure can provide
as much information as a normal abstract. This high-throughput, information-rich, but highly
complicated knowledge source calls for automated systems that would help biologists to find
their information needs quickly and satisfactorily. These systems should provide biologists
with a structured way of browsing the otherwise unstructured knowledge source in a way that
would inspire them to ask questions that they never thought of before, or reach a piece of
information that they would have never considered pertinent to start with.

The problem of automated knowledge extraction from biological literature figures is remi-
niscent of the actively studied field of multimedia information management and retrieval. Sev-
eral approaches have been proposed to model associated text and images for various tasks like
annotation [15], retrieval [9, 17] and visualization [2]. However, the structurally-annotated
biological figures pose a set of new challenges to mainstream multimedia information manage-
ment systems that can be summarized as follows:

• Structured Annotation: as shown in Fig. 1, biological figures are divided into a set
of sub-figures called panels. This hierarchical organization results in a local and global
annotation scheme in which portions of the caption are associated with a given panel via
the panel pointer (like ”(a)” in Fig. 1), while other portions of the caption are shared
across all the panels and provide contextual information. We call the former scoped
caption, while we call the later global caption. How can this annotation scheme be
modeled effectively?

• Free-Form Text: unlike most associated text-image datasets, the text annotation asso-
ciated with each figure is a free-form text as opposed to high-quality, specific terms that
are highly pertinent to the information content of the figure. How can the relevant words
in the caption be discovered automatically?

• Multimodal Annotation: although text is the main source of modality associated with
biological figures, the figure’s caption contains other entities like protein names, GO-
term locations and other gene products. How can these entities be extracted and modeled
effectively?
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Figure 1: Overview of our approach, please refer to Section 2 for more details. (Best viewed in
color)

We address the problem of modeling structurally-annotated biological figures by extend-
ing a successful probabilistic graphical model known as the correspondence latent Dirichlet
allocation [2] (cLDA) model, which was successfully employed for modeling annotated im-
ages. We present the struct-cLDA (structured, correspondence LDA) model that addresses the
aforementioned challenges in biological literature figures. The rest of this paper is organized
as follows. In Section 2, we give an overview of our approach and basic preprocessing of the
data. Then in Section 3, we detail our model in a series of simples steps. Section 4 outlines a
collapsed Gibbs sampling algorithm for inference and learning. In Section 5 we provide a com-
prehensive evaluation of our approach using qualitative and quantitative measures. Finally in
Section 6, we provide a simple transfer learning mechanism from non-visual data and illustrate
its utility. The model presented in this paper has been integrated into the publicly available
Structured Literature Image Finder (SLIF) system , first described in [13]. Our system has
recently participated in the Elsevier Grand Challenge on Knowledge Enhancement in the Life
Science, which is an international contest created to improve the way scientific information is
communicated and used, and was selected as one of the 4 finalists among the 70 participating
teams 1.

2 Figure Pre-Processing
In this section we briefly give an overall picture of the SLIF system (Structured Literature Image
Finder). SLIF consists of a pipeline for extracting structured information from papers and a
web application for accessing that information. The SLIF pipeline is broken into three main
sections: caption processing, image processing (which are refereed to as figure preprocessing
in Fig. 1) and topic modeling, as illustrated as Fig. 1.

1 http://www.elseviergrandchallenge.com/finalists.html
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The pipeline begins by finding all figure-captions pairs. Each caption is then processed to
identify biological entities (e.g., names of proteins)[10]. The second step in caption processing
is to identify pointers from the caption that refer to a specific panel in the figure , and the caption
is broken into ”scopes” so that terms can be linked to specific parts of the figure [4]. The
image processing section begins by splitting each figure into its constituent panels, followed by
describing each panel using a set of biologically relevant image features.In our implementation,
we used a set of high-quality 26 image features that span morphological and texture features
[12].

The first two steps result in panel-segmented, structurally and multi-modally annotated fig-
ures as shown in the bottom-left of Fig. 1 (Discovered protein entities are underlined and high-
lighted in red). The last step in the pipeline, which is the main focus in this paper, is to discover
a set of latent themes that are present in the collection of papers. These themes are called topics
and serve as the basis for visualization and semantic representation. Each topic consists of a
triplet of distributions over words, image features and proteins. Each figure in turn is repre-
sented as a distribution over these topics, and this distribution reflects the themes addressed in
the figure. Moreover, each panel in the figure is also represented as a distribution over these top-
ics as shown in Fig. 1; this feature is useful in capturing the variability of the topics addressed
in figures with a wide coverage and allows retrieval at either the panel or figure level. This rep-
resentation serves as the basis for various tasks like image-based retrieval, text-based retrieval
and multimodal-based retrieval. Moreover, these discovered topics provide an overview of the
information content of the collection, and structurally guide its exploration.

(a) cLDA: Correspondence LDA (b)struct-cLDA: structured cLDA

Figure 2: The cLDA and struct-cLDA Models. Shaded circles represent observed variables
and their colors denote modality (blue for words and red for protein entities), unshaded circles
represent hidden variables, diamonds represent model parameters, and plates represent replica-
tions. Some super/subscripts are removed for clarity — see text for explanation.
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3 Structured Correspondence Topic Models
In this section we introduce the struct-cLDA model (structured correspondence LDA model)
that addresses all the challenges introduced by structurally-annotated biological figures. As
the name implies, struct-cLDA builds on top of and extends cLDA which was designed for
modeling associated text and image data. We begin by introducing the cLDA; then in a series
of steps we show how we extended the cLDA to address the new challenges introduced by
the structurally-annotated biological figures. In Figure 2, we depict side-by-size the graphical
representations of the original cLDA model and our struct-cLDA model, to make explicit the
new innovations. Following conventions in the machine learning literature, we use bold face
letters to denote vectors and normal face letters for scalars. For example, wp is the vector
containing all words that appear in panel p. That is, wp = (wp

1, · · · , wp
Np

), where Np is the
number of words in panel p.

