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Abstract

Optimal clustering is a challenging task. Recently, sdveapers have suggested a new approach
to clustering, motivated by examining natural assumptitias arise in practice, or that are made
implicitly by many standard algorithmic approaches. These assursg@mrtern various measures
of stability of our given clustering instance. The work ofl&m et al [BBGQ9] refers to stability
with respect to approximations of the objective, and givesitive results for inputs such that all
(1 + a)-approximations to thé-median (ork-means) optimal solution are close, as partitions of
the data, to the actual desired clustering. A related assampas considered by Ostrovsky et
al. [ORSSO06]. In this work we investigate how good thesemggions are in practice and conclude
that for most data sets, these stability notions are tootstis a result we propose a weaker notion
of stability which is more practical and at the same time belpbypass hardness results to get good
approximations toc-median andc-means clustering. We also propose using our stabilityomoti
to do transfer clustering. Secondly, we also study the Byl perturbations assumption of Bilu
and Linial [BL10]. We conclude that datasets often havedagbcomponents which are stable to
perturbations and propose a heuristic to find such stablgpooents.

1 Introduction

There has been significant research on approximation #hgasi for clustering under the naturedmeans and-
median objective functions [ARR98, AGI01, BCR01, CGTS99, KSS04, dIVKKRO03]. Unfortunately, in geal,
these objectives are not only NP-hard to optimize, but theyadgso NP-hard to approximate to better than certain
constant factors [GK98, IMS02]. Recently, in the theoatttomputer science community, a new line of research has
emerged which tries to bypass these NP-hardness resultebyifig on the kind of clustering instances which might
arise in practice. These results show that focusing on satble” instances can often lead to good and efficient
approximation algorithms. The goal of this work is to studwthat extent these assumptions on the stability of a
clustering instance hold in practice, and when they do Hoday can they help us in efficiently clustering the data.
In this work we will be focusing on two classes of stabilitysasiptions, a) Approximation based stability and b)
Perturbation based stability.

1.1 Approximation based stability

For many applications such as clustering proteins by fonctlustering documents by topic, or clustering images by
who or what is in them, our real interest is in getting the tighswer. Optimizing objectives such &snedian and
k-means are only used as a proxy in helping us reach the rightemThus, we only reallgareabout approximating
these objectives well when data has the property that gopebajpnations to the objective are also close to the desired
answer. The work of Balcan, Blum and Gupta [BBG09] uses thésiito bypass approximation hardness results for
k-median and:-means objectives. Specifically, they show that for thegeables, for any constant > 0, if data
satisfies the property that dll + «)-approximations to the objective areclose to the desired clustering in terms of
how points are partitioned, then one can efficiently @ét)-close to the desired clusterimyen though obtaining a
14+« approximation to the objective iéP-hardfor o < % Thatis, one can perform nearly as well in terms of distance



to the desired solution as if one could approximate the ¢ibeto the NP-hard value. Balcan and Braverman [BB09]
extend these results to the min-sum objective as well. Whése results are motivated by exploring the foundations
of approximation-based clustering, it is natural to ask thbethese assumptions actually tend to hold true in practic

A related assumption was proposed by Ostrovsky et al. [ORESpecifically, they considérmeans instances where
the optimalk-clustering has cost noticeably smaller than the cost of Amyt )-clustering, motivated by the idea that “if
a near-optimak-clustering can be achieved by a partition into fewer thafusters, then that smaller value/o$hould
be used to cluster the data” [ORSS06]. Under the assumitadrttte ratidOPT (k — 1) /OPT(k) > max{100,1/a?},
Ostrovsky et al. show that one can obtaifiat+ f(«))-approximation fork-means, in time polynomial in andk by
using a variant on Lloyd’s algorithm.

1.2 Perturbation based stability

The work of Bilu and Linial [BL10] was motivated by the factfoften when using clustering techniques in practice,
one does not know exactly how to measure best distance betwstances. Thus, unless the optimal on the given
distances is correct by pure luck, it likely is correct or igao on small perturbations of the given distances as well.
Hence they call a clustering instangerturbation resilienif the exact optimal solution under some objective function
is the desired clustering, and that this is maintained eveteubounded perturbations to the distance matrix (i.e.,
the optimum is stable to such perturbations). Bilu and Lifi4.10] analyze this type of assumption in the context
of max-cut clustering and show that one can efficiently euststances which are stable up to large perturbations,
roughly on the order of/n.

