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Abstract

Optimal clustering is a challenging task. Recently, several papers have suggested a new approach
to clustering, motivated by examining natural assumptionsthat arise in practice, or that are made
implicitly by many standard algorithmic approaches. These assumptions concern various measures
of stability of our given clustering instance. The work of Balcan et al [BBG09] refers to stability
with respect to approximations of the objective, and gives positive results for inputs such that all
(1 + α)-approximations to thek-median (ork-means) optimal solution are close, as partitions of
the data, to the actual desired clustering. A related assumption was considered by Ostrovsky et
al. [ORSS06]. In this work we investigate how good these assumptions are in practice and conclude
that for most data sets, these stability notions are too strict. As a result we propose a weaker notion
of stability which is more practical and at the same time helps us bypass hardness results to get good
approximations tok-median andk-means clustering. We also propose using our stability notion
to do transfer clustering. Secondly, we also study the stability to perturbations assumption of Bilu
and Linial [BL10]. We conclude that datasets often have large subcomponents which are stable to
perturbations and propose a heuristic to find such stable components.

1 Introduction

There has been significant research on approximation algorithms for clustering under the naturalk-means andk-
median objective functions [ARR98, AGK+01, BCR01, CGTS99, KSS04, dlVKKR03]. Unfortunately, in general,
these objectives are not only NP-hard to optimize, but they are also NP-hard to approximate to better than certain
constant factors [GK98, JMS02]. Recently, in the theoretical computer science community, a new line of research has
emerged which tries to bypass these NP-hardness results by focusing on the kind of clustering instances which might
arise in practice. These results show that focusing on such “stable” instances can often lead to good and efficient
approximation algorithms. The goal of this work is to study to what extent these assumptions on the stability of a
clustering instance hold in practice, and when they do hold,how can they help us in efficiently clustering the data.
In this work we will be focusing on two classes of stability assumptions, a) Approximation based stability and b)
Perturbation based stability.

1.1 Approximation based stability

For many applications such as clustering proteins by function, clustering documents by topic, or clustering images by
who or what is in them, our real interest is in getting the right answer. Optimizing objectives such ask-median and
k-means are only used as a proxy in helping us reach the right answer. Thus, we only reallycareabout approximating
these objectives well when data has the property that good approximations to the objective are also close to the desired
answer. The work of Balcan, Blum and Gupta [BBG09] uses this idea to bypass approximation hardness results for
k-median andk-means objectives. Specifically, they show that for these objectives, for any constantα > 0, if data
satisfies the property that all(1 + α)-approximations to the objective areǫ-close to the desired clustering in terms of
how points are partitioned, then one can efficiently getO(ǫ)-close to the desired clusteringeven though obtaining a
1+α approximation to the objective isNP-hard for α < 1

e . That is, one can perform nearly as well in terms of distance
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to the desired solution as if one could approximate the objective to the NP-hard value. Balcan and Braverman [BB09]
extend these results to the min-sum objective as well. Whilethese results are motivated by exploring the foundations
of approximation-based clustering, it is natural to ask whether these assumptions actually tend to hold true in practice.

A related assumption was proposed by Ostrovsky et al. [ORSS06]. Specifically, they considerk-means instances where
the optimalk-clustering has cost noticeably smaller than the cost of any(k−1)-clustering, motivated by the idea that “if
a near-optimalk-clustering can be achieved by a partition into fewer thank clusters, then that smaller value ofk should
be used to cluster the data” [ORSS06]. Under the assumption that the ratioOPT(k−1)/OPT(k) > max{100, 1/α2},
Ostrovsky et al. show that one can obtain a(1 + f(α))-approximation fork-means, in time polynomial inn andk by
using a variant on Lloyd’s algorithm.

1.2 Perturbation based stability

The work of Bilu and Linial [BL10] was motivated by the fact that often when using clustering techniques in practice,
one does not know exactly how to measure best distance between instances. Thus, unless the optimal on the given
distances is correct by pure luck, it likely is correct or nearly so on small perturbations of the given distances as well.
Hence they call a clustering instanceperturbation resilientif the exact optimal solution under some objective function
is the desired clustering, and that this is maintained even under bounded perturbations to the distance matrix (i.e.,
the optimum is stable to such perturbations). Bilu and Linial [BL10] analyze this type of assumption in the context
of max-cut clustering and show that one can efficiently cluster instances which are stable up to large perturbations,
roughly on the order of

√
n.

1.3 Our Results

In this work we empirically demonstrate that the stability assumptions of Balcan et al. [BBG09] and Ostrovsky et
al. [ORSS06] are too strong to hold true in practice. To remedy this, we propose a weaker notion which we call
as weak-deletion stability. This generalizes both the works of Balcan et al. and Ostrovsky et al. In addition, we
demonstrate that weak-deletion stability often holds truein practice. We also theoretically demonstrate that under this
notion of stability, one can get efficient approximation algorithms for thek-median and thek-means problems. We
also further study the notion of stability considered by Bilu and Linial [BL10]. They argue that instances of Max-cut
which are resilient to perturbations of sizeO(n1/2) are easy to cluster. In addition, they conjecture that instances stable
to as little asO(1) perturbations should be solvable in polynomial time. In this paper we prove that this conjecture is
true for any center-based clustering objective (such ask-median,k-means, andk-center), i.e., we can efficiently find
the optimal clustering assuming only stability to factor of3 perturbations of the underlying metric. Furthermore, we
empirically demonstrate that in practice, clustering instances are not stable to large perturbations(factor 3). But they
do have small “stable” subcomponents which are perturbation resilient. We propose and evaluate a heuristic to find
such stable components in clustering instances. Finally, we propose using the notion of weak-deletion stability to do
transfer clustering.