3.1 The Correspondence LDA
The cLDA model is a generative model for annotated data – data with multiple types where
the instance of one type (such as a caption) serves as a description of the other type (such as
an image). cLDA employs a semantic entity known as the topic to drive the generation of
the annotated data in question. Each topic is represented by two content-specific distributions:
a topic-specific word distribution, and a topic-specific distribution over image features. For
example, imagine a topic on microarray analysis, the word distribution may have high fre-
quency on words like genes, arrays, normalization, etc., and the image-feature distribution may
be biased toward red and green colors. Whereas for a topic on Drosophila development, the
word distribution should now have high frequency on even-skipped, embryo, wing, etc., and
the image-feature distribution would now bias toward certain texture and color features typical
in microscopic images of the developing Drosophila embryos. The topic-specific word distri-
bution is modeled as a multinomial distribution over words, denoted by Multi(β); and image
features are real-valued and thus follows a Gaussian distribution, denoted by N(µ, σ). As men-
tioned in Section 2, in our study, each panel is described using M = 26 image features, thus
each topic has 26 Gaussian distributions: one for each image feature.

The generative process of a figure f under cLDA is given as follows:

1. Draw θf ∼ Dir(α1)

2. For every image feature gm

(a) Draw topic zm ∼ Multi(θf )

(b) Draw gm|zm = k ∼ N(µk,m, σ2
k,m)

3. For every word wn in caption

(a) Draw topic yn ∼ Unif(z1, ..., zm)

(b) Draw wn|yn = k ∼ Multi(βk)

In step 1 each figure f samples a topic-mixing vector, θf from a Dirichlet prior. The com-
ponent θf,k of this vector defines how likely topic k will appear in figure f . For each image
features in the figure, gm, a topic indicator,zm , is sampled from θf , and then the image feature
itself is sampled from a topic-specific image-feature distribution specified by this indicator.
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The correspondence property of cLDA is manifested in the way the words in the caption of the
figure are generated in step 3. Since each word should, in principle, describes a portion of the
image, the topic indicator of each word, y, should correspond to one of those topic indicators
used in generating the image features. Specifically, the topic indicator of the n-th word, yn,
is sampled uniformly from those indicators associated with the image features of the figure
as in step 3.(a). Finally, the word, wn, is sampled from the selected topic’s distribution over
words. This generative model explicitly define a likelihood function of the observed data (i.e.
annotated figures), thus it offers a principled way of fitting the model parameters such as α1, µ
and σ, based on a maximum likelihood principled [2]. Given the model and the data, one can
predict the topical content of the figure by computing the posterior estimation of the topic vec-
tor θf associated with the figure. Since the image feature and word distributions of each topic
are highly correlated, the correspondence between image features and words in the caption is
enforced.

3.2 Structured Correspondence LDA
In this section we detail the struct-cLDA model that addressed the new challenges introduced
by biological figures. Fig. 2 depicts a graphical representation of the model. In a struct-cLDA,
each topic, k, now has a triplet representation: a multinomial distribution of words βk, a multi-
nomial distribution over protein entities Ωk, and a set of M normal distributions, one for each
image feature. The full generative scheme of a multi-panel biological figure, f under this model
is outlined below:

1. Draw θf ∼ Dir(α1)

2. Draw λf ∼ Beta(a, b)

3. For every panel p in Pf :
(a) For every image feature gp

m in panel p:
i. Draw topic zp

m ∼ Multi(θf )
ii. Draw gp

m|zp
m = k ∼ N(µk,m, σ2

k,m)

(b) For every word wp
n in scoped caption of panel p

i. Draw topic yp
n ∼ Unif(zp

1 , ..., z
p
m)

ii. Draw wp
n|yp

n = k ∼ Multi(βk)

4. For every word wf
n in global caption:

(a) Draw coin xn ∼ Bernoulli(λf )

(b) If(xn == 1)
i. Draw topic yf

n ∼ Unif(z1, · · · , zPf )
ii. Draw wf

n|yf
n = k ∼ Multi(βk)

(c) If(xn == 0)
i. Draw wf

n ∼ Multi(β0)

5. For every protein entity rl in global caption:
(a) Draw topic vl ∼ Unif(z1, · · · , zPf )

(b) Draw rl|vl = k ∼ Multi(Ωk)

In the following subsections we break the above generative steps into parts each of which
addresses a specific challenge introduced by biological figures.
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3.2.1 Modeling Scoped Caption

In this subsection, we describe how we approached the problem of modeling scoped and global
captions. As shown in Fig. 1, the input to the topic modeling module is a partially-segmented
figure where some of the words in the caption are associated directly with a given panel, say p,
and the remaining words serve as a global caption which is shared across all the Pf panels in
figure f , and provides contextual information. There are two obvious approaches to deal with
this problem that would enable the use of the flat cLDA model described in Section 3.1:

• Scoped-only annotation: in this scheme the input to the cLDA model is the panels with
their associated scoped captions. Clearly this results in an under-representation problem
as contextual information at the figure level is not included.