1.3 Our Results

In this work we empirically demonstrate that the stabiligsamptions of Balcan et al. [BBG09] and Ostrovsky et
al. [ORSS06] are too strong to hold true in practice. To reyniails, we propose a weaker notion which we call
as weak-deletion stability. This generalizes both the warkBalcan et al. and Ostrovsky et al. In addition, we
demonstrate that weak-deletion stability often holds tnygractice. We also theoretically demonstrate that untier t
notion of stability, one can get efficient approximationaithms for thek-median and thé&-means problems. We
also further study the notion of stability considered byuBihd Linial [BL10]. They argue that instances of Max-cut
which are resilient to perturbations of si@gn'/?) are easy to cluster. In addition, they conjecture that iresta stable

to as little asO(1) perturbations should be solvable in polynomial time. Iis {héper we prove that this conjecture is
true for any center-based clustering objective (such-asedian k-means, and-center), i.e., we can efficiently find
the optimal clustering assuming only stability to factoBgderturbations of the underlying metric. Furthermore, we
empirically demonstrate that in practice, clusteringamstes are not stable to large perturbations(factor 3). Byt t
do have small “stable” subcomponents which are perturba#silient. We propose and evaluate a heuristic to find
such stable components in clustering instances. Fina#ypmpose using the notion of weak-deletion stability to do
transfer clustering.

1.4 Related work

Other notions of stability for clustering have also beensidered. The works of Ben-David et al. [BDvLPO6,
BDPS07] consider a notion of stability where thedata points come from a distribution. In their work, staiili
refers to the clusteringlgorithm, which is called stable if it outputs similar clusters foryaset of m input points
(drawn from the distribution). Fak-means, the work of Meila [MeiO6] discusses the oppositedtion — classifying
instances where a solution which is close to the targetelingt is also a good approximation.

2 Notation and Preliminaries

We are given a sef of n points in a finite metric space ét", and we denoté : S x.S — R>( as the distance function.
® denotes the objective function we want to optimize over tiegrim. To minimize® we partition then points into
k disjoint subsets and assign a centgfor each subset. In this work we will consider two objectivésmedian

andk-means. Fork-means® is measured bﬂle > eec, d*(z,c;). Similarly, for k-median,® is measured by
Zle > cec, d(z, c;i). The optimal clustering w.r.tp is denoted ag* = {C7,C5, ..., C}}, and its cost is denoted
asOPT. Clearly, in an optimal solution, we can output a listigboints as centerg¢s, 3, . . ., ¢}, and assign each



to its nearest center. Alternatively, giverkgartition{C7, C3,...,C} }, we can find the best poirf to serve as the
least-costly center for every cluster. We @seto denote both the optimétpartition, and the optimal list df centers.
GivenC*, we denoteOPT; as the contribution of the clustéto OPT, that isOPT; = >~ __ .. d*(z, ¢}) for k-means

andOPT; =} ... d(z, c}) for k-median.

Given two clustering€ andC’, define their distance alist(C,C’) = minyesg, Zle ICi \ C’;(i)|; i.e., the number of
points clustered differently under the optimal matchingeenC’ andC.

We useC? to denote the target or desired clustering for a given apfitia. We will often imagine that* = C7 (and
without labeled data, the algorithm may as well assume this)n reality this will often not be the case. In that case
we lete* = dist(C*,C7).

3 Stability assumptions of Balcan et al. and Ostrovsky et al.

The clustering instances considered by Balcan et al. [BBG&ge the property thanyk-partition which is a1+ «)-
approximation ofOPT, yields a clustering which is-close to the target clustering. They call this e+ «;, ¢€)-
approximation property. For such instances they have thefmg results:

Theorem 3.1 (BBG 09, large clusters caself an instance of k-median clustering satisfies thé€l + «,e€)-
approximation property and every cluster in the target tdisig (C7) is of size at least4 + %)en + 2, then one
can find a clustering which isclose to the target clustering in polynomial time.

Theorem 3.2 (BBG 09, general case)f an instance ofk-mediank-means clustering satisfies theg + «,€)-
approximation property then we can find a clustering whiclDis>)-close to the target clustering in polynomial
time.

The work of Ostrovsky, Rabani, Schulman and Swamy [ORSS08]dtivated by considering separation conditions.
They view the optimak-clustering as the desired clustering not only in the sehaeits cost is minimal among all
possiblek-clusterings, but also if it is considerably better then ¢ost of the optima(k — 1)-clustering. Denoting
by OPT (k) (resp. OPT(k — 1)) the cost of the optimak-clustering (resp.(k — 1)-clustering), and introducing a

parametery > 0, we define a clustering instance to {de+ «)-ORSS separabié
OPT(k—1)
— = >1

Pty ¢

For such instances, Ostrovsky et al. have the followingltesu

Theorem 3.3 (ORSS 06)If an instance ofi-means clustering i$1 + «)-ORSS separable far = maz(100, %),
then one can get & + O(€?))-approximation to thé-means objective in polynomial time.

4 Verifying the assumptions

In this section we study how well the assumptions of Balcaal. dBBG09] and Ostrovsky et al. [ORSS06] hold true
in practice. We will focus ort:-median clustering for this section. In order to test whethdataset is ORSS-separable
or not, we need to compute the optinkamedian and the optimal — 1 median clustering of the given dataset. Since,
in general this problem is NP-hard, we formulate it as angatgrogram and solve it using the CPLEX solver. This
works reasonably efficiently for small datasets.