1.4 Related work

Other notions of stability for clustering have also been considered. The works of Ben-David et al. [BDvLP06,
BDPS07] consider a notion of stability where then data points come from a distribution. In their work, stability
refers to the clusteringalgorithm, which is called stable if it outputs similar clusters for any set ofm input points
(drawn from the distribution). Fork-means, the work of Meila [Mei06] discusses the opposite direction – classifying
instances where a solution which is close to the target clustering is also a good approximation.

2 Notation and Preliminaries

We are given a setS of n points in a finite metric space orRn, and we denoted : S×S → R≥0 as the distance function.
Φ denotes the objective function we want to optimize over the metric. To minimizeΦ we partition then points into
k disjoint subsets and assign a centerci for each subset. In this work we will consider two objectives: k-median
andk-means. Fork-means,Φ is measured by

∑k
i=1

∑

x∈Ci
d2(x, ci). Similarly, for k-median,Φ is measured by

∑k
i=1

∑

x∈Ci
d(x, ci). The optimal clustering w.r.t.Φ is denoted asC∗ = {C∗

1 , C∗
2 , . . . , C∗

k}, and its cost is denoted
asOPT. Clearly, in an optimal solution, we can output a list ofk points as centers,{c∗1, c∗2, . . . , c∗k}, and assign eachx
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to its nearest center. Alternatively, given ak-partition{C∗
1 , C∗

2 , . . . , C∗
k}, we can find the best pointc∗i to serve as the

least-costly center for every cluster. We useC∗ to denote both the optimalk-partition, and the optimal list ofk centers.
GivenC∗, we denoteOPTi as the contribution of the clusteri to OPT, that isOPTi =

∑

x∈C∗

i
d2(x, c∗i ) for k-means

andOPTi =
∑

x∈C∗

i
d(x, c∗i ) for k-median.

Given two clusteringsC andC′, define their distance asdist(C, C′) = minπ∈Sk

∑k
i=1 |Ci \ C′

π(i)|; i.e., the number of
points clustered differently under the optimal matching betweenC′ andC.
We useCT to denote the target or desired clustering for a given application. We will often imagine thatC∗ = CT (and
without labeled data, the algorithm may as well assume this)but in reality this will often not be the case. In that case
we letǫ∗ = dist(C∗, CT ).

3 Stability assumptions of Balcan et al. and Ostrovsky et al.

The clustering instances considered by Balcan et al. [BBG09] have the property thatanyk-partition which is a(1+α)-
approximation ofOPT, yields a clustering which isǫ-close to the target clustering. They call this the(1 + α, ǫ)-
approximation property. For such instances they have the following results:

Theorem 3.1 (BBG 09, large clusters case)If an instance of k-median clustering satisfies the(1 + α, ǫ)-
approximation property and every cluster in the target clustering (CT ) is of size at least(4 + 15

α )ǫn + 2, then one
can find a clustering which isǫ-close to the target clustering in polynomial time.

Theorem 3.2 (BBG 09, general case)If an instance ofk-median/k-means clustering satisfies the(1 + α, ǫ)-
approximation property then we can find a clustering which isO( ǫ

α )-close to the target clustering in polynomial
time.

The work of Ostrovsky, Rabani, Schulman and Swamy [ORSS06] is motivated by considering separation conditions.
They view the optimalk-clustering as the desired clustering not only in the sense that its cost is minimal among all
possiblek-clusterings, but also if it is considerably better then thecost of the optimal(k − 1)-clustering. Denoting
by OPT(k) (resp. OPT(k − 1)) the cost of the optimalk-clustering (resp.(k − 1)-clustering), and introducing a
parameterα > 0, we define a clustering instance to be(1 + α)-ORSS separableif

OPT(k − 1)

OPT(k)
> 1 + α

.

For such instances, Ostrovsky et al. have the following result:

Theorem 3.3 (ORSS 06)If an instance ofk-means clustering is(1 + α)-ORSS separable forα = max(100, 1
ǫ2 ),

then one can get a(1 + O(ǫ2))-approximation to thek-means objective in polynomial time.

4 Verifying the assumptions

In this section we study how well the assumptions of Balcan etal. [BBG09] and Ostrovsky et al. [ORSS06] hold true
in practice. We will focus onk-median clustering for this section. In order to test whether a dataset is ORSS-separable
or not, we need to compute the optimalk-median and the optimalk− 1 median clustering of the given dataset. Since,
in general this problem is NP-hard, we formulate it as an integer program and solve it using the CPLEX solver. This
works reasonably efficiently for small datasets.