• Caption replication: in this scheme the whole figure caption is replicated with each
panel, and this constitutes the input to the cLDA model. Clearly this results in an over-
representation problem and a bias in the discovered topics towards over-modeling figures
with large number of panels due to the replication effect.

In addition to the above problems, resorting to a panel-level abstraction is rather subopti-
mal because of the lack of modeling the interaction between panels at the figure level which
precludes processing retrieval queries at the whole figure level.

We introduce scoping to model this phenomenon. As shown in Fig. 2.(b), the topic-mixing
vector θf of the figure is shared across all the panels (step 1). However, each panel’s set of
words, wp = (wp

1, w
p
2 · · · , wp

Np
), correspond only to this panel’s image features. Moreover,

words in the figure’s global caption, wf , correspond to all the image features in all the panels of
this figure. This suggests a two-layer cLDA generative process:the scoped caption is generated
in 3.(b) which with 3.(a) represents exactly the same generative process of cLDA over image
features of a panel and words in the scoped caption of this panel. In the next subsection we will
detail the generation of words in the global caption.

3.2.2 Modeling Global Caption

As we noted earlier, the global caption is shared across all panels, and represents contextual
information or a description that is shared across all panels. This suggests that words in the
global caption of figure f can be generated by corresponding them to the collective set of topic
indicators used in generating the image features in all the panels – this is in fact equivalent to a
flat cLDA model between words in the global caption and the image features in all the panels.
If we took this approach, we found that corpus-level stopwords in the form of non content-
bearing words(like: bar, cell, red and green) appear at the top of all the discovered topics due
to their high frequencies. This problem is well known in the topic modeling community and is
solved by pre-processing the collection and removing these stopwords using a fixed vocabulary
list. However, we would like our model to be able to discover these corpus-level stopwords
(which we will refer to as background words) automatically rather than manually specifying
them for each corpus. In fact, inherent in the modeling assumption of cLDA is the fact that
annotations are specific to the figure and of high quality: that is, every word in the caption
describes a part in the image. However, captions in biological figures are free-form text and
therefore this assumption is violated. To solve this problem, we use factoring which is similar
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to background subtraction in [3]. Specifically, we introduce a background topic, β0, that is used
to generate the corpus-level stopwords. This process is equivalent to factoring these stopwords
from content-bearing topics — we call this process factoring.

The generative process for the global caption now proceeds as follows. With each figure,
f , we associate a coin whose bias is given by λf (step 2). This bias models the ratio of content-
bearing to background words in the figure, and is sampled individually for each figure from
a beta distribution. As shown in step 4, to generate a word in the global caption, wf

n, we
first flip the coin and name the outcome, xn. If xn is head, we pick a topic indicator for this
word,yf

n,uniformly from the topic indicators used to generate the image features of the panels
in this Figure (step 4.(b)). Then, we generate the word from this topic’s distribution over words,
βyf

n
. On the other hand, if xn is tail, we sample this word from the background topic β0 (step

4.(c)).2

3.2.3 Modeling Multimodal Annotation

The final step to reach our goal is to model multimodal annotations. For simplicity, we restrict
our attention here to protein annotations, although other forms of gene products like GO-terms
could be added similarly. For simplicity, we only allow protein annotations to appear in the
global caption although it is very straightforward to model scoped multimodal annotation in
the same way we modeled scoped word captions. Generating a protein entity is very similar to
generating a word in the global caption. To generate a protein entity, rl, in step 5.(a) we pick
a topic indicator for this protein entity,vl,uniformly from the topic indicators used to generate
the image features of the panels in this Figure. Then, we generate the protein entity from this
topic’s distribution over protein entities Ωvl

.
It should be noted that while protein entities are words, modeling them separately from

other caption words has several advantages. First, protein mentions have high variance, i.e.,
the same protein entity can be referred to in the caption using many textual forms. Mapping
these forms, also known as protein mentions, to protein entities is a standard process known
as normalization [11]; our implementation followed our earlier work in [10]. Second, protein
entities are rare words and have different frequency spectrums than normal caption words, thus
modeling them separately has the advantage of discovering the relationship between words and
protein entities despite this frequency mismatch: when protein entities are modeled as normal
words, they do not always appear at the top of each topic’s distribution over words due to
their low frequencies compared to other caption words’ frequencies, and thus can be missed.
Moreover, endowing each topic with two distributions over words and protein entities results in
more interpretable topics (see Section 5.1) and enables more advanced query types (see Section
5.3 and 5.4).

3.2.4 A Note about Hyperparmaters

All multinomial distributions in the models in Figure 2 are endowed with a dirichlet prior to
avoid overfitting as discussed in [2]. Perhaps the only part that warrants a description is our
choice for the prior over the mean and variance of each image feature’s distribution. Each image
feature is modeled as a normal distribution whose mean and variance are topic-specific. The
standard practice is to embellish the parameters of a normal distribution with an inverse Wishart

2Beta Distribution is the conjugate prior to the Bernoulli distribution which makes posterior inference simpler.
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prior, however, here we took a simpler approach. We place a non-informative prior over the
values of the mean parameters of these image features, that is all values are equally likely, that
is µk,m ∼ Unif. Our intuition stems from the fact that different features have different ranges.
However, we place an inverse prior over the variance to penalize large variances: σ2

k,m ∝
1/σ2

k,m (see [6] chapter 3.2). The reason for this choice stems from the noise introduced during
calculation of the image features. Without this prior, a maximum likelihood (ML) estimation
of σ2 in a given topic is not robust to outliers. This is because the model is free to increase
the variance arbitrarily in order to accommodate the data assigned to this topic. However, with
our choice of this form of the prior, it can be shown (see [6] chapter 3.2) that the predictive
(posterior) distribution over future image features assigned to this topic follows a Student-t
distribution, which is known to be a robust version of the normal distribution that would have
resulted if we had used an MLE estimate of the variance parameter instead.