Verifying the two BBG assumptions (Theorems 3.1 and 3.2) asendifficult. Notice that in order to test whether a
given instance satisfies tfi¢ + «, €)-approximation property, one must verify that “any” givespartitioning of the
dataset which is &l + «)-approximation to the optimal-median score, is in faetclose to the target clusterirgy .

This approach seems impractical and hence we are goingttede® weaker conditions as suggested in [SYvZ10].
These conditions are implied by BBG type assumptions, sceifatice that datasets do not satisfy these weaker
conditions then we can be sure that the original BBG assumptio not either. Below we define two such conditions,
one is implied by the1 + «, ¢)-approximation property for the large clusters case (Teep8.1) and the other is
implied by the general case (Theorem 3.2).



Definition 4.1 (weak-(l + a,€) property for large clusters) Definee* to be the error of the optimdl-median solu-
tion (C*) with respect to the target clustering{). For any pointz, definew(z) = distance ofr from its cluster
center in the optimal clustering. Also, defiag(xz) = distance ofc from the second closest center. Then we have that
at most(e — ¢*)n of the points on whicld* andC* agree, satisfy the property that () — w(x) < %.

Definition 4.2 (weak—41+a,e) property for general case) At most6en of the points, satisfy the property that

wa(z) — w(z) < 22T,

Theorem 4.3 (BBG 09) If an instance oft-median clustering satisfies thié + «, €)-approximation property, then
Definition 4.2 also hold true for the instance. In additioirevery cluster in the target clustering is of size at lekst,
then Definition 4.1 also holds.

These weaker properties are easier to test. To verify thé{dat «, ¢))-property for large clusters, we sgt=i/n,
fori =1,2,...,n, wheren is the total number of points. For each valuepive computey; such that the conditions
in Definition 4.1 hold. For each value ¢f;, «;), we report the minimum cluster sizein; b, = (5 + 10/« )e;n + 2
which is needed for the BBG algorithm to work. Similarly, foe weak-property in the general case, wecset 6i/n,
and compute the corresponding. In this case we report the minimum errondn; 25¢; + 40¢; /«;) guaranteed by
the BBG algorithm.

Here we show the results of testing the ORSS separabilitylandieak-(1 + «, €)) properties foi6 datasets from the
UCI repository. Since, we are computing the optimiamedian and: — 1 median solutions, we restrict ourselves to
small datasets. The results are shown in Table 1. Here, tlaengderS denotes the minimum cluster size required
by the weak(1 + «, €)-property for the large clusters case. The paramé&teefers to the minimum error bound
guaranteed by the algorithm for the general case.

dataset n | k | minimum % minimum minimum
cluster size cluster size| error bound
required guaranteed

iris 150 | 3 | 50 1.317 306.48 4220.65
wine 178 | 3 | 48 1.123 1509.5 1956.05
digits* 537 | 3| 177 1.149 3399.4 2152.19
satellite* 836 | 3| 159 1.344 2675 4568.03
image-segmentationf 1200 | 4 | 330 1.17 2619.4 4432.1
letter-recognition* 1129 | 5 | 132 1.18 4901.9 5608.88

Table 1: A table showing the extent to which the various prigehold on6 datasets. The columns can be interpreted
as follows: name of the dataset(* refers to the fact that veslissample of the original dataset), number of points,
number of clusters, minimum cluster size in the target elisg, (1 + «) factor for ORSS-separability, minimum
cluster size needed for the weak property for large clusisecthe minimum error bound guaranteed (in percentage)
by the BBG algorithm for the general case.

As can be seen the separation factot @ required by ORSS separability is quite a strong conditiorofo datasets.
Also for all the datasets we tested on, the minimum clusteg s2quired to satisfy the weaki(+ «, €))-property

for large clusters is much higher than the size of any tarfyster. This shows that thg + «, €)-property for large
clusters does not hold for our datasets. In addition we atdmwe that although the weak property for general case
is satisfied, the error guarantee of the BBG algorithm is wasu These results suggest that the proposed notions of
stability are too strong to be useful in practice.

5 A weaker notion of stability

The results of the previous section suggest that we needtoftor weaker notions of stability which are satisfied
in practice and at the same time have enough properties Batiwe can cluster the datasets which satisfy those
properties in a better way. In this section we propose suatiamwhich we call weak-deletion stability.

http://archive.ics.uci.edu/ml/index.html



Definition 5.1 Let {c},c3,...,c;} denote the centers in the optimaimediank-means solution. LeDPT denote
the optimalk-mediank-means cost and 1€@PT~* denote the cost of the clustering obtained by uging- 1) of the
optimal centers excluding’. We say that thé-mediank-means instance satisfiés + «) weak-deletion stability if
for anyq, it holds that

OPT %> (1+a)OPT

We show that both the stability notions considered in [ORG%Md in [BBGO09] are in fact special cases of weak-
deletion stability.