Verifying the two BBG assumptions (Theorems 3.1 and 3.2) is more difficult. Notice that in order to test whether a
given instance satisfies the(1 + α, ǫ)-approximation property, one must verify that “any” givenk-partitioning of the
dataset which is a(1 + α)-approximation to the optimalk-median score, is in factǫ-close to the target clusteringCT .
This approach seems impractical and hence we are going to test some weaker conditions as suggested in [SYvZ10].
These conditions are implied by BBG type assumptions, so if we notice that datasets do not satisfy these weaker
conditions then we can be sure that the original BBG assumptions do not either. Below we define two such conditions,
one is implied by the(1 + α, ǫ)-approximation property for the large clusters case (Theorem 3.1) and the other is
implied by the general case (Theorem 3.2).
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Definition 4.1 (weak-(1 + α,ǫ) property for large clusters) Defineǫ∗ to be the error of the optimalk-median solu-
tion (C∗) with respect to the target clustering (CT ). For any pointx, definew(x) = distance ofx from its cluster
center in the optimal clustering. Also, definew2(x) = distance ofx from the second closest center. Then we have that
at most(ǫ− ǫ∗)n of the points on whichC andC∗ agree, satisfy the property thatw2(x) − w(x) < αOPT

ǫn .

Definition 4.2 (weak-(1 + α,ǫ) property for general case) At most 6ǫn of the points, satisfy the property that
w2(x)− w(x) < αOPT

2ǫn .

Theorem 4.3 (BBG 09) If an instance ofk-median clustering satisfies the(1 + α, ǫ)-approximation property, then
Definition 4.2 also hold true for the instance. In addition, if every cluster in the target clustering is of size at least2ǫn,
then Definition 4.1 also holds.

These weaker properties are easier to test. To verify the weak-((1+ α, ǫ))-property for large clusters, we setǫi = i/n,
for i = 1, 2, . . . , n, wheren is the total number of points. For each value ofǫi we computeαi such that the conditions
in Definition 4.1 hold. For each value of(ǫi, αi), we report the minimum cluster sizemini bi = (5 + 10/αi)ǫin + 2
which is needed for the BBG algorithm to work. Similarly, forthe weak-property in the general case, we setǫi = 6i/n,
and compute the correspondingαi. In this case we report the minimum error (mini 25ǫi + 40ǫi/αi) guaranteed by
the BBG algorithm.

Here we show the results of testing the ORSS separability andthe weak-((1 + α, ǫ)) properties for6 datasets from the
UCI repository1. Since, we are computing the optimalk-median andk − 1 median solutions, we restrict ourselves to
small datasets. The results are shown in Table 1. Here, the parameterS denotes the minimum cluster size required
by the weak(1 + α, ǫ)-property for the large clusters case. The parameterE refers to the minimum error bound
guaranteed by the algorithm for the general case.

dataset n k minimum
cluster size

OPT(k)
OPT(k−1) minimum

cluster size
required

minimum
error bound
guaranteed

iris 150 3 50 1.317 306.48 4220.65
wine 178 3 48 1.123 1509.5 1956.05
digits* 537 3 177 1.149 3399.4 2152.19
satellite* 836 3 159 1.344 2675 4568.03
image-segmentation* 1200 4 330 1.17 2619.4 4432.1
letter-recognition* 1129 5 132 1.18 4901.9 5608.88

Table 1: A table showing the extent to which the various properties hold on6 datasets. The columns can be interpreted
as follows: name of the dataset(* refers to the fact that we used a sample of the original dataset), number of points,
number of clusters, minimum cluster size in the target clustering, (1 + α) factor for ORSS-separability, minimum
cluster size needed for the weak property for large cluster case, the minimum error bound guaranteed (in percentage)
by the BBG algorithm for the general case.

As can be seen the separation factor of100 required by ORSS separability is quite a strong condition for our datasets.
Also for all the datasets we tested on, the minimum cluster size required to satisfy the weak-((1 + α, ǫ))-property
for large clusters is much higher than the size of any target cluster. This shows that the(1 + α, ǫ)-property for large
clusters does not hold for our datasets. In addition we also notice that although the weak property for general case
is satisfied, the error guarantee of the BBG algorithm is vacuous. These results suggest that the proposed notions of
stability are too strong to be useful in practice.

5 A weaker notion of stability

The results of the previous section suggest that we need to look for weaker notions of stability which are satisfied
in practice and at the same time have enough properties such that we can cluster the datasets which satisfy those
properties in a better way. In this section we propose such a notion which we call weak-deletion stability.

1http://archive.ics.uci.edu/ml/index.html
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Definition 5.1 Let {c∗1, c∗2, . . . , c∗k} denote the centers in the optimalk-median/k-means solution. LetOPT denote
the optimalk-median/k-means cost and letOPT

−i denote the cost of the clustering obtained by using(k − 1) of the
optimal centers excludingc∗i . We say that thek-median/k-means instance satisfies(1 + α) weak-deletion stability if
for anyi, it holds that

OPT
−i > (1 + α)OPT

We show that both the stability notions considered in [ORSS06] and in [BBG09] are in fact special cases of weak-
deletion stability.

