Di Liu
Department of Statistics
Carnegie Mellon University

Cancer Pathology Classification
Comparing Sets in High Dimensions

Version: April 20, 2011
Committee: William Cohen, Stephen E. Fienberg, Ann Lee



1 Introduction

We concern ourselves with a particular setting in clustering and classification
problems in which we have multiple data sources and we observe multiple data
vectors from each data source. We are interested in comparing, classifying,
or clustering the data sources rather than the individual data vectors. This
setting has many real applications, including image analysis [7], genetics [2],
and medical imaging [12].

In order to clearly illustrate our setting, we outline our main application (see
Section 2). These data come from a study aimed at classifying the cancer status
of human tissue samples using medical imaging; a similar study was reported in
Wang et al [12]. From each tissue sample, we observe many images of individual
cells. In this case, each tissue sample is a data source, and the individual cell
images are the data points. The goal of the study is to determine the lesion
type (class) of the tissue samples using the cell images.

In addition to the source structure, these data have other features and chal-
lenges which motivate our approach. First, each cell image must be viewed as
a very complex, high dimensional object. Second, while each tissue sample dis-
plays some individual characteristics, many images from different tissue samples
— even those from different cancer classes — display similar properties. Third,
while there are many available images, each individual cell cannot be individ-
ually assigned a ground truth by expert pathologists. These three properties
motivate a general semi-supervised learning approach to the task.

We give methods related to data from this particular setting as my thesis
work. Instead of using a common SVM voting approach we model each data
source S with a conditional distribution on the input space: px|s. In the above
setting, many of the px|g are similar, since many of the individual cells are
similar across sources and classes. Therefore we can learn more information
about these distributions by learning the marginal distribution px. Motivated
by this property, we propose a semi-supervised approach to classification of data
sources. Specifically, we use a quantization of the input space learned from all
data from all sources to create an estimate of the distribution px s for each
source. We propose two practical strategies for creating such a quantization:
kmeans and mixture models (Section 3.4). We clearly explain the set of as-
sumptions under which our strategy is better suited than the popular majority
voting strategy (Section 3.3). We then use these estimates to create a pairwise
distance matrix between all the data sources. This matrix may then be ap-
plied to a clustering or classification task. We show our method displays good
classification performance in several applications.

2 Introduction to the Cancer Pathology Dataset

Surgical biopsy is currently the dominant method to diagnose many types of
cancer. Medical imaging promises to be a cost-effective, minimally invasive,
and least uncomfortable alternative diagnostic method. For both surgical and



imaging tools, a pathologist must examine dozens of images to determine a di-
agnosis. The nuclear features of individual cells have been shown to be effective
visual diagnostic features. However, due to the inherent limitations of the hu-
man brain and visual system [4], this complex data often produces uncertain
diagnoses — even for relatively common diseases. Recent work uses computer
visual algorithms applied over thousands of individual cell images in the diag-
nosis of several types of cancers including prostate [10], cervix [1], thyroid [3],
liver [6], and breast [8].

Our data come from a study aimed at classifying the cancer status of human
tissue samples using medical imaging; these data were originally reported in
Wang et al [12]. We study the diagnosis of two sub-classes of thyroid cancer:
follicular adenoma of the thyroid (FA — a milder form) and follicular carcinoma
of the thyroid (FTC — a potentially deadly form). We begin with digital images
of human tissue samples obtained from the archives of the University of Pitts-
burgh Medical Center (Institutional Review Board approval #PR009020278).
The pathologists took many microscope images from both cancerous (class FA
and FTC) and healthy (class N) thyroid tissue. We next processed each image
with an image segmentation algorithm in order to isolate subcellular structures,
particularly nuclei because of their importance in diagnosis. After this step,
each nuclei image can be viewed as a complex, high dimensional object — see
Section 4 for additional details pertaining to this point. Remember that each
tissue sample is represented by observations of many nuclei. Our goal, there-
fore, is not to classiify individual nuclei — we are interested in labeling groups
of nuclei instead. Moreover, while each tissue sample displays some individual
characteristics, many images from different tissue samples — even those from
different cancer classes — display similar properties. Also, while there are many
available images, each individual nuclei cannot be individually assigned a ground
truth by expert pathologists.
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Figure 1: Summary of the image processing procedure (Figure taken from [12]).
(A) Raw tissue sample image, (B) Segmented image, (C) Individual nuclei;
converted to normalized grayscale.



| NA | FA | FTC
10 | 5 5

# Sources (Tissue Samples)

# Data vectors (Nuclei) from each source | 35 | 70 70

Table 1: A summary of the cancer pathology data set. Note that each tissue
sample (data source) has a different number of associated nuclei.