4 A Collapsed Gibbs Sampling Algorithm
The main inference tasks can be summarized as follows:

• Learning: Given a collection of figures, find a point estimate for the model parameters
(i.e. each topic’s distribution over words, protein entities and image features).

• Inference: Given a new figure, and a point estimate of the model parameters, find the
latent representation of this figure over topics (θf ).

Under a hierarchical Bayesian setting, like the approach we took in this paper, both of these
tasks can be handled via posterior inference. Given the generative process and hyperparmaters
choices, outlined in section 3.2 we seek to compute:

P (f1:F , β1:K , µ1:K , σ2
1:K,Ω1:K , β0|α1:4, a, b,w,g, r),

where f is shorthand for the hidden variables (θf , λf ,y, z,x,v) in figure f . The above pos-
terior probability can be easily written down from the generative model in section 3.2, however,
we omit it for the lack for space. The above posterior is intractable,and we approximate it via
a collapsed Gibbs sampling procedure [7] by integrating out, i.e. collapsing, the following hid-
den variables: the topic-mixing vectors of each figure, θf , the coin bias λf for each figure, as
well as the topic distributions over all modalities (βk, Ωk, µk,m, σ2

k,m, and β0).
Therefore, the state of the sampler at each iteration contains only the following topic in-

dicators for all figures: topic indicators for words in the global caption (yf ), topic indicators
for words in the scoped captions for all panels (y1, · · · ,yPf ), topic indicators for all image
features (z1, · · · , zPf ), and topic indicators for all protein entities in the global caption (v). We
alternate sampling each of these variables conditioned on its Markov blanket until convergence.
At convergence, we can calculate expected values for all the parameters that were integrated
out, especially for the topic distributions over all modalities, and for each figure’s latent repre-
sentation (mixing-vector). To ease the calculation of the Gibbs sampling update equations we
keep a set of sufficient statistics (SS) in the form of co-occurrence counts and sum matrices of
the form CEQ

eq to denote the number of times instance e appeared with instance q. For example,
CWK

wk gives the number of times word w was sampled from topic k. Moreover, we follow the
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standard practice of using the subscript −i to denote the same quantity it is added to without
the contribution of item i. For example,CWK

wk,−i is the same as CWK
wk without the contribution

of word wi. For simplicity, we might drop dependencies on the panel or figure whenever the
meaning is implicit form the context.

Sampling a topic (yp
n) for a given panel word (wp

n):

P (yp
n = k|wp

n = w,yp
−n,wp

−n, zp) ∝
CKP

kp∑
k′ CKP

k′p

CWK
wk,−n + α2∑

w′ CWK
w′k,−n + Wα2

(1)

Sampling a topic (vl) for a given protein entity (rl):

P (vl = k|rl = r,v−l, r−l, z) ∝
CKF

kf∑
k′ CKF

k′f

CRK
rk,−l + α4∑

r′ CRK
r′k,−l + Rα4

(2)

The above two local distributions have the same form which consists of two terms. The first
term measures how likely it is to assign topic k to this word (protein entity) based on the topic
indicators of the corresponding image features (at the panel level in Eq. (1), and at the figure
level in Eq. (2) — i.e. the set of all image features’ indicators in all panels). The second term
measures the probability of generating this word (protein entity) from topic k’s distribution
over words (protein entities) .

Sampling a coin and a topic (xn, y
f
n) for a given global caption word (wf

n):
For a given word in the shared global caption, it is easier to sample (xn, y

f
n) as a block — a

similar approach was used in [3].

P (xn = 0|x−n, w
f
n = w,w−n) ∝

CXF
0f,−n + b∑

x′ CXF
x′f,−n + a + b

CW0
w,−n + α3∑

w′ CW0
w′,−n + Wα3

(3)

Where, CW0
w is the word count matrix for the background topic, and CXF

xf counts, in figure
f , how many words were assigned to the background topic (x = 0) and how many words
were assigned to a panel’s image feature and were thus sampled from a latent topic (x = 1).
Similarly,

P (xn = 1, zf
n = k|x−n, w

f
n = w,w−n, z) ∝ (4)

CKF
kf∑

k′ CKF
k′f

CXF
1f,−n + a∑

x′ CXF
x′f,−n + a + b

CWK
wk,−n + α2∑

w′ CWK
w′k,−n + Wα2

The above two equations can be normalized to form a K + 1 multinomial distribution —
K information-bearing topics when xn = 1, in addition to the background topic when x = 0.

Sampling a topic (zp
m) for the mth image feature (gp

m) in panel p:
Perhaps this is the most involved equation as all other topic indicators in the figure/panels

are influenced by the topic indicators of the image features. For simplicity, the (| · · · ) in the
equation below is a shorthand for all these topic indicators which are: topic indicators of words
in the global caption (yf ), topic indicators of words in the scoped caption of panel p (yp), topic
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indicators of all other image features in all panels (z1, · · · , zPf ), and topic indicators for protein
entities in the global caption (v).

