
Beyond Poisson: Modeling Inter-Arrival Times of Requests in a Datacenter

Da-Cheng Juan

Electrical and Computer Engineering

Carnegie Mellon University

dacheng@cmu.edu

Abstract. How frequently are computer jobs submitted to an industrial-scale datacenter? We investigate the trace

that contains job requests and execution collected in one of large-scale industrial datacenters, which spans near

half of a Terabyte. In this paper, we discover and explain two surprising patterns with respect to the inter-arrival

time (IAT) of job requests: (a) multiple periodicities and (b) multi-level bundling effects. Specifically, we propose

a novel generative process, Hierarchical Bundling Model (HIBM), for modeling the data. HIBM is able to mimic

multiple components in the distribution of IAT, and to simulate job requests with the same statistical properties

as in the real data. We also provide a systematic approach to estimate the parameters of HIBM.

1 Introduction

What are the major characteristics of job inter-arrival process in a datacenter? Could we develop a tool to create

synthetic inter-arrivals that match the properties of the empirical data? Understanding the characteristics of job

inter-arrivals is the key to design effective scheduling policies to manage massively-integrated and virtually-shared

computing resources in a datacenter [11]. Conventionally, during the development of a cloud-based scheduler, job

requests are assumed (1) to be submitted independently and (2) to follow a constant rate λ, which results in a simple

and elegant model, Poisson process (PP). PP generates independent and identically distributed (i.i.d.) inter-arrival

time (IAT) that follows an (negative) exponential distribution [4]. However, in reality, how much does this inter-

arrival process deviate from PP?

To demonstrate how the real inter-arrival process deviates from PP, we use Fig. 1 to present the histogram of

the IAT for 668,000 jobs submitted and collected in an industrial, large-scale datacenter. The resolution of IAT is 1

microsecond (µs, 10−6 sec). As Fig. 1(a) shows, the IATs “seem” to follow an (negative) exponential distribution.

However, in logarithmic scale as Fig. 1(b) shows, surprisingly, four distinct clusters (denoted as A, B, C and D)

with either center-or left-skewed shapes can be seen. This distribution (or a mixture of distributions) clearly does

not follow an (negative) exponential distribution, which is always right-skewed in logarithmic scale and therefore
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Fig. 1. Deviation from Poisson Process: (a) Histogram of job IAT (≈ 668, 000 jobs) in linear-scale. (b) Same histogram in
log-scale. (c) Synthetic IATs from HIBM. In (a), the histogram has limited number of bins to demonstrate IATs of such a
fine-resolution, and the marginal distribution may be misidentified as an (negative) exponential distribution. In (b), four distinct
clusters can be seen:A: 1µs, B: 10-103µs, C: 103-105µs, andD: 106-109µs. All four clusters are captured by HIBM as shown in
(c).

cannot create such shapes. This phenomenon has confirmed that the i.i.d. assumption of PP barely holds since certain

job requests may depend on one another. For example, a request of disk-backup may immediately be submitted after

a request of Gmail service; this dependency violates the i.i.d assumption and thus invalidates conventional statistical

analysis. In this paper we aim at solving the following two problems:

– P1: Find patterns. How to characterize this marginal distribution?

– P2: Pattern-generating mechanism. What is a possible mechanism that can generate such job inter-arrivals?

This work brings the following two contributions:

– Pattern discovery. Two key patterns of job inter-arrivals are provided: (1) multiple periodicities and (2) bundling

effects. We show the majority (approximately 78%) of job requests show a regular periodicity with a log-logistic

noise, a skewed, power-law-like distribution. Furthermore, the submission of a job may depend on the occur-

rence of its previous job, and we refer to this dependency as the bundling effect, since these two associated jobs

are considered to belong to the same bundle.

– Generative model. We propose HIBM, a “HIerarchical Bundling Model,” that is succinct and interpretative.

HIBM’s mathematical expression is succinct that requires only a handful of parameters to create synthetic job

inter-arrivals matching the characteristics of empirical data, as shown in Fig. 1(c). Furthermore, HIBM has the

capability to explain the attribution of the four clusters (A, B, C and D) and the “spikes” (A, C1, C2, D1, and

D2) in Fig. 1(b).