Claim 5.2 Any (1 + «)-ORSS separable-mediank-means instance also satisfigs+ «) weak-deletion stability.

Claim 5.3 A k-mediank-means clustering instance that satisfies the- a, €)-property, and in which all clusters in
the target clustering have size greater than also satisfie$l + «) weak-deletion stability.

For the proof of these claims see [ABS10b]. In particulag, mhain result in [ABS10Db] is that unlike in [ORSS06],
small constant values of alpha can still be useful (see Hmér4). For the datasets considered in the previous section
Table 2 shows the extent to which they satisfy weak-deledfahility. These results show th@t + «) weak-deletion
stability is in fact satisfied by clustering instances agsin practice, for some constamt> 0.

dataset n k | minimum (1 + «) for weak-
cluster size deletion stability
iris 150 | 3 | 50 1.3762
wine 178 | 3 | 48 1.1405
digits* 537 | 3| 177 1.1679
satellite* 836 | 3 | 159 1.4037
image-segmentationf 1200 | 4 | 330 1.2121
letter-recognition* 1129 | 5 | 132 1.1835

Table 2: A table showing the extent to which the various datasatisfy(1 + «) weak deletion stability.

We show that for instances satisfying weak deletion (forstanta), one can get any constant factor approximation
to thek-median and thé-means objectives in polynomial time. Hence, we have tHeviahg theorem. For a proof
see [ABS10b].

Theorem 5.4 There exists an algorithm which for afiy + «)-weakly stablet-median instance, and for ary> 0,
outputs a clustering whosemedian cost is atmost + ¢)OPT. Furthermore, the running time of the algorithm is

O(niko(%ﬂ)n?’).

A similar algorithm also exists for weakly stable instanoég-means clustering in the Euclidean space and runs in
. 1 1 . . - . .
time O(n=2= k°()n?). Below we briefly describe the main intuition behind the aityon.

5.1 The algorithm

For a givenk-means instance, I€iC}, C5, ..., C;} denote the optimat-means clustering. A cluster; is called
cheap if its contribution in the optimatmeans solutionQPT;, is no more than a constant fraction@PT. Given a
cheap cluste€'; in the optimalk-means clustering,l + «) weak-deletion stability assures us that ang C; is far

from ¢}, namely,d”(z, ¢;) > a&L;. In contrast, the average (squared)distance efC; from ¢} is S&4¢. Thus, if
we focus on a cluster whose contributi@®T;, is no more than, sayg; OPT, we have that; is 10 times closer, on
averageto the points of”* than to the points outsid€;". Furthermore, using the triangle inequality we have tht an

two “average” points of” are of (squared)distance at mq%g%, while the (squared)distance between any such

“average” point and any point outside 6f is at Ieasting ?C'?T| So, if we manage to correctly guess the sizef a

cheap cluster, we can set a radius © (a%) and collect data-points according to the size and inteiseof ther-
balls around them. Using this observation, the authorsgsegn algorithm which which iteratively populates a@et
of components. One can the show that for every cheap clG$tethe set)) will contain a component which contains




the entire inner-ring o’;. Here, the inner ring consists of points which are at a (sepljalistance< 0‘10%\2*\ from

the centercf. Furthermore, one can also show that the siz&)ofill be at mostk + O(1). Hence, one can do a
brute force search to find out these “good” components cporeding to cheap clusters. In order to handle expensive
clusters, we use ideas from [KSS04] to sample points whiehgaiod substitutes for the centers of the expensive
clusters. This sampling part runs in time exponential intbeber of clusters. But, since there are only a constant
number of such clusters, the overall running time is stilypomial.

Unfortunately, there are two main bottlenecks in makingatheve algorithm practical: 1) The sampling step to handle
expensive clusters is time consuming and 2) altho@gbontainsk + O(1) components, the constant involved is
large, and in practice, searching over all possiblef them might not be feasible. We remove these limitations by
proposing a heuristic which makes the algorithm faster. iaé observation is that the sampling step is only needed
for expensive clusters, or in other words, clusters whicawvilg dominate the cost of the optimal solution. In a lot of
datasets arising in practice this does not happen.

Hence, we skip the sampling step and run the core of the #igotb getO(k) components. Also, in our experiments
we observed that the largestcomponents i) seem to give the clustering with the lowest cost as well addst
quality. Hence, we replace the brute force guessing oktbemponents irf) by just taking the largest components
and using the correspondirigcenters to induce a clustering. The algorithm, with a rugrime of O(n?) is shown
below.

1. Initialization Stage: SetQ « 0.
2. Population Stage:Fors =n,n—1,n—2,...,1do:

(a) Setr = 92FT.

(b) Remove any point such that?(z, Q) < 4r. (Here,d*(z, Q) = mingpeco.yer d*(,y).)

(c) For any remaining data point denote the set of data points whose distance frosquared
is at mostr, by B(z,r). Connect any two remaining poiatandb if: (i) d*(a,b) < r, (i)
|B(a,r)| > 5 and (iii) [B(b, )| > 3.