Claim 5.2 Any(1 + α)-ORSS separablek-median/k-means instance also satisfies(1 + α) weak-deletion stability.

Claim 5.3 A k-median/k-means clustering instance that satisfies the(1 + α, ǫ)-property, and in which all clusters in
the target clustering have size greater thanǫn, also satisfies(1 + α) weak-deletion stability.

For the proof of these claims see [ABS10b]. In particular, the main result in [ABS10b] is that unlike in [ORSS06],
small constant values of alpha can still be useful (see Theorem 5.4). For the datasets considered in the previous section,
Table 2 shows the extent to which they satisfy weak-deletionstability. These results show that(1 + α) weak-deletion
stability is in fact satisfied by clustering instances arising in practice, for some constantα > 0.

dataset n k minimum
cluster size

(1 + α) for weak-
deletion stability

iris 150 3 50 1.3762
wine 178 3 48 1.1405
digits* 537 3 177 1.1679
satellite* 836 3 159 1.4037
image-segmentation* 1200 4 330 1.2121
letter-recognition* 1129 5 132 1.1835

Table 2: A table showing the extent to which the various datasets satisfy(1 + α) weak deletion stability.

We show that for instances satisfying weak deletion (for constantα), one can get any constant factor approximation
to thek-median and thek-means objectives in polynomial time. Hence, we have the following theorem. For a proof
see [ABS10b].

Theorem 5.4 There exists an algorithm which for any(1 + α)-weakly stablek-median instance, and for anyǫ > 0,
outputs a clustering whosek-median cost is atmost(1 + ǫ)OPT. Furthermore, the running time of the algorithm is

O(n
1

αǫ kO( 1

β
)n3).

A similar algorithm also exists for weakly stable instancesof k-means clustering in the Euclidean space and runs in
timeO(n

1

α2ǫ2 kO( 1

β
)n3). Below we briefly describe the main intuition behind the algorithm.

5.1 The algorithm

For a givenk-means instance, let{C∗
1 , C∗

2 , . . . , C∗
k} denote the optimalk-means clustering. A clusterC∗

i is called
cheap if its contribution in the optimalk-means solution,OPTi, is no more than a constant fraction ofOPT. Given a
cheap clusterC∗

i in the optimalk-means clustering,(1 + α) weak-deletion stability assures us that anyx /∈ C∗
i is far

from c∗i , namely,d2(x, c∗i ) > α OPT

4|C∗

i
| . In contrast, the average (squared)distance ofx ∈ C∗

i from c∗i is OPTi

|C∗

i
| . Thus, if

we focus on a cluster whose contribution,OPTi, is no more than, say,α400OPT, we have thatc∗i is 10 times closer, on
average, to the points ofC∗

i than to the points outsideC∗
i . Furthermore, using the triangle inequality we have that any

two “average” points ofC∗
i are of (squared)distance at mostα

100
OPT

|C∗

i
| , while the (squared)distance between any such

“average” point and any point outside ofC∗
i is at least81α

400
OPT

|C∗

i
| . So, if we manage to correctly guess the sizes of a

cheap cluster, we can set a radiusr = Θ
(

αOPT

4s

)

and collect data-points according to the size and intersection of ther-
balls around them. Using this observation, the authors propose an algorithm which which iteratively populates a setQ
of components. One can the show that for every cheap clusterC∗

i , the setQ will contain a component which contains
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the entire inner-ring ofC∗
i . Here, the inner ring consists of points which are at a (squared)distance≤ α OPT

1024|C∗

i
| from

the centerc∗i . Furthermore, one can also show that the size ofQ will be at mostk + O(1). Hence, one can do a
brute force search to find out these “good” components corresponding to cheap clusters. In order to handle expensive
clusters, we use ideas from [KSS04] to sample points which are good substitutes for the centers of the expensive
clusters. This sampling part runs in time exponential in thenumber of clusters. But, since there are only a constant
number of such clusters, the overall running time is still polynomial.

Unfortunately, there are two main bottlenecks in making theabove algorithm practical: 1) The sampling step to handle
expensive clusters is time consuming and 2) althoughQ containsk + O(1) components, the constant involved is
large, and in practice, searching over all possiblek of them might not be feasible. We remove these limitations by
proposing a heuristic which makes the algorithm faster. Themain observation is that the sampling step is only needed
for expensive clusters, or in other words, clusters which heavily dominate the cost of the optimal solution. In a lot of
datasets arising in practice this does not happen.

Hence, we skip the sampling step and run the core of the algorithm to getO(k) components. Also, in our experiments
we observed that the largestk components inQ seem to give the clustering with the lowest cost as well as thebest
quality. Hence, we replace the brute force guessing of thek components inQ by just taking the largestk components
and using the correspondingk centers to induce a clustering. The algorithm, with a running time ofO(n3) is shown
below.

1. Initialization Stage: SetQ ← ∅.
2. Population Stage:Fors = n, n− 1, n− 2, . . . , 1 do:

(a) Setr = αOPT

256s .