The remainder of this paper is organized as follows. Section 2 provides the problem definition, Section 3 details

the proposed HIBM, Section 4 provides the discussions and Section 5 surveys the previous work. Finally, Section 6

concludes this paper.

2 Problem Definition

In this work, we use the trace from Google’s cluster [12], which is the first publicly available dataset that presents

the diversity and dynamic behaviors of real-world service requests, from a large-scale, multi-purpose datacenter.

The trace contains the scheduler requests and actions recorded from 29 days (starting at 19:00 EST, on Sunday May

1st, 2011) of activity in a 12,500-machine cluster. Each request submitted by a user forms a job and the trace records

approximately 668,000 job submissions. For each job, the trace records the timestamps it is submitted, assigned to

a machine, or scheduled.

2.1 Terminology and problem formulation

First, we define the terminology used throughout this paper.

Definition 1 (Job type and job instance). “Job type” represents a certain type of job that can occur once or

multiple times, and “job instance” is the actual occurrence of a job request.

For example, “disk-backup” is a job type that can instantiate several requests; each request (such as “disk-backup at

1:00P.M. on May 2nd”) is a job instance.

Definition 2 (Job bundle). “Job bundle” represents the association of two job types − if two job types are in the

same job bundle, the IATs of their job instances will be correlated.

Like the example used in Section 1, two job types “disk-backup” and “Gmail” are functionally-associated, and thus

they are considered belonging to the same job bundle. In this case, the inter-arrival of each disk-backup instance will

depend on the occurrence of each Gmail instance.

Definition 3 (Job class). “Job class” represents the priority (or latency sensitiveness) of a job type. In the trace,

job class is enumerated as {0, 1, 2, 3} with a job type of class 3 being the highest priority.

As mentioned in the Introduction, we have two goals:

– P1: Find patterns. Given (1) the job type j, (2) the time stamp of its ith instance (denoted as tj,i), and (3)

the job class, find the most distinct patterns that are sufficient to characterize the IATs of all job instances in a

datacenter.
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Fig. 2. A burst and periodicities: (a) Job instances per hour. A burst (indicated by the red circle) at May 19th can be observed. (b)
Discrete Fourier Transform (DFT) on the job-instance series. The high-amplitude signals correspond to the periods of 1 week,
etc. (c) Class-0 (the lowest priority) and class-2 instance series. Notice their similarity (correlation coefficient is 0.94).

– P2: Pattern-generating mechanism. Given the patterns found in P1, design a model that can generate IATs

that match these characteristics of the empirical data and report the model parameters.

2.2 Dataset exploration

We begin this section by illustrating the number of job instances over time in Fig. 2(a). We collect the time stamp

of each job instance when it is first submitted to the datacenter, and then aggregate the total number of job instances

within each hour to construct a dataset of one-dimensional time-series. On average, 959.8 job instances are submitted

per hour, and in general, less instances are submitted on the weekends whereas more are submitted during weekdays.

Interestingly, around 2:00 A.M. on May 19th (Thursday), a burst of 3,152 job instances can be observed, and its

amount is approximately three times higher than the amount on typical Thursday midnights.

Discrete Fourier Transform (DFT) is also performed on the job-instance series. Fig. 2(b) provides the amplitude

of each discrete frequency, on which we denote four frequencies of high power-spectrum amplitudes: 1-week, 5-

min, 4-min and 2.5-min. The reason that the 1-week signal has a high amplitude can be explained by the periodic

behavior between weekends and weekdays. Since the other three signals (5-min, 4-min and 2.5-min) also have high

amplitudes, they may represent three major periods that exist among the job inter-arrival process. Later in Section

3.1, we characterize the periodicity and show that both 5-min and 4-min periods can be found during the job inter-

arrivals.



2.3 Class interdependency

Not all jobs are submitted equal: certain job types have higher priority to be scheduled and executed (class-3, e.g.,

website services), whereas other jobs do not (class-0, e.g. MapReduce workloads) [11].