(d) Let T' be a connected component of size 5. Let B(T) be the set of all data point
{x; d*(x,y) < 4r for somey € T}. Then:

i. AddTto Q. (Thatis,Q «— QU {T'}.)
ii. Remove the points oB(T") from the instance.

7]

3. Centers-Retrieving Stage:Choose the largegtcomponents];, Ts, . .., T}, out of Q.

(@) Compute:; = ZIGTiUB(Ti) x.
(b) Partition alln points according to the nearest point amongitltenters of thesk components
and output the corresponding clustering.

Unfortunately, theO(n?) running time of this heuristic still makes it a bad choice farge datasets. In Table 3
below we compare our algorithm with some popular algoritforsk-means clustering. We observe that although
our algorithm does perform much better than the traditidth@yd’s algorithms, it is not much better than the popular
k-means++ algorithm [AVO7]. In addition, themeans++ algorithm is much faster in practice. Hence, tasgfithe
nice theoretical properties of our algorithm, due to po@iahbility, it is not a good choice to cluster large datasets.

6 Stability assumption of Bilu-Linial

Recently, Bilu and Linial [BL10], focusing on the Max-Cuiginlem, considered clustering instances where the optimal
clustering is optimal not only under the given metiicit also under any bounded multiplicative perturbationtad t
given metric This is motivated by the fact that in practice, distancds/ben data points are typically just the result
of some heuristic measure (e.g., edit-distance betwermgstor Euclidean distance in some feature space) rather tha
true “semantic distance” between objects. Thus, unlesejitimal solution on the given distances is correct by pure
luck, it likely is correct or nearly so on small perturbatsoof the given distances as well. This can also be viewed as a
conceptual analog oflarge marginassumption with respect to clustering objectiveBilu and Linial [BL10] analyze

this type of Max-Cut instances, and show that with stabilipyto quite large perturbations, of multiplicative factors



dataset Lloyd’s(uniform) | Lloyd's(cluster) | kmeans++ | our algorithm
wine 37.08 33.15 8.37 6.9
iris 42 38.7 14.67 14
image 38.57 37.62 25.46 22.38
multiple_features 49.2 38.4 27.7 28.6
digits(0 - 3) 3.16 3.16 3.12 3.16
satellite 43.34 41.02 31.93 31.24

Table 3: A table showing the performance of our algorithm arious datasets. Also shown are the error rates (in
percentage) achieved by two variants of the Lloyd’s heigrishd thek-means++ algorithm proposed by [AVO7].
Lloyd’s(uniform) corresponds to choosirkginitial seed centers uniformly at random. Lloyd’s(clujtperforms an
initial clustering an a sample of siz®% and uses the centers obtained as the initial seed centeespr&himinary
clustering itself is done by choosing random seed centers.

of roughlyO(n'/?), one can retrieve the optimal Max-Cut in polynomial time.d@firse, this is an extremely strong
condition. However, they conjecture that stability up26l) perturbations should be enough to solve the problem in
polynomial time. Here we show that this conjecture is indeed for k-median and:-means objectives (in fact, any
well-behaved center-based objective function). In addijtive analyze the following question: To what extent does
this perturbation resilience property hold in existingadsts? We propose a new heuristic for determining whether
any subset of a given clustering instance satisfies thisgutppr not.

6.1 Main Result
Let us formally define what stability under multiplicativenurbation means.

Definition 6.1 Given a metrid S, d), anda > 1, we say a distance functiali : S x S — R is aa-perturbatiorof
d, if foranyz,y € S it holds that
d(@,y) < d'(z,y) < ad(z,y)

Note that in this definition, much like in the definition of [RD], we allowd’ to be any non-negative function, and
not just a metric. In particular, we allow/ to not satisfy the triangle inequality. We now give our main defortand
main theorem.

Definition 6.2 Suppose we have a clustering instance composedgofnts residing in a metri¢S, d) and an objec-
tive function® which we wish to optimize. We call the clustering instangeerturbation resilienfor & if for any d’,

a a-perturbation ofd, the optimal clustering ob under(S, d) is point-wise identical (up to relabeling of clusters) to
the optimal clustering ob under(S, d’).

We prove the following theorem. For a proof see [ABS10a].

Theorem 6.3 For any o > 3, there exists a)(n?k?)-time algorithm that finds the optim@-median /k-means
clustering ofa-perturbation resilient instances.

In fact, the algorithm we propose féarmedian andi-means, applies also ®perturbation resilient clustering in-
stances for any center-based objectiverhich isseparable

Definition 6.4 A clustering objective is separable if it satisfies the failog two conditions:

e The objective function value of a given clustering is either(weighted) sum or the maximum of the individ-
ual cluster scores.

e Given a proposed cluster, its score can be computed in patjaddime.