We now have a data set consisting of features from many images of individual
nuclei, each coming from a particular tissue sample. Therefore, we let the tissue
samples be the data sources and the nuclei image features be the individual data
vectors. Table 2 summarizes the properties of the data set.

3 Classification and Clustering in the Set Set-
ting
3.1 Classification Problems

In the traditional supervised learning setting, suppose we have data {(z;, y;) }7 ;.
We seek a classifier g which maps any x; € X to the classification label y; € Y.
Our goal is to predict y; when new x; comes in. The ground truth h: X— >V
is unknown, where X belongs to input space and Y is the classification label.

3.2 Notation

We now define the notation for our problem of interest: classification of data
sources. Suppose we have data from S data sources, denoted Si,S,,...,Ss,
with source S; having n(? data points in a common d dimensional space X.
Let n = Zle n() be the total number of data vectors, and denote x;; as the
jth data vector from the data source S;. We denote the resulting n(® x d data
matrices as X;, and the X as the n x d matrix containing all data from all
sources. Define £(x) as the function which returns the data source of x; £(x)
takes values in {57, S, ...,Ss}. In the classification setting, we denote ) as the
label space, where each source — rather than each data point — has a label.
Thus, we have in total n examples z;; = (y;,X;;). We denote px as the marginal
distribution of the data vectors over X, pxy as the joint distribution of the z
over X x ), and px s, as the conditional distribution of the x over X, given x
comes from source S;.

3.3 Assumptions on the Conditional Distributions

When X is high dimensional, classification tasks become more difficult, partic-
ularly if n is small relative to d. In this case, we propose a semi-supervised
approach to the classification problem. In particular, we consider an assump-
tion related to the manifold assumption, which has good theoretical support in



semi-supervised learning. In our setting, we instead make a related assumption
on the conditional distributions {pxs, }:

Condition 3.1. (Source Distribution Assumption) Suppose the marginal dis-
tribution on the input space places its mass on only a small subset of X. That
1s, suppose the marginal distribution px has an associated probability measure
x such that for some small dx,ex > 0, there exists M C X such that
px(M) > 1 —9x and p(M) < ex, where p denotes Lebesgue measure on
X. We further consider three possible conditions on {pX|s}:

1. The distributions px|s fall into only a few classes. That is, suppose we
have a collection of index sets C = {C.}, with |C| < S such that ¥i,j €

Ce,Px|S, = PxX|s;-
2. As above, the distributions px|s fall into only |C| classes. However, within
each class, the distributions are similar rather than identical. We may

formalize this for example, as: given a constant E > 0,Vc,Vi,j € C. J €, €
(0, E) s.t. d(px|s,,Px|s;) < €n, where d(-,-) denotes Hellinger distance.

3. The distributions px|s are unrelated. As above, we may formalize this, for
ezample, as: given a constant £ > 0Vc,Vi,j € C. Jep > E s.t. d(px|s,, px|s,;) >
€n, where d(-,-) denotes Hellinger distance.

Condition 3.1(1) corresponds to the following data generation scenario. For
each class, we first draw a collection of data X according to px|y. These data
are then randomly assigned source labels. Therefore, given the data, the source
and class labels are independent. We then might guess that the data sources
give us little additional information. The following proposition formalizes this
intuition:

Proposition 3.1. Suppose Condition 3.1(1) holds. Then, when C = 2 in
the classification setting, the optimal classifier for data source classification is
obtained empirically using a voting strategy.