Observation 1 The spikeA (1µs) in Fig. 1(b) is attributed to the 1µs IAT between a class-0 and a class-2 instance.

As shown in Fig. 2(c), the pattern of class-0 job instances (low priority) is highly similar with the pattern of class-2

instances (high priority), in terms of both trend and quantity. As it can be seen that these instances of class-0 and

class-2 contribute to the burst on May 19th observed in Fig. 2(a). Furthermore, the correlation coefficient between

class-0 and class-2 instances is 0.94, which makes us think: what is the IAT between a class-0 and a class-2 instance?

Surprisingly, this IAT is exactly 1µs, which forms the first cluster in Fig. 1(b). This phenomenon immediately piques

our interest: how to characterize and attribute the rest of three clusters (B, C, and D) and the corresponding spikes?

The answer lies in the “bundling effect” as we will elaborate in Section 3.

3 HIBM: HIerarchical Bundling Model

In this section, we introduce two major components of HIBM: cross-bundle effects (Section 3.1) and within-bundle

effects (Section 3.2). The complete HIBM framework is presented in Section 3.3.

3.1 First component: cross-bundle effect

The cross-bundle effects include periodicity and cross-bundle noises. Essentially, each job bundle occurs periodically

with some noise (referred as cross-bundle noises in this work). In this section, we first characterize the periodicities

and then model the cross-bundle noises.

3.1.1 Multiple periodicities

To characterize the periodicity of each job type, we first calculate the IAT between every two consecutive job

instances of that job type as follows:

δj,i = tj,i − tj,i-1, for i = 1 . . . nj (1)

where δj,i is the ith IAT, tj,i represents the occurrence time of the ith instance of job type j, and nj is the total number

of instances of job type j. Fig. 3(a) shows the histogram of such IATs, δj,i. The histogram is symmetric and has a
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Fig. 3. Multiple periodicities: (a) IAT of job type j and fitted PDF by HIBM. (b) IAT of all job types. (c) Illustration of the
cross-bundle noise (εc,i) and the within-bundle noise (εw,i) under the period τj .

spike at 600 seconds (10 minutes), which means each instance of job type j arrives approximately every 10 minutes

with some noise. Therefore, tj,i can be expressed as:

tj,i = i · τj + εc,i (2)

where τj stands for the period (e.g., 10 minutes in this case) and εc,i is a random variable representing the “cross-

bundle noise.” As illustrated in Fig. 3(c), the cross-bundle noise (εc,i) represents the delay of a job bundle from its

scheduled time (i · τj) and in this example two job types j and j′ are in the same bundle. Here, we focus on only the

job type j (the red arrows); the within-bundle noise will be elaborated in Section 3.2. In this work, τj is estimated

by using the median of IATs of job type j; however, what distribution εc,i follows remains unclear for now.

Observation 2 Multiple periodicities are observed: 4-min, 5-min, 10-min, 15-min, 20-min, 30-min, and 1-hr.

One question may arise: is this periodic job type a special case, or do IATs of many job types behave like this?

To find the answer, we further collect the IATs from all job types and illustrate them by using Fig. 3(b). For better

visualization, only periods smaller than one hour are demonstrated. In Fig. 3(b), multiple periodicities are observed,

and the two highest peaks are 4-min and 5-min, which matches the DFT results in Fig. 2(b): the frequencies with

high amplitudes are 4-min and 5-min. 4-min is also the smallest period that exists in the trace. We would like to point

out that the “10-min peak” in Fig. 3(b) seems sharper than the peak in Fig. 3(a); this is because Fig. 3(b) contains

several job types that have the same period (10-min), whereas Fig. 3(a) contains only one such job type.

Now the question is: what random noise εc,i will create such IAT distribution shown in Fig. 3(a)? Could we use

famous “named” distributions, say (negative) exponential or Pareto (power-law), to model this noise?
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(c) Odds Ratio

Fig. 4. Modeling cross-bundle noise: (a) PDF, (b) CDF (c) Odds Ratio are demonstrated by using Log-logistic, negative-
exponential and Pareto distribution, respectively.