P (zp
m = k|gp

m = g, · · · ) ∝ (5)
CKF

kf,−m + α1∑
k′ CKF

k′f,−m + Kα1

t(g; µ̂k,m, σ̂2
k,m, CMK

mk,−m − 1)×

Unif(yf |zp
m = k)× Unif(v|zp

m = k)× Unif(yp|zp
m = k)

Where t(g; µ, σ2, n) is a student t-distribution with mean µ, variance σ2, and n degree of
freedom (see [6] chapter 3.2). µ̂k,m is the sample mean of the values of image feature m that are
assigned to topic k, and σ̂2

k,m is defined similarly. CMK
mk is the number of times image feature

m was sampled from topic k. The first two parts in Eq. (5) are similar to the previous sampling
equations: they measure the comparability of joining a topic given the observed feature and
the topics assigned to neighboring image features. However, since every other annotation in
the figure is generated based on the topic indicator of the image feature, three extra terms are
needed. These terms measure how likely is the current assignment of the topic indicators of
other annotations — panel words, figure words, and protein entities — given the new assign-
ment to this image feature’s topic indicator. Notice that this uniform probabilities are exactly
the same probabilities that appeared in the generative process, and also the same factors that
appeared as the first fraction in Eqs. (4,2,1) respectively — however after updating the corre-
sponding C matrix with the new value of zp

m under consideration. For example, Unif(yp) is
computed as follows — please recall that yp is a vector of topic indicators for words in panel
p, that is yp = (yp

1, y
p
2, · · · , yp

Np
):

Unif(yp|zp
m = k) =

Np∏
n=1

CKP
yp

np,−m
+ 1(yp

n = k)∑
k′ CKP

k′p,−m + 1(yp
n = k)

Intuitively, for each word n in panel p, the above fraction measures how likely is its topic
yp

n, if we sample the image feature under consideration from topic k. The 1 is the indicator
function which is 1 if and only if the expression inside it is evaluated to be true. Therefore,
adding this function to the sufficient statistics CKP has the effect of updating CKP with the
current topic assignment under consideration (k) for image feature m. This fraction is exactly
the same as the first fraction in Eq. (1). Unif(yf |zp

m = k) and Unif(v|zp
m = k) are defined

similarly with relation to the first fraction in Eq. (4) and Eq. (2) respectively.
Eqs. (1-5) are iterated until convergence, then expected values for the collapsed variables

can be obtained via simple normalization operations over their respective count matrices using
posterior samples. Moreover, the expected topics’ distributions over each modality can be
calculated similarly.
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For instance, the figure’s latent representation (θf ) and the figure’s foreground/background
bias (λf ) can be calculated as follows3:

E[θf,k] =
CKF

kf + α1∑
k′ CKF

k′f + Kα1

(6)

E[λf ] =
CXF

1f + a

CXF
1f + CXF

0f + a + b

Moreover, the topics’ distributions over each modality can be calculated as follows4:

E[βw,k] =
CWK

wk + α2∑
w′ CWK

w′k + Wα2

(7)

E[Ωr,k] =
CRK

rk + α4∑
r′ CRK

r′k + Rα4

The mean (µ̂k,m) and variance (σ̂2
k,m) for topic k’s distribution over image feature m are

calculated as the empirical mean and variance of the values of image features of type m that
are assigned to this topic, i.e., the image features whose topic indicators = k.

At test time, to obtain the latent representation of a test figure, we hold the topic count
matrices fixed, iterate Eqs. (1-5) until convergence, and then calculate the expected latent rep-
resentation of each figure from posterior samples after convergence.

5 Experimental Results
We evaluated our models on a set of articles that were downloaded from the publicly available
PubMed5 database. We applied the preprocessing steps described on section 2 to extract the
figures, segment the captions and extract protein entities. The resulting dataset that we used for
the experiments in this paper consists of 5556 panels divided into 750 figures. Each figure has
on average 8 panels, however some figures have up to 25 panels. The number of word types is
2698, and the number of protein entity types discovered is 227. The average number of words
per caption is 150 words. We divided this dataset into 85% for training and 15% for testing.
For all the experiments reported below, we set all the α hyperparmaters to .01 (except α1 = .1),
and (a, b) to 3 and 1 respectively. We found that the final results are not largely sensitive to
these assignments. We ran Gibbs sampling to learn the topics until the in-sample likelihood
converges which took a few hundred iterations for all models.

For comparison, we used cLDA and LSI as baselines. To apply cLDA to this dataset, we
duplicated the whole figure caption and its associated protein entities with each panel to obtain

3Technically, the expressions in Eq. (6) are due to only one sample from the posterior after convergence. The
standard practice is to collect multiple samples from the posterior and average the result of Eq. (6) over these
samples. We omitted this technicality for simplicity.

4As we noted above, the expressions in Eq. (7) are due to only one sample from the posterior after conver-
gence. The standard practice is to collect multiple samples from the posterior and choose the topics’ distributions
associated with the sample with the highest marginal data loglikelihood (as averaging the topic distributions across
samples is not well-defined). We also omitted this technicality for simplicity.