Proof. Suppose we have n(%) data points from source S. The Bayes’ rule for
sources is defined as:

N 1: rg(8)> 2
hS(S):{O: S()els?e

Where the source regression function rg(S) can be written as follows:
rs(S) :=rg(x)
=EY|L(x) =9)
=PY =1/L(x)=1S5)
= / PY = 1|£(x) = S, X =X)px|s(x)dx
x

= ExsP(Y = 1|£(x) = S, X = x)
= ExsP(Y = 1|X = x)



Where, in the last step we have used our assumption implicit in Condition 3.1(1).
Inside this last expectation, we have the traditional regression function r(x) =
P(Y = 1|X = x), and so we can estimate the expectation empirically using a
voting estimator:

(S

1 X
Ex‘sp(y = ].|X) ~ W Z T(Xij)
j=1

O

In particular, Proposition 3.1 suggests that under Condition 3.1(1), we may
ignore the source information entirely. We need only use a plug in rule estimator
combined with a voting strategy to well approximate the Bayes’ rule. Thus,
Condition 3.1(1) is very reductive.

Though Conditions 3.1(2) and (3) above are loosely defined, they motivate
our semi-supervised approach. Under condition (3), learning px conveys little
information about the individual source distributions px, than using only X;.
Thus, a semi-supervised approach may not help the classification or clustering
task. Under condition (2), learning the px may give more information about the
individual source distributions py|s. Here, we can use the data X; as labeled
data combined with {x : £(x) = Sk s.t. k # i} as unlabeled data to learn
about px|g,. Since, under Condition 3.1(2), there are several members of the
set {px|s, : j # i} which are related to px|s,, this unlabeled data may give
more information about px|s,. We next give a method motivated by the second
condition.

3.4 Quantizing the Input Space

We now present a method for finding the relationships between data sources
under Condition 3.1(2). We use a semi-supervised approach to estimate the
conditional distributions {px|s,}|<_, using a quantization of the input space.
We then compute the distances between these estimates, giving us an estimated
pairwise distance matrix between the data sources for use in future inference.

We begin by partitioning the space X into K bins. Let each bin be repre-
sented by a basis function ¢ () : X — H, where H is left arbitrary. For each
bin, we define a functional Vi (:) : X — R. Therefore, we can approximate a
source S; in H with our bins using the general equation:

_ 2k (a Vi) dus, (%)) ¢k
Son Ja Ve(x) dus, (x)

We then define entry k of the quantized projection of S;, hg, as follows:

[k] = Jx Vi(¥)dps, (x)
Sk S Vi) dps, ()’




In data applications, we may estimate the projection empirically as follows:

)

e Tk Zj:l Vi (x)

hs k] = —— @5 —— (2)
22— Vix)

Here, Vi is an empirical estimate of the bin functional V. We now discuss

methods for estimating the partition.

3.5 Creating the Quantization

We base our semi-supervised method on a quantization of the space X. Here,
we consider two popular vector quantization (VQ) methods and define the cor-
responding projection functional estimators V. VQ methods seek to represent
data in terms of a common set of standard patterns called a codebook. Our
idea and approach are similar.

3.5.1 Kmeans as a Space Partition Method

In our setting, we can view kmeans as a data driven partitioning method which
minimizes the expected value of the distortion caused by mapping data points
to their cluster centers.

We first fit kmeans to all of the data X and use each of the K clusters as
a bin. We use the resulting K centers as estimates for our quantization basis
{(ﬁk} We define the following function as our estimate of the bin functionals:

. 1o argmin ([|x = gyllx) =k
Vi(x) = je{1,2,..., K} : (3)
0: else
Here, || - ||x represents the norm in the space X. Such a definition is very

simple and intuitive: the empirical projection of S; on the k** component of the
partition is just the proportion of points falling into the k** kmeans cluster.

3.5.2 Mixture Models

Mixture models are another natural quantization technique. Mixture models
represent a probability distribution as a mixture of K component distributions.
To create a quantization with K bins we fit the following model:

K

p(x) =Y p(Z = g)p(x|Z = g),

g=1

(x|Z = g) ~ Gy(0y).

Here, G, is a distribution, possibly parameterized by the vector of parameters
0,. Z is a latent class variable which stands for the mixture components. We



define the collection of parameters @ = {01,605,...,0x}. Note that the {G,}
need not be from the same family of distributions, though such an assumption
often aids model fitting.

After fitting a mixture model, we obtain an estimate 0 for 6. We let QASk =
Gr(0%). We define our bin functions as:

Vii(x) = p(Z = klx, 0y). (4)
The above definition leads to the following statistical properties.

Proposition 3.2. Suppose 0y is consistent for 0y. Then, using the estimate
for Vi, defined in Equation 4