3.1.2 Modeling cross-bundle noise

Among many statistical distributions, we propose to model the cross-bundle noise εc,i by using Log-logistic dis-

tribution (LL), since it is able to model both the cross-bundle noise and the within-bundle noise (Section 3.2),

leading to the unified expression in HIBM. Also, it provides intuitive explanations for sporadic, large delays. The

Log-logistic distribution has a power-law tail and its definition is as follows.

Definition 4 (Log-logistic distribution). Let T be a non-negative continuous random variable and T ∼ LL(α, β);

the probability density function (PDF) and cumulative density function (CDF) of a Log-logistic distributed variable

T are:

PDF (T = t) = fT (t) =
(β/α)(t/α)β−1

(1 + (t/α)β)2
(3)

CDF (T = t) = FT (t) =
1

1 + (t/α)−β
(4)

where α > 0 is the scale parameter, and β > 0 is the shape parameter. The support t ∈ [0,∞).

Fig. 4(a) presents the cross-bundle noise εc,i and three fitted distributions by using Maximum Likelihood Esti-

mate (MLE) [2]. The distribution shows a left-skewed behavior and sporadically, a few job instances suffer from

large delays. This phenomenon is difficult to be captured by distributions with tails decaying exponentially fast

(e.g., negative-exponential). On the other hand, the Pareto distribution (a power-law probability distribution), which

is also a heavy-tail distribution, lacks the flexibility to model a distribution shifted from zero. The goodness-of-fit is

tested by using Kolmogorov-Smirnov test [10] with the null hypothesis that the cross-bundle noise is from the fitted



Log-logistic distribution. The resulting P-value is 0.2441, and therefore we retain the null hypothesis under the 95%

confidence level and conclude that the cross-bundle noise follows Log-logistic distribution.

To better examine the distribution behavior both in the head and tail, we propose to use the Odds Ratio (OR)

function.

Lemma 1 (Odds Ratio). In logarithmic scale, OR(t) has a linear behavior, with a slope β and an intercept

(− lnα), if T follows Log-logistic distribution:

OddsRatio(t) = OR(t) =
FT (t)

1− FT (t)
=

(
t

α

)β
(5)

⇒ lnOR(t) = β ln(t)− lnα �

As Fig. 4(c) shows, the OR of the cross-bundle noise seems to entirely follow the linear line, which serves as another

evidence that its marginal distribution follows a Log-logistic distribution. The Log-logistic distribution presents a

modified version of the well known phenomenon − “rich gets richer.” We conjecture that this phenomenon can be

adapted to explain the cross-bundle noise of periodic job instances− “those delayed long get delayed longer.” If the

submission schedule of a job instance is delayed (or preempted) by other jobs with a higher priority, it is likely that

this job instance is going to suffer from being further delayed.

3.2 Second component: within-bundle effect

Here, we elaborate on the within-bundle effects that account for the dependency of two job instances in the same

bundle. Next, an algorithm based on “expected occurrence ratio” (EOR) is provided for job bundle detection.

3.2.1 Bundling effect and within-bundle noise

The bundling effect represents the temporal dependency between two job types j and j′. If the instances of two job

types (e.g., Gmail and disk-backup, denoted as job type j and j′, respectively) are independent from each other, the

correlation coefficient of their IATs should be close to zero. However, as Fig. 5(a) shows, IATs of two job types can

be highly correlated; the correlation coefficient (CC) is 0.9894. In this context, each tj,i and tj′,i must share the same

εc,i due the high correlation. More interestingly, the instances of job type j′ always occur after the corresponding

instance of j, i.e., tj,i < tj′,i as illustrated in Fig. 3(c).