The algorithm builds on the results regarding the min-ditgdproperty of Balcan et al [BBV08]. Our algorithm’s first
step is to run the single-linkage algorithm, and, unlikedhronical single-linkage algorithm, that halts okedusters
remain, we halt only oncall clusters have been merged into a single cluster. Then,paStihgle-Linkage algorithm,



the algorithm’s second step is to apply dynamic programrtorte hierarchical clustering formed. The overall idea
resembles, in spirit, the line of work on general metric eddiegs in trees, like the works of Bartal [Bar98] and
Abraham et al [ABC 05] and the work of Racke [B8]. Here too, we reduce the problem of retrieving the optitna
clustering from a general instance (where it might be infdapto a tree-like instance (where it is poly-time sohahl
For a complete analysis see [ABS10a].

We would also like to point out that our poly-time algorithor f-median instances that aeperturbation resilient
uses only a weaker property, which we call center-proximity contrast to proving that any instance satisfyiig
center proximity can be solved in poly-time, we show thatdoye > 0, there exisNP-hard instances of (restricted)
k-median which satisfy3 — ¢)-center proximity. Therefore, our approach, which is basedenter-proximity alone,
is inherently bounded by the factor ®f

6.2 Perturbation-Resilience on Average

As in the case of approximation based stability assumptiaeswish to study whether perturbation resilience can
be useful in clustering real-life instances. Indeed, osulteabout(3 — ¢)-center proximity shows that theoretically,
there is evidence to believe that one cannot correctly efustpoly-time all the datapoints of a, s&y99-perturbation
resilient instance. Howevedi-perturbations of the underlying metric may be useful, iagtice, in providing a level

of confidence for the clustering sub-instanceseven fora. < 3. Suppose we are clustering a dataset in search of
some target clustering (e.g., clustering webpages agugtditopic), and furthermore, assume (for this section&)on
thatk is a small enough constant so that we can find the optiv@lstering efficiently without any assumptions.
Imagine our dataset is such that for a giverit is not a-perturbation resilient, yet it contains a subset of poimtéch

are clustered together under alperturbations of the instance. This gives a strong engdigeidence that this subset
of points should reside in a single cluster. Furthermores, snggests a framework for defining confidence among
the classification of pairs of datapoints: the larger theéyrbation we need in order to plageandy in two different
clusters, the more we are confidanandy belong to the same cluster!

Additionally, it makes sense to consider stability to ramdperturbations rather than worst-case. Specifically, we
introduce the definition of perturbation resilienme the average

Definition 6.5 Suppose we are given a clustering instag€gl) and some subsét C S, and also given a probability
distribution D over a-perturbations ofd. We sayS’ is (e, a)-perturbation resilient on averagfefor a d’ randomly
sampled fronD, the probability that the optimal clustering undéiand the optimal clustering undef identify over
S’ is atleastl — e. WhenS’ = S we say our clustering instance (s, «)-perturbation resilient on average.

Itis clear that in order to verify with confidende- § whether a clustering instance is perturbation-resili@raeerage,
it sufficestoi.i.d samplséw) many perturbations fror® and compare the optimum undéto the optimum under
each perturbed metri¢. What may seem surprising at first glance, is the fact thatdeioto findall subsetsS’ S
which are(e, «)-perturbation resilient on average, it suffices to i.i.d plm(M) perturbations fronD. To see
this, observe that for any two data pointg, we can determine with probability at ledst- (§/n?) whetherz andy
are assigned to the sample cluster in the optimum underdatidd’ by a set of M samples fronD. Once

we determine whether any pait y is perturbation resilient, the following procedure findssalbsets ofS that are
perturbation resilient. Draw a graph over the point§irand connect any andy if they belong to the same cluster of
the optimum under all sampled perturbationg/of he subsets that are perturbation resilient are exaatlgdimnected
components (in fact, cliques) in this gragh.

Recall, we assume thatis sufficiently small so that the optiméatclustering can be found efficiently, so the above
argument gives a simple heuristic for measuring the peatioh-resilience of existing datasets. A similar idea Iavo
ing random perturbations was explored in [BLRR04]. We appily heuristic to two well-studied datasets, and discuss
our experimental results next.

2plternatively, they are the equivalence-classes undestitably defined equivalence relation.



7 Measuring Perturbation Resilience on Average

Following the logic described in the introduction (Sect&g), we employ the aforementioned heuristic over existing
datasets, where we try various valuesxpfand for each value we uniformly i.i.d sampleperturbations of the given
metric. The datasets we used are the IRIS and WINE datasatstifre UC Irvine repository [AA07]. IRIS contains
n = 150 data-points and WINE contains af = 178 data-points, and each dataset is composekl ef 3 target
clusters. Small datasets were intentionally chosen, dontbanay find the optimat-median on each dataset under

100 random perturbations. Indeed, in our experiments, we=sel /6 andd = 0.01, so that(w) < 100.