(b) Remove any pointx such thatd2(x,Q) < 4r. (Here,d2(x,Q) = minT∈Q;y∈T d2(x, y).)
(c) For any remaining data pointx, denote the set of data points whose distance fromx squared

is at mostr, by B(x, r). Connect any two remaining pointa andb if: (i) d2(a, b) ≤ r, (ii)
|B(a, r)| > s

2 and (iii) |B(b, r)| > s
2 .

(d) Let T be a connected component of size> s
2 . Let B(T ) be the set of all data points

{x; d2(x, y) ≤ 4r for somey ∈ T }. Then:
i. Add T toQ. (That is,Q ← Q∪ {T }.)
ii. Remove the points ofB(T ) from the instance.

3. Centers-Retrieving Stage:Choose the largestk components,T1, T2, . . . , Tk, out ofQ.

(a) Computeci =
∑

x∈Ti∪B(Ti)
x.

(b) Partition alln points according to the nearest point among thek centers of thesek components
and output the corresponding clustering.

Unfortunately, theO(n3) running time of this heuristic still makes it a bad choice forlarge datasets. In Table 3
below we compare our algorithm with some popular algorithmsfor k-means clustering. We observe that although
our algorithm does perform much better than the traditionalLloyd’s algorithms, it is not much better than the popular
k-means++ algorithm [AV07]. In addition, thek-means++ algorithm is much faster in practice. Hence, inspite of the
nice theoretical properties of our algorithm, due to poor scalability, it is not a good choice to cluster large datasets.

6 Stability assumption of Bilu-Linial

Recently, Bilu and Linial [BL10], focusing on the Max-Cut problem, considered clustering instances where the optimal
clustering is optimal not only under the given metric,but also under any bounded multiplicative perturbation of the
given metric. This is motivated by the fact that in practice, distances between data points are typically just the result
of some heuristic measure (e.g., edit-distance between strings or Euclidean distance in some feature space) rather than
true “semantic distance” between objects. Thus, unless theoptimal solution on the given distances is correct by pure
luck, it likely is correct or nearly so on small perturbations of the given distances as well. This can also be viewed as a
conceptual analog of alarge marginassumption with respect to clustering objectiveΦ. Bilu and Linial [BL10] analyze
this type of Max-Cut instances, and show that with stabilityup to quite large perturbations, of multiplicative factors

6



dataset Lloyd’s(uniform) Lloyd’s(cluster) kmeans++ our algorithm
wine 37.08 33.15 8.37 6.9
iris 42 38.7 14.67 14
image 38.57 37.62 25.46 22.38
multiple features 49.2 38.4 27.7 28.6
digits(0 - 3) 3.16 3.16 3.12 3.16
satellite 43.34 41.02 31.93 31.24

Table 3: A table showing the performance of our algorithm on various datasets. Also shown are the error rates (in
percentage) achieved by two variants of the Lloyd’s heuristic and thek-means++ algorithm proposed by [AV07].
Lloyd’s(uniform) corresponds to choosingk initial seed centers uniformly at random. Lloyd’s(cluster) performs an
initial clustering an a sample of size10% and uses the centers obtained as the initial seed centers. The preliminary
clustering itself is done by choosing random seed centers.

of roughlyO(n1/2), one can retrieve the optimal Max-Cut in polynomial time. Ofcourse, this is an extremely strong
condition. However, they conjecture that stability up toO(1) perturbations should be enough to solve the problem in
polynomial time. Here we show that this conjecture is indeedtrue fork-median andk-means objectives (in fact, any
well-behaved center-based objective function). In addition, we analyze the following question: To what extent does
this perturbation resilience property hold in existing datasets? We propose a new heuristic for determining whether
any subset of a given clustering instance satisfies this property or not.

6.1 Main Result

Let us formally define what stability under multiplicative perturbation means.

Definition 6.1 Given a metric(S, d), andα > 1, we say a distance functiond′ : S ×S → R≥0 is aα-perturbationof
d, if for anyx, y ∈ S it holds that

d(x, y) ≤ d′(x, y) ≤ αd(x, y)

Note that in this definition, much like in the definition of [BL10], we allowd′ to be any non-negative function, and
not just a metric. In particular, we allowd′ to not satisfy the triangle inequality. We now give our main definition and
main theorem.

Definition 6.2 Suppose we have a clustering instance composed ofn points residing in a metric(S, d) and an objec-
tive functionΦ which we wish to optimize. We call the clustering instanceα-perturbation resilientfor Φ if for anyd′,
a α-perturbation ofd, the optimal clustering ofΦ under(S, d) is point-wise identical (up to relabeling of clusters) to
the optimal clustering ofΦ under(S, d′).

We prove the following theorem. For a proof see [ABS10a].

Theorem 6.3 For any α ≥ 3, there exists aO(n2k2)-time algorithm that finds the optimalk-median /k-means
clustering ofα-perturbation resilient instances.

In fact, the algorithm we propose fork-median andk-means, applies also to3-perturbation resilient clustering in-
stances for any center-based objectiveΦ which isseparable.