We further examine the IAT between job type j and j′, namely, tj′,i − tj,i, referred as “within-bundle noise”

(εw,i). The concept of the within-bundle noise also is illustrated by Fig. 3(c); furthermore, Fig. 5(b) presents a bi-
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Fig. 5. HIBM fits real within-bundle noises: (a) IATs of job type j and j′ are highly correlated; the correlation coefficient (CC) is
0.9894. Here, both job type j and j′ have the period of 1 hour. (b) Within-bundle noise (εw,i) that creates the spikes D1 and D2

can be modeled as a mixture of two Log-logistic distributions. (c) Q-Q plot between the empirical εw,i and the samples drawn
from the fitted Log-logistic mixture. (d)(e)(f) demonstrate another εw,i in millisecond-scale, and have similar explanations. We
would like to point out the spikes C1 and C2 can be attributed to the within-bundle noise shown in (e).

modal distribution of εw,i: one peak at 1.5-sec observed from 2:00P.M. to 6:00A.M. and the other at 16-sec observed

from 6:00A.M. to 2:00P.M.

Observation 3 The spikes D1 (1.5sec) and D2 (16sec) in Fig. 1(b) are attributed to HiBM’s within-bundle noise in

the scale of seconds.

A possible explanation is that the submissions of job type j′ (class 1, latency-insensitive) are delayed or preempted

by other high priority job types during the working hours from 6:00A.M. to 2:00P.M., which creates the second

mode (the 16-sec peak). Therefore, we model this bi-modal distribution by using a mixture of two Log-logistic

distributions. Fig. 5(c) shows the Q-Q plot between the empirical εw,i and samples drawn from the fitted Log-

logistic mixture. As it can be seen, each quantile of simulated samples matches the empirical εw,i very well.



A highly similar situation can be observed from another job bundle, shown in Fig. 5(d)(e)(f). Instead of seconds,

as Fig. 5(e) shows, εw,i is bi-modal and in the scale of millisecond.

Observation 4 The spikes C1 (3ms) and C2 (5.5ms) in Fig. 1(b) are attributed to HiBM’s within-bundle noise in the

scale of milliseconds.

In this case, εw,i can also be modeled by a mixture of two Log-logistic distributions as Fig. 5(e)(f) show. For both

cases (within-bundle noises in both second-and millisecond-scale), Kolmogorov-Smirnov test is performed; the null

hypothesis that εw,i and the fitted Log-logistic mixture follow the same distribution, is retained under the 95%

confidence level. In addition, within-bundle noises are also observed in µs scale, which forms the cluster (and the

spike) B in Fig. 1(b) and can also be modeled by the Log-logistic distribution. This is not shown here due to the

space limit. Now we are able to explain and model all the clusters and spikes (B, C1, C2, D1 and D2) with the

Log-logistic distribution, leading to the succinctness of HIBM.

Interestingly, even if εw,i exists, the IATs of job type j and of j′ are still highly correlated. The key to create such

a phenomenon lies in the hierarchy that cross-bundle noise is always larger than within-bundle noise, εc,i > εw,i. In

the trace, the scale of εc,i is approximately in the magnitude of minutes, whereas εw,i is in the magnitude of seconds,

milliseconds or even microseconds. Based on this observation, we propose a unified model to describe the IATs of

two job types in the same bundle, which serves as the backbone of the proposed HIBM:


tj,i = i · τj + εc,i

tj′,i = tj,i + εw,i = i · τj + εc,i + εw,i

(6)

where εc,i ∼ LL(αc,κ, βc,κ), εw,i ∼ a mixture of two LL distributions, expressed as:

εw,i ∼ pw,κ · LL(αw,κ, βw,κ) + (1− pw,κ) · LL(αw′,κ, βw′,κ) (7)

pw,κ ∈ [0, 1], κ ∈ {B, C,D}. Given the empirical data, αc,κ, βc,κ can be estimated by MLE and pw,κ, αw,κ, βw,κ,

αw′,κ, βw′,κ can be estimated by Expectation Maximization (EM) [2].