5http://www.pubmedcentral.nih.gov
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EBA Method Cell structure Tumors

Figure 3: Illustrative three topics from a 20-topics run of the struct-cLDA model. For each topic
we show: the top words with their probabilities, the top protein entities with their probabilities,
and the top ranked panels under this topic. The topics were labeled manually.

a flat representation of the structured figures. Therefore, we will refer to this model as cLDA-d.
For LSI, we followed the same strategy and then concatenated the word vector, image features
and protein entities to form a single vector. Moreover, to understand the contribution of each
feature in our model (scoping vs factoring), we removed factoring from the struct-cLDA model
to obtain a model that only employs scoping, and we call the resulting model struct-cLDA−f .

In the following subsections we provide a quantitative as well as a qualitative evaluation of
our model and compare it against the LSI and cLDA baselines over various visualization and
retrieval tasks. Clearly, our goal from these comparisons is just to show that a straightforward
application of simpler flat models can not address our problem adequately. In this paper, we
extended cLDA to cope with the structure of the figures under consideration, however, adapt-
ing LSI, and other related techniques, to cope with this structure is left as an open problem.
Moreover, our choice of comparing against LSI for annotation and retrievals tasks stems from
the fact that in these tasks our own proposed model serves merely as a dimensionality reduction
technique.

5.1 Visualization and Structured Browsing
In this section, we examine a few topics discovered by the struct-cLDA model when applied
to the aforementioned dataset. In Fig. 3, we depict three topics from a run of the struct-cLDA
with K=20. For each topic we display its top words, protein entities, and the top 9 panels under
this topic (i.e. the panels with the highest component for this topic in their latent representation
θf ). It is interesting to note that all these topics are biologically meaningful. For instance, the
first topic represents the theme related to the EBA (The enucleation before activation) method
which is a conventional method of producing an embryo and comprises enucleating oocytes,
transferring donor cells into oocytes, fusing the oocytes and the donor cells, and activating
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the fused reconstruction cells. Clearly the occurrence of the word ”oocytes” in this topic is
relevant. Moreover, protein ”VP26” has been shown in various studies to interact with protein
”actin” during these procedures. The second topics is about various cell structure types. For
example,”stromule” is a microscopic structure found in plant cells and extends from the surface
of all ”plastid” types which are major organelles found in plants and algae. The third topic
is about tumor-related experiments. Examining its top words and proteins we found ”cbp”
and ”hbl” which are known tumor suppressors. Moreover, ”actin” has been shown to be an
important protein for tumor developments due to its rule in cell division. Also, ”Cx43” is a
genetic sequence that codes for a protein that has tumor suppressing effect, moreover, protein
”Caspases-3” is a member of the Caspases family which plays essential roles in apoptosis
(programmed cell death). Interestingly, ”UNC” appears in this topic due to the wide usage of
the University of North Carolina tumor dataset.
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without ( bottom ) the spindle1 midzone1 structures ( cutting3 site10 indicated by the dotted line , a ). Subsequent1 time10 lapse1 recording indicates that both daughter1 cells formed18 nuclear
envelop ( arrows , d). However, only the daughter1 cell with spindle1 midzone1 ( top1 ) showed cytokinesis1 like contractions3 ( c , arrows ). The daughter1 cell with spindle1 midzone1
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miranda immunofluorescence
clones aurora neuroblasts
filaments mcak nrk nestin In-
scuteable syntaxin dna bands
daughter
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Figure 4: Illustrating topic decomposition and structured browsing. A biological figure tagged
with its topic decomposition at different granularities: each panel (top-right), caption words
(second row), and the whole figure (bottom-left). In tagging the caption, light grey colors are
used for words that were removed during pre-processing stages, and dark grey colors are used
for background words. Some topics are illustrated at the bottom row. (best viewed in color)

These topics enable biologists to have an overview of the themes that are available in the
collection, and provide them with a structured way of browsing the otherwise unstructured
collection. For instance, the user might choose to expand the tumor topic and retrieve figures
in which this topic is highly represented.Moreover, given a figure f , as shown in Fig. 4, the
system can visualize its topic decomposition, i.e. what are the topics represented in this figure
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along with its weights, either at the whole figure level, θf , or at the panel level.
The figure in Fig. 4 is composed of 6 panels, and thus our model gives a topic decomposition

of each panel, a topic decomposition of the whole figure (bottom-left), and a topic assignment
for each word in the caption. This, in fact, is a key feature of our model as it breaks the figure
into its themes and allows biologist to explore each of these themes separately. For instance, this
figure addresses several phases of cell division, under a controlled condition, that starts from the
Anaphase stage (panels (a-c)) and progresses towards post mitosis stages (panels (d-f)). Indeed,
our model was able to discern these stages correctly via the latent representation it assigns to
each panel. Please note that this figure represents a case in which the scoped-caption module
was not able to segment the caption due to the unorthodox referencing style used in this figure,
however, the model was able to produce a reasonable latent representation. In the bottom-right
of Fig. 4, we show three important topics addressed in this figures. It is quite interesting that
Topic 13, which corresponds to various biological processes important to cell division, was
associated with this figure mainly due to its image content, not its word content. Moreover,
while the figure does not mention any protein entities, the associated protein entities with each
topic play key roles during all stages of cell division addressed in the figure: for instance, dna
ligase is an important protein for DNA replication. Therefore, the biologist might decide to
retrieve similar figures (based on the latent representation of the whole figure) that address cell
division under the same conditions, retrieve figures that address a given stage per see (based
on the latent representation of some panels), or further explore a given topic by retrieving
its representing figures as we discussed earlier. These features glue the figures in the whole
collection via a web of interactions enabled by the similarity between the latent representation
of each figure at multiple granularities. Moreover, this unified latent representation enables
comparing figures with largely different number of panels.