Definition 6.4 A clustering objective is separable if it satisfies the following two conditions:

• The objective function value of a given clustering is eitherthe (weighted) sum or the maximum of the individ-
ual cluster scores.

• Given a proposed cluster, its score can be computed in polynomial time.

The algorithm builds on the results regarding the min-stability property of Balcan et al [BBV08]. Our algorithm’s first
step is to run the single-linkage algorithm, and, unlike thecanonical single-linkage algorithm, that halts oncek clusters
remain, we halt only onceall clusters have been merged into a single cluster. Then, past the Single-Linkage algorithm,
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the algorithm’s second step is to apply dynamic programmingto the hierarchical clustering formed. The overall idea
resembles, in spirit, the line of work on general metric embeddings in trees, like the works of Bartal [Bar98] and
Abraham et al [ABC+05] and the work of Räcke [R̈08]. Here too, we reduce the problem of retrieving the optimal Φ
clustering from a general instance (where it might be infeasible) to a tree-like instance (where it is poly-time solvable).
For a complete analysis see [ABS10a].

We would also like to point out that our poly-time algorithm for k-median instances that are3-perturbation resilient
uses only a weaker property, which we call center-proximity. In contrast to proving that any instance satisfying3-
center proximity can be solved in poly-time, we show that foranyǫ > 0, there existNP-hard instances of (restricted)
k-median which satisfy(3 − ǫ)-center proximity. Therefore, our approach, which is basedon center-proximity alone,
is inherently bounded by the factor of3.

6.2 Perturbation-Resilience on Average

As in the case of approximation based stability assumptions, we wish to study whether perturbation resilience can
be useful in clustering real-life instances. Indeed, our result about(3 − ǫ)-center proximity shows that theoretically,
there is evidence to believe that one cannot correctly cluster in poly-time all the datapoints of a, say,2.99-perturbation
resilient instance. However,α-perturbations of the underlying metric may be useful, in practice, in providing a level
of confidence for the clustering ofsub-instances, even forα < 3. Suppose we are clustering a dataset in search of
some target clustering (e.g., clustering webpages according to topic), and furthermore, assume (for this section alone)
that k is a small enough constant so that we can find the optimalk-clustering efficiently without any assumptions.
Imagine our dataset is such that for a givenα, it is notα-perturbation resilient, yet it contains a subset of pointswhich
are clustered together under allα-perturbations of the instance. This gives a strong empirical evidence that this subset
of points should reside in a single cluster. Furthermore, this suggests a framework for defining confidence among
the classification of pairs of datapoints: the larger the perturbation we need in order to placex andy in two different
clusters, the more we are confidentx andy belong to the same cluster!

Additionally, it makes sense to consider stability to random perturbations rather than worst-case. Specifically, we
introduce the definition of perturbation resilienceon the average.

Definition 6.5 Suppose we are given a clustering instance(S, d) and some subsetS′ ⊂ S, and also given a probability
distributionD overα-perturbations ofd. We sayS′ is (ǫ, α)-perturbation resilient on averageif for a d′ randomly
sampled fromD, the probability that the optimal clustering underd and the optimal clustering underd′ identify over
S′ is at least1− ǫ. WhenS′ = S we say our clustering instance is(ǫ, α)-perturbation resilient on average.

It is clear that in order to verify with confidence1−δ whether a clustering instance is perturbation-resilient on average,

it suffices to i.i.d sample
(

ln(1/δ)
ǫ

)

many perturbations fromD and compare the optimum underd to the optimum under

each perturbed metricd′. What may seem surprising at first glance, is the fact that in order to findall subsetsS′ ⊂ S

which are(ǫ, α)-perturbation resilient on average, it suffices to i.i.d sample
(

2 ln(n/δ)
ǫ

)

perturbations fromD. To see

this, observe that for any two data pointsx, y, we can determine with probability at least1− (δ/n2) whetherx andy

are assigned to the sample cluster in the optimum under bothd andd′ by a set of
(

2 ln(n/δ)
ǫ

)

samples fromD. Once

we determine whether any pairx, y is perturbation resilient, the following procedure finds all subsets ofS that are
perturbation resilient. Draw a graph over the points inS, and connect anyx andy if they belong to the same cluster of
the optimum under all sampled perturbations ofd. The subsets that are perturbation resilient are exactly the connected
components (in fact, cliques) in this graph.2

Recall, we assume thatk is sufficiently small so that the optimalk-clustering can be found efficiently, so the above
argument gives a simple heuristic for measuring the perturbation-resilience of existing datasets. A similar idea involv-
ing random perturbations was explored in [BLRR04]. We applythis heuristic to two well-studied datasets, and discuss
our experimental results next.

2Alternatively, they are the equivalence-classes under thesuitably defined equivalence relation.