3.2.2 Bundle detection algorithm

After explaining the bundling effect, the next question is how to determine if two certain job types belong to the

same job bundle. We ask: given each pair of tj,i and tj′,i, how do we know these IATs, namely, |tj,i − tj′,i|, are



Algorithm 1: HIBM Generation
Result: Inter-arrival process of job instances, tj,i for all j and i, given periods τj for each job type j, total

duration T , αc,κ, βc,κ, pw,κ, αw,κ, βw,κ, αw′,κ, and βw′,κ.
initialization: JS = [];
for each j do

for i = 1 to
⌊
T
τj

⌋
do

if job type j is bundled with job type j′ then
tj,i = tj′,i + εw,i, εw,i ∼ pw,κ · LL(αw,κ, βw,κ) + (1− pw,κ) · LL(αw′,κ, βw′,κ);

else
tj,i = i · τj + εc,i, εc,i ∼ LL(αc,κ, βc,κ);

JS = JS appending tj,i;

Sort JS in ascending order;
return JS;

caused by within-bundle noises (εw,i), or just coincidentally by a job instance occurring closely to another instance?

What if two job types have different periods? To answer these questions, we propose a metric “expected occurrence

ratio” (EOR) that compares the empirical counts and the expected counts of within-bundle noises. EOR ∈ [0, 1] and

a high EOR value indicates that job type j and j′ are likely to be in the same job bundle. The details of the proposed

EOR are in Appendix (Section 7). The intuition is similar to hypothesis testing. We examine the EOR between each

pair of job types, and the majority of pairs have EOR less than 0.3, whereas other few pairs have EOR very close to

0.8. In this work, we select an EOR of 0.3 as threshold and therefore two job types are considered unbundled if their

EOR is less than 0.3.

3.3 Complete HIBM framework

By assembling the cross-bundle effect (Section 3.1) and the within-bundle effect (Section 3.2) together, we describe

here the complete HIBM framework by using Algorithm 1. The inputs to HIBM are user-defined periods, the total

duration T , and the parameters of Log-logistic distributions as described in Eq (6). In our case, the periods are set

according to the empirical data as shown in Fig. 3(b), the T is set to one month as mentioned in Section 2.2, and

the parameters described in Eq (6) are estimated by MLE and EM. For each job type j, HIBM calculates its total

number of instances by
⌊
T
τj

⌋
. Next, for the ith instance of job type j, there will be two possible cases: (1) tj,i is

bundled with tj′,i or (2) tj,i is in its own job bundle (not bundled with any other job type). In the first case, tj,i

is estimated according to Eq (2), whereas in the second case, tj,i is estimated according to Eq (6). The estimated

tj,i is recorded in JS for all j and i. Finally, JS is sorted in ascending order and then HIBM outputs JS as job

inter-arrivals.
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Fig. 6. Comparisons between Synthetic IATs and the empirical IATs: (a) Histogram of empirical IATs in log scale. (b) Histogram
of synthetic IATs in log scale. (c) Q-Q plot. The synthetic IATs generated by HIBM match the characteristics of the empirical
IATs: the job-instance counts (only 0.3% difference), the four clusters, and all the spikes (A, B, C1, C2 D1, and D2). In addition,
each quantile of the synthetic IATs matches the corresponding quantile from the empirical data very well.

4 Experimental Results and Discussion

In this section, we first provide the validation of HIBM by using the empirical data, and provide a discussion of

HIBM’s usage.

4.1 HIBM validation

We validate HIBM by using the empirical data. The comparisons between the synthetic IATs generated by HIBM

and empirical IATs are illustrated by Fig. 6. Fig. 6(a)(b) present the histogram of the empirical IATs and the synthetic

IATs side by side. As it can be seen, the synthetic IATs match the distinct characteristics of the empirical IATs: the

job-instance counts (only 0.3% difference), the four clusters, and all the spikes (A, B, C1, C2 D1, and D2). Fig.

6(c) presents the Q-Q plot, from which we can also observe that each quantile of the synthetic IATs matches the

corresponding quantile from the empirical data very well.

4.2 HIBM in practice

We begin the discussion with HIBM’s succinctness. HIBM requires only a handful of parameters as described in

Algorithm 1 to generate job inter-arrivals that match the characteristics from the empirical data, even when the i.i.d.

assumption is violated− the submissions of certain instances depend on one another. Therefore, HIBM can be used

as a tool to create more realistic job inter-arrivals to design, evaluate, and optimize the cloud-based scheduler of a

datacenter.