Table 1: The effect of the background topic
Factored Model Non-factored Model: struct-cLDA−f

Background Topic Normal Topic 1 Normal Topic 2
cells 0.0559 red 0.0458 cells 0.09
cell 0.0289 green 0.0385 bar 0.0435
bar 0.0265 cells 0.0351 cell 0.0386
gfp 0.0243 infected 0.0346 antibody 0.0318

scale 0.024 actin 0.0244 protein 0.0282
red 0.0197 transfected 0.0222 staining 0.0202

green 0.0188 images 0.0218 visualized 0.0171
images 0.0188 membrane 0.0167 expressed 0.0141
arrows 0.0157 fluorescent 0.0167 section 0.0129
shown 0.0151 fixed 0.0163 tissue 0.0129

Finally, in Table 1 we examine the effect of introducing the factored background topic on
the quality of the discovered topics. Table 1 shows the background topic from the struct-cLDA
model which clearly consists of corpus-level stopwords that carry no information. Examining
a few topics discovered using a non-factored model (i.e. by removing the factoring component
from struct-cLDA), it is clear that many of these stopwords (underlined in Table 1) found its
way to the top list in seemingly information-bearing topics, and thus obscure their clarity and
clutter the representation.
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Figure 5: Understating model’s features contributions: (a) Convergence (b) Time per iteration
and (c) Perplexity

.

5.2 Timing Analysis and Convergence
Fig. 5.b compares the time, in seconds, consumed by each model in performing a full Gibbs
iteration over the training set. All the models were coded in Matlab. It is clear from this
figure that replicating the caption with each panel in order to be able to use a standard cLDA
model increases the running time considerably. In addition both of the two models converges
after roughly the same number of iteration (a few hundred for this dataset as depicted for the
struct-cLDA model in Fig. 5.a). This result shows that while struct-LDA is seemingly more
sophisticated than its ancestor cLDA, this sophistication does not incur a large added penalty
on the running time, on the contrary it runs even faster, and also enhances the performance
(as shown qualitatively in Table 1 and quantitatively using perplexity analysis in Fig. 5.c to
be detailed in Sec. 5.3.1) and enables sophisticated retrieval tasks (as will be shown using the
struct-cLDA model in Sections 5.3 and 5.4 ).

5.3 Annotation Task
Since the main goal of the models presented in this paper is discovering the correspondence
between mixed modalities, therefore, a good model once observed parts of the figure, should
be able to annotate the figure with the missing modalities. In this section, we examine the
ability of the struct-cLDA model to predict the textual caption of the figure based on observing
the image features, and predict protein entity annotations of a given figure based on observing
its image features and textual caption.

5.3.1 Caption Perplexity

For the first task, we computed the perplexity of the figures’s caption based on observing its
image features. Perplexity, which is used in the language modeling community, is equivalent
algebraically to the inverse of the geometric mean per-word likelihood, that is:

Perplexity = exp

[−∑
f logp(wf , {wp}|{gp})∑
f

(
Nf +

∑Pf

p=1 Np

) ]

15



Rank at 100% recall Average Rank Best Rank

Figure 6: Evaluating protein annotation quality based on observing text and image features
using various measures. Figures show comparison between the struct-cLDA model and LSI.(
Lower better)

.

The above conditional probability can be computed by running the Gibbs sampling algo-
rithm of Sec. 4 by iterating Eq. (5) only until convergence (with no words or protein entities
used). A number of posterior samples can then be generated from this posterior distribution
by resuming the Gibbs Sampling on Eqs. (1,3 and 4) while holding the image features topic
indicators fixed. These samples are then used to compute the average likelihood of the cap-
tion conditioned on the image features. Fig. 5.(c) compares caption perplexity using cLDA-d,
struct-cLDA, and struct-cLDA−f . This experiment shows that modeling the figure as a whole
via the struct-cLDA−f model is better than duplicating the caption across panels, as this du-
plicating results in over representation and less accurate predictions. Moreover, factoring out
background words, as in the struct-cLDA model, further improves the performance because, as
was shown in Table 1, it excludes non content-bearing words from being associated with image
features and thus misleading the predictions.

5.3.2 Protein Annotation

To annotate a test figure based on observing its image features and caption words, we first
project the figure to the latent topic space using the observed parts of the figure by first iterating
Eqs. (1,3,4,5 until convergence, and then collecting posterior samples for θf . Moreover, from
the training phase, we can compute each topic’s distribution over the protein vocabulary (Ωk).
Finally, the probability that figure f is annotated with protein r, can be computed as follows:

P (r|f) =
∑

k

P (k|f)P (r|k) =
∑

k

θkfΩrk (8)

It is interesting to note that the above measure is equivalent to a dot product in the latent
topic space between the figure representation θf and the latent representation of the protein
entity r — as we can consider Ωrk as the projection of the protein entity over the kth topical
dimension. Protein entities can then be ranked based on this measure. We compare the ranking
produced by the struct-cLDA with that produced by LSI. Applying LSI to the training dataset
results in a representation of each term (image feature, protein entity, and text word) over the
LSI semantic space. These terms are then used to project a new figure in the testset onto this
space using ”folding” as discussed in [5]. Afterwards cosine similarity is used as the distance
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Dna (9) Localization (20) BrdU (3) Cortex (10)

Figure 7: Illustrating figure retrieval performance. Each column depicts the result for a give
query written on its top with the number of true positives written in parenthesis (the size of
the test set is 131 figures). The figure shows comparisons between struct-cLDA and LSI. The
horizontal lines are the average precision for each model. (Better viewed in color)
.

measure for ranking. We evaluated each ranking using three measures: the highest (low in
value) rank, average rank and lowest rank (Rank at 100% recall) of the actual annotations as
it appear in the recovered rankings. Fig. 6 shows the result across various number of topics
(factors for LSI).