8



7 Measuring Perturbation Resilience on Average

Following the logic described in the introduction (Section6.2), we employ the aforementioned heuristic over existing
datasets, where we try various values ofα, and for each value we uniformly i.i.d sampleα-perturbations of the given
metric. The datasets we used are the IRIS and WINE datasets from the UC Irvine repository [AA07]. IRIS contains
n = 150 data-points and WINE contains ofn = 178 data-points, and each dataset is composed ofk = 3 target
clusters. Small datasets were intentionally chosen, so that we may find the optimal3-median on each dataset under

100 random perturbations. Indeed, in our experiments, we set ǫ = 1/6 andδ = 0.01, so that
(

ln(n2/δ)
ǫ

)

≤ 100.

Figure 1 shows how the number of connected components evolveas the value of the perturbation increases, and how
large these components are. As expected, we see that asα increases, the number of components we end up with
increases, and the fraction of points that reside in thek = 3 largest components decreases. These naive measurements
suggests that our datasets have a “cut-off” point betweenα = 1.1 andα = 1.2. Indeed, in both IRIS and WINE
datasets, the change (both in the number of components and the fraction of the instance the belongs to the top three
clusters) is the most noticeable. Hence, forα < 1.2 a large fraction of the dataset is resilient toα-perturbation.
This approach is simple enough to be extended to other datasets, should one wish to measure to what extent they are
perturbation-resilient.
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Figure 1:The number of components increases and the fraction of points contained in the3 largest components decreases, as we
consider larger and larger perturbations.

Next, we consider thepurity of each cluster. Observe that the datasets we use have groundtruth, and naturally, our
goal is to come up with a clustering that matches the ground truth. However, the3-median optimum doesnot match
the target clustering, but rather contains points from different target clusters. Therefore, in order to measure how well
clusterC matches the target clustering, denoted{C∗

1 , C∗
2 , C∗

3}, we define the purity ofC as

max
i

|C ∩ C∗
i |

|C|
Consider the IRIS dataset for example. The largest cluster in the3-median optimum of the given metric is76% pure.
Denote the set of data points within this cluster asC. As we start perturbing the metric, we find a component graph
in which C is broken into many sub-clusters. For each value ofα we consider the largest of these sub-clusters and
measure its purity. Not surprisingly, asα increases, the size of the largest sub-cluster decreases. But, as we show in
Figure 2, thepurity of the largest clusterincreases asα increases. Indeed, one may expect the purity to increase, as
in the extreme case, whereα is remarkably big and all components we get contain a single point, they are all100%
pure. However, it is worth noting that even when the size of the largest component is comparable with the size of the
target-cluster its purity is almost perfect. (We refer to the WINE dataset under1.2-perturbations. The largest cluster
contains46 points, out of which97% are pure.) We also note that the same approach was applied notonly the largest
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cluster in the3-median optimum, but also to the other two clusters. However, these clusters’ purity was high to begin
with (and remained high under larger and larger perturbations).
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Figure 2:The size of the largest sub-cluster decreases, but its purity increases, as we allow for larger and larger perturbations.

7.1 Empirical Study - Summary

Our empirical study suggests that indeed, assuming that real-life datasets are perfectly resilient to perturbations (i.e.
not even a single point gets assigned to a different cluster)is unrealistic. The datasets studied were both “mostly”
resilient to very low-level perturbations (past the point of 1.1-perturbations, less than90% of the instance remained
in the same cluster as in the optimal solution). This suggests that real-life datasets are far from being3-perturbation
resilient, and thus suggests a reason for the fact that it is indeed uncommon for the Single-Linkage algorithm to produce
a clustering laminar with the target clustering.

However, in contrast to the perturbation resilience of the entire instance, our experiments show that it is not unrealistic
to assume that alarge sub-instanceis resilient to perturbations. And, since discovering whatsubset is resilient to
all perturbations may be intractable, we propose our heuristic to discover what subset is resilient to perturbationson
average. Furthermore, we believe that using this heuristic one is likely to gain additional insights about the underlying
structure of the clustering problem. We view this as a subject for future research.

20 newsgroups data setIn order to demonstrate qualitatively, how the stable subcomponents get filtered out with
increasingα, we look at a subset of the20 news group corpus which contains binary occurrence data for100 words
across16242 postings3. Here again we face scalability issues since solving for thek-means optimal solution at
every step is going to be very time consuming. Instead, we propose to replace thek-means optimal computation
step with thek-means++ algorithm. We run our heuristic fork = 3-means clustering for each alpha in the range
[1, 1.1, 1.2, 1.5, 2, 3, 3.5, 4]. Figure 3 shows how the various “pure” subcomponents filter out asα is increased. For
example, atα = 3.5 we get the clusterrec.sport. In the 20 newsgroups dataset, this cluster itself if subdivided into
various sub-clusters. Unfortunately, in our experiments we also observed that as we increaseα to higher values, these
subclusters do not filter out cleanly and we get various smallnoisy subcomponents.

3http://www.cs.nyu.edu/ roweis/data.html
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Figure 3: The figure shows how the various subcomponents of the 20newsgroups dataset get filter out asα is increased. For
example, atα = 2, a noisy top level cluster gets subdivided into subclusters, two of which correspond to the actual clusters
talk.religion andtalk.politics in the dataset.