Figure 1 shows how the number of connected components essltfee value of the perturbation increases, and how
large these components are. As expected, we see thairageases, the number of components we end up with
increases, and the fraction of points that reside irkthe 3 largest components decreases. These naive measurements
suggests that our datasets have a “cut-off” point betweea 1.1 anda = 1.2. Indeed, in both IRIS and WINE
datasets, the change (both in the number of components arfthttiiion of the instance the belongs to the top three
clusters) is the most noticeable. Hence, for< 1.2 a large fraction of the dataset is resilientdeperturbation.

This approach is simple enough to be extended to other dajas®uld one wish to measure to what extent they are
perturbation-resilient.
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Figure 1:The number of components increases and the fraction ofpomnitained in the largest components decreases, as we
consider larger and larger perturbations.

Next, we consider theurity of each cluster. Observe that the datasets we use have grmotimdand naturally, our
goal is to come up with a clustering that matches the grownt.ttHowever, th&-median optimum doesot match
the target clustering, but rather contains points fromedéht target clusters. Therefore, in order to measure haiv we
clusterC' matches the target clustering, denoféd, C;, C5}, we define the purity of’ as

max 1€ NG
i |C]

Consider the IRIS dataset for example. The largest clustiéra3-median optimum of the given metric i$% pure.
Denote the set of data points within this clusteiCasAs we start perturbing the metric, we find a component graph
in which C' is broken into many sub-clusters. For each valuerafe consider the largest of these sub-clusters and
measure its purity. Not surprisingly, asincreases, the size of the largest sub-cluster decreasgsaBwe show in
Figure 2, thepurity of the largest clusteincreases aa increases. Indeed, one may expect the purity to increase, as
in the extreme case, wheteis remarkably big and all components we get contain a singietpthey are alll00%

pure. However, it is worth noting that even when the size eflfigest component is comparable with the size of the
target-cluster its purity is almost perfect. (We refer te WINE dataset unddr.2-perturbations. The largest cluster
containsi6 points, out of whictd7% are pure.) We also note that the same approach was applietiydhe largest



cluster in the3-median optimum, but also to the other two clusters. Howehesse clusters’ purity was high to begin
with (and remained high under larger and larger perturloaiio
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Figure 2:The size of the largest sub-cluster decreases, but ity/pndteases, as we allow for larger and larger perturbations

7.1 Empirical Study - Summary

Our empirical study suggests that indeed, assuming thhlifeaatasets are perfectly resilient to perturbations. (
not even a single point gets assigned to a different clugarhrealistic. The datasets studied were both “mostly”
resilient to very low-level perturbations (past the poihtlal-perturbations, less tha#0% of the instance remained
in the same cluster as in the optimal solution). This suggbstt real-life datasets are far from beidgerturbation
resilient, and thus suggests a reason for the fact thatitisdd uncommon for the Single-Linkage algorithm to produce
a clustering laminar with the target clustering.

However, in contrast to the perturbation resilience of thire instance, our experiments show that it is not unraalis
to assume that karge sub-instancés resilient to perturbations. And, since discovering whalbset is resilient to
all perturbations may be intractable, we propose our heaitis discover what subset is resilient to perturbations
average Furthermore, we believe that using this heuristic onekilyito gain additional insights about the underlying
structure of the clustering problem. We view this as a subfgduture research.

20 newsgroups data setn order to demonstrate qualitatively, how the stable safmmnents get filtered out with
increasingy, we look at a subset of th#) news group corpus which contains binary occurrence datadi@mwords
across16242 postings®. Here again we face scalability issues since solving foriteeans optimal solution at
every step is going to be very time consuming. Instead, wegse to replace the-means optimal computation
step with thek-means++ algorithm. We run our heuristic for= 3-means clustering for each alpha in the range
[1,1.1,1.2,1.5,2,3,3.5,4]. Figure 3 shows how the various “pure” subcomponents filtéras« is increased. For
example, atv = 3.5 we get the clusterec.sport. In the 20 newsgroups dataset, this cluster itself if sudéd into
various sub-clusters. Unfortunately, in our experimerngsalgo observed that as we increas® higher values, these
subclusters do not filter out cleanly and we get various sna#ly subcomponents.

3http://www.cs.nyu.edu/ roweis/data.html

10



christian,government,jesu
religion, science, israel, y =1
powver, research

email,computer,windows,
disk, memory, graphics,
pc, data

university, email, help, question
problem, team, games,
government, hockey, season

| comp

university, question, team, email,
car, games, space, nasa,
hockey, season

god, christian, jesus, bible
world, human, fact

government, israel, fact, state
law, world, president,vwar

Y talk.religion talk.politics

space, program, nasa, data,
research, software, problem

team, games, players, season,
hockey, baseball, nhl

<ci rec.sport

Figure 3: The figure shows how the various subcomponents of the 20mewsg dataset get filter out asis increased. For
example, aic = 2, a noisy top level cluster gets subdivided into subclusteve of which correspond to the actual clusters
talk.religion andtalk.politics in the dataset.