5.4 Multi-Modal Figure Retrieval
Perhaps the most challenging task in multimedia retrieval is to retrieve a set of images based
on a multimodal query. Given a query composed of a set of text words and protein entities,
q = (w1, · · · , wn, r1, · · · , rm), we can use the query langauge model [16] as a measure to
evaluate the likelihood of the query give a test document as follows:

P (q|f) =
∏
w∈q

P (w|f)
∏
r∈q

P (r|f) (9)

=
∏
w∈q

[∑
k

θkfβwk

] ∏
r∈q

[ ∑
k

θkfΩrk

]
As we noted in Eq. (8), p(w|f) is a simple dot product operation between the latent repre-

sentations of the word w and the latent representation of figure f in the induced topical space.
The above measure can then be used to rank figures in the testset for evaluation. We compared
the performance of struct-cLDA to LSI. Each of the two models has access to only the image
features of figures in the testset. Query computations in LSI are handled using cosine similar-
ity after folding both the test figures and the query onto the LSI space [5]. Fig. 7 shows the
precision-recall curves over 4 queries. For a given query, an image is considered relevant if the
query words appear in its caption (which is hidden from both LSI and struct-cLDA, and is only
used for evaluation). As shown in Fig. 7, struct-cLDA compares favorably to LSI across a range
of factors (we only show the result for K = 15 for space limitations but the same behavior was
observed as we vary the number of factors).

6 Transfer Learning from Partial Figures
In this section, we explore the utility of using non-visual data to enhance the performance of our
model. We restrict our attention on textual date accompanied with protein entities. This data
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Figure 8: Illustrating the utility of using partial figures as a function of its ratio in the training
set. The task is protein annotation based on (a) Figure’s image and text and (b) Image content
of the figure only

.

can be in the form of biological abstracts tagged with protein entities, or other biological figures
that lack visual data (which we refer to as partial figures). Partial figures occur frequently in our
pipeline due to the absence of the resolution of the figure which is necessary for normalization
of the image features. We focus here on this case, although the former case can be handled
accordingly. A partial figure f comprises a set of global words and protein entities can be
generated as follows:

1. Draw θf ∼ Dir(α1)

2. Draw λf ∼ Beta(a, b)

3. For every word wf
n in global caption:

(a) Draw coin xn ∼ Bernoulli(λf )

(b) If(xn == 1)
i. Draw topic yf

n ∼ Mult(θf )
ii. Draw wf

n|yf
n = k ∼ Multi(βk)

(c) If(xn == 0)
i. Draw wf

n ∼ Multi(β0)

4. For every protein entity rl in global caption:

(a) Draw topic vl ∼ Unif(yf
1 , · · · , yf

Nf
)

(b) Draw rl|vl = k ∼ Multi(Ωk)

In essence, the captions words are moved to the highest level in the correspondence hier-
archy, and a factored, flat cLDA model is used that generates protein entities from the topic
indicators used in generating the figure’s words. As we made explicit in the above genera-
tive process, the partial figures share the same set of topic parameters over words and proteins
(β1:K , Ω1:K). Extending the collapsed Gibbs sampling algorithm from Sec. 4 for this case is
quite straightforward and omitted.

To balance the partial and full figures, we first extract the word and protein vocabulary
using only the full figures, then project the partial figures over this vocabulary, and finally keep
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partial figures that retain at least one protein annotation and train the model over this larger set.
To evaluate the utility of partial figures, we used the protein annotation task of Sec. 5.3. In this
task, a test figure is annotated based on its text and image features. As shown in Fig. 8.(a), the
performance increases as the ratio of partial figures in the training set increases . This behavior
should be expected because the annotation is based on both the text and image features of the
test figure. However, interestingly, we found that the annotation quality also increases if we
annotate the test figures after observing only its image features as shown in Fig. 8.(b). This
shows that, during training, the model was able to transfer text-protein correlations form the
partial figures to image-protein correlations via the triplet topic representations.

7 Conclusions and Discussion
In this paper we addressed the problem of modeling structurally and multimodally annotated
biological figures for visualization and retrieval tasks. We presented the structured correspon-
dence LDA model that addresses all the challenges posed by these figures. We illustrated the
usefulness of our models using various visualization and retrieval tasks. Recent extensions to
LDA and cLDA bear resemblances to some features in the models presented in this paper, such
as [14] in its ability to model entities, and [1, 8] in their abilities to model many-many anno-
tations. However, our goal in this paper was mainly focused on modeling biological figures
with an eye towards building a model that can be useful in various domains where modeling
uncertain hierarchical, scoped associations is required. In the future, we plan to extend our
model to incorporate other sources of hierarchal correspondences like modeling the association
between figures and the text of their containing papers.
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