Also thanks to HIBM’s interpretability, we now understand the four distinct clusters observed from the empirical

data can be attributed to both class interdependency (A: 1µs) and within-bundle noises (B: 10-103µs, C:103-105µs,

and D:106-109µs). In addition, the 3ms and 5ms spikes (C1 and C2) can be attributed to the within-bundle noise

shown in Fig. 5(e), and similarly 1.5sec and 16sec spikes (D1 and D2) can be attributed to the within-bundle noise

shown in Fig. 5(b). Furthermore, the cross-bundle noises in HIBM provides intuitive explanation − “those delayed

long get delayed longer” − for the delays occurred on periodic job instances. This explains why sporadically the

periodic job instances suffer from large delays.

5 Related Work

Many papers have attempted to model the sequential and streaming data. Leland et al. [9], Wang et al. [14], and

Kleinberg et al. [7] have addressed the issues of self-similar and bursty internet traffic. Saveski et al. [13] has

adapted active learning to model the web services. Ihler et al. [6] has proposed a time-varying poisson process for

adaptive event detection. However, none of these work has addressed the issue of inter-arrivals with both periodicity

and bundling effects.

Regarding to the Log-logistic distribution, it has been developed and used for survival analysis [8, 1]. Recently,

prior work has demonstrated its use in modeling the duration of telecommunication [3] and software reliability [5].

To the best of our knowledge, this is the first work to use Log-logistic distributions to model the delays of job

inter-arrivals in a datacenter.

6 Conclusion

In this work, we investigate and analyze the inter-arrivals of job requests in an industrial, large-scale datacenter. Our

paper has two contributions:

– Pattern discovery. We discover two key patterns of job inter-arrivals: (a) multiple periodicities and (b) bundling

effects. In addition, we propose to use Log-logistic distributions to model both cross-bundle and within-bundle

noises.

– Generative model. We propose HIBM, a succinct and interpretative model. HIBM requires only a handful of

parameters to generate job inter-arrivals mimicking the empirical data. In addition, HIBM also attributes the

four distinct clusters and the corresponding spikes to both within-bundle noises and class interdependency, and

provides intuitive explanation “those delayed long get delayed longer” to the cross-bundle noises of periodic

job types.
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7 Appendix

Here, we elaborate on using the expected occurrence ratio (EOR) to determine if two job types are bundled. The

expected occurrence ratio (EOR) of job type j and j′ can be calculated as follows:

EOR(j, j′) = Nκ ·
(

T
LCM(τj , τj′)

· ρj · ρj′
)−1

(8)

where Nκ represents the number of the IATs occurred in the range of the cluster κ ∈ {B, C,D} in Fig. 1(b), T is

the total duration, LCM(τj , τj′) is the Least Common Multiple (LCM) between two periods τj and τj′ , finally ρj
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Fig. 7. Expected occurrence ratio (EOR). (a) EOR in linear scale. The values of EOR for each pair of job types are sorted from
high to low. (b) EOR in log scale. Only few job pairs have high EOR values (around 0.8) and the majority of job types are in
“their own” job bundle, i.e., they are not bundled with others. 0.3 of EOR is selected the threshold to determine two job types are
in the same job bundle or not.

and ρj′ are the missing rates of job type j and j′, respectively. The intuition of EOR is similar to hypothesis testing:

to compare the empirical count of IATs in the range of a certain cluster with its expected count. The expected count,

T
LCM(τj ,τj′ )

· ρj · ρj′ , is calculated under the assumption that job type j and j′ are bundled. Therefore, if j and j′

are actually bundled, the value of Nκ will be very close to the expected count, resulting in an EOR ≈ 1. On the

other hand, if EOR is very close to 0, j and j′ are considered unbundled, since the observed Nκ just occurred by

coincidence.

We examine the EOR between each pair of job types and illustrate the results by using Fig. 7(a)(b) in linear and

log scales, respectively. For better visualization, only the first 6,400 pairs are included, and the values of EOR are

sorted from high to low. As it can be seen, the majority of pairs have EOR less than 0.3 , whereas other few pairs

have EOR very close to 0.8. In this work, we select an EOR of 0.3 as threshold and two job types are considered

unbundled if their EOR is less than 0.3.