8 Transfer clustering

In this section we show that the notion @f + ) weak deletion stability can be used to approach the problem o
transfer clustering. Given a problem for which we know trghtianswer, the idea is to learn some property of the
domain which can then be applied to cluster other relatedlpros. For example consider the digits dathsetich

has points clustered intd different classe$0, 1, . .., 9}. One could take the labeled examples from the fidasses
and optimize weights for the individual features such thaddicular property holds. Then we could use these weights
to solve the similar problem of clustering digits belongtodhe next classes. There are several properties one could
try to optimize for. For example, one candidate propertyisearn a set of weights such that theneans optimal
solution is close to the target clustering. Or, may be, on#ccask for a set of weights such that theneans heuristic
(Lloyd’s algorithm) is close to the target clustering. Initepof being natural candidates, it is not clear at all as to
how should one approach towards formulating such a compgiixaation problem. This is where the notion of
weak-deletion stability is useful. We show that, given é@niray set, one can set up a linear program to optimize for
weights such that the data satisfigs+ «)-weak deletion stability. Having done that we know, from tRet5, that
there is algorithm which will take this stable input and autp solution of cost at mogt + ¢)OPT. If this solution is

not close to the target, we can add a constraint into our iRe@gram which says that the cost of this solution should
(1 + €) be more than the cost of the target. We can then reoptimizeidgghts and continue until we reach close to
the optimal solution.

Given ak-means instancéz;, z, ..., } of n training points inR? which are clustered intd& target clusters
{C1,Cs,...,Ci}, and a value ofx the following linear program can be used to find out the weighat make

“http://archive.ics.uci.edu/ml/datasets/Optical+Rptton+of+Handwritten+Digits
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the instancél + a)-weakly deletion stable. Below we denaték) to denote thé:" feature value for point.

d
Minimize Z |w;]
i=1
subject to:

d
D lwi@(k) — ¢;(k)* — wi(x(k) — ci(k))?]

zeC; k=1

IN

aOPT, Vi, j #i

k d
DD D lwnla(k) = ci(k)’] = OPT

i=1 zeC; k=1

\%
=
<

wj

Given a training set, the weight estimation procedure iols\s:
Input: «, €.
Output: feature weightv;’s.

1. Solve the linear program to get weights such that the tésgé + «)-weakly stable. If no solution is found,
report failure.

2. Run the algorithm from Section 5 with parametersande.
3. If the solution output by the algorithm ésclose to the target, output;’s and stop.

4. Otherwise, add a constraint to the LP that the cost of theisa output by the algorithm is more thaih+ ¢)
times the cost of the target.

5. Go backto step 1.

Itis clear that if there exists a weighting of the featuregveha(1l + ¢)-approximation tok-means is also close to the
target, then the estimation procedure will find such a wénghtin order to make this estimation procedure practical,
we replace the costly algorithm from Section 5 with the fasheans++ algorithm.

We ran this heuristic against several datasets. As showabhie™, we got mixed results. One some of the datasets,
after a few iterations, the LP fails to find a feasible solntio the weights. Even replacing the hard constraints in the
LP by introducing slack variables does not help in improwimgaccuracy on the test set. We believe that this is due to
the fact that we are trying to find a linear weighting of thetéeas which might not be the right representation. Hence,

what is needed is to use a principled way to “kernelize” thgrapch. However, we do not have a clear idea as to how
to achieve this.

dataset # clusters in| # clusters in| test error | test error af-
the training | the test set before opti- | ter optimiza-
set mization tion
segmentation | 3 4 41 +1.7% 37+ 1.56%
abalone 5 5 67 +1.38% fails to find a
solution
letter 5 5 45.8 £ 1.42% | 49.76£1.35%
20 newsgroups 3 3 54.8 £ 2.6% | fails to find a
solution

Table 4: The table shows the change in the test set accurapefcentage) after learning a linear weighting of the
features on the training set.
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9 Conclusions and Open Problems

This work raises several interesting questions. We shoheidor data satisfying weak-deletion stability, one cad fin
very good approximation to themedian and thé-means objectives. However our algorithm suffers fromaoitity
issues which makes it impractical for even modestly sizeds#ds. It would be interesting to come up with a version
of the algorithm which is fast (comparable to kmeans++ orytls algorithm) and still retains some of the nice
theoretical properties of the original algorithm. In seat6.2 we proposed a heuristic to detect if the dataset amntai
large subcomponents which are perturbation resilient arage. Here again our heuristic suffers from scalability
issues and it would be interesting to come up with a fast neetbiothis problem. An interesting algorithmic question
is whether one can efficiently (in polynomial time) detedi@@mponents which are perturbation resilient in the worst
case, rather than on average. Here one could assumé that constant. Even then it is not clear how to solve this
problem efficiently. Finally, We think that the idea of trémsclustering is quite interesting and further researahn ca
give us good results.
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