8 Transfer clustering

In this section we show that the notion of(1 + α) weak deletion stability can be used to approach the problem of
transfer clustering. Given a problem for which we know the right answer, the idea is to learn some property of the
domain which can then be applied to cluster other related problems. For example consider the digits dataset4 which
has points clustered into10 different classes{0, 1, . . . , 9}. One could take the labeled examples from the first5 classes
and optimize weights for the individual features such that aparticular property holds. Then we could use these weights
to solve the similar problem of clustering digits belongingto the next5 classes. There are several properties one could
try to optimize for. For example, one candidate property is to learn a set of weights such that thek-means optimal
solution is close to the target clustering. Or, may be, one could ask for a set of weights such that thek-means heuristic
(Lloyd’s algorithm) is close to the target clustering. In spite of being natural candidates, it is not clear at all as to
how should one approach towards formulating such a complex optimization problem. This is where the notion of
weak-deletion stability is useful. We show that, given a training set, one can set up a linear program to optimize for
weights such that the data satisfies(1 + α)-weak deletion stability. Having done that we know, from Section 5, that
there is algorithm which will take this stable input and output a solution of cost at most(1 + ǫ)OPT. If this solution is
not close to the target, we can add a constraint into our Linear Program which says that the cost of this solution should
(1 + ǫ) be more than the cost of the target. We can then reoptimize forweights and continue until we reach close to
the optimal solution.

Given a k-means instance{x1, x2, . . . xn} of n training points inRd which are clustered intok target clusters
{C1, C2, . . . , Ck}, and a value ofα the following linear program can be used to find out the weights that make

4http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
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the instance(1 + α)-weakly deletion stable. Below we denotex(k) to denote thekth feature value for pointx.

Minimize

d
∑

i=1

|wi|

subject to :

∑

x∈Ci

d
∑

k=1

[wk(x(k)− cj(k))2 − wk(x(k)− ci(k))2] ≤ αOPT, ∀i, j 6= i

k
∑

i=1

∑

x∈Ci

d
∑

k=1

[wk(x(k)− ci(k))2] = OPT

wi ≥ 0, ∀i

Given a training set, the weight estimation procedure is as follows:

Input : α, ǫ.

Output: feature weightwi’s.

1. Solve the linear program to get weights such that the target is (1 + α)-weakly stable. If no solution is found,
report failure.

2. Run the algorithm from Section 5 with parametersα, andǫ.

3. If the solution output by the algorithm isǫ-close to the target, outputwi’s and stop.

4. Otherwise, add a constraint to the LP that the cost of the solution output by the algorithm is more than(1+ ǫ)
times the cost of the target.

5. Go back to step 1.

It is clear that if there exists a weighting of the features where a(1 + ǫ)-approximation tok-means is also close to the
target, then the estimation procedure will find such a weighting. In order to make this estimation procedure practical,
we replace the costly algorithm from Section 5 with the fastk-means++ algorithm.

We ran this heuristic against several datasets. As shown in Table 4, we got mixed results. One some of the datasets,
after a few iterations, the LP fails to find a feasible solution to the weights. Even replacing the hard constraints in the
LP by introducing slack variables does not help in improvingthe accuracy on the test set. We believe that this is due to
the fact that we are trying to find a linear weighting of the features which might not be the right representation. Hence,
what is needed is to use a principled way to “kernelize” the approach. However, we do not have a clear idea as to how
to achieve this.

dataset # clusters in
the training
set

# clusters in
the test set

test error
before opti-
mization

test error af-
ter optimiza-
tion

segmentation 3 4 41± 1.7% 37± 1.56%
abalone 5 5 67± 1.38% fails to find a

solution
letter 5 5 45.8± 1.42% 49.76±1.35%
20 newsgroups 3 3 54.8± 2.6% fails to find a

solution

Table 4: The table shows the change in the test set accuracy (in percentage) after learning a linear weighting of the
features on the training set.
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9 Conclusions and Open Problems

This work raises several interesting questions. We showed that for data satisfying weak-deletion stability, one can find
very good approximation to thek-median and thek-means objectives. However our algorithm suffers from scalability
issues which makes it impractical for even modestly sized datasets. It would be interesting to come up with a version
of the algorithm which is fast (comparable to kmeans++ or Lloyd’s algorithm) and still retains some of the nice
theoretical properties of the original algorithm. In section 6.2 we proposed a heuristic to detect if the dataset contains
large subcomponents which are perturbation resilient on average. Here again our heuristic suffers from scalability
issues and it would be interesting to come up with a fast method for this problem. An interesting algorithmic question
is whether one can efficiently (in polynomial time) detect subcomponents which are perturbation resilient in the worst
case, rather than on average. Here one could assume thatk is a constant. Even then it is not clear how to solve this
problem efficiently. Finally, We think that the idea of transfer clustering is quite interesting and further research can
give us good results.
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[Mei06] Marina Meilă. The uniqueness of a good optimum for k-means. InProc. 23rd International Conference
on Machine Learning (ICML), pages 625–632, 2006.

[ORSS06] Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Chaitanya Swamy. The effectiveness of
lloyd-type methods for the k-means problem. InProc. 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 165–176, 2006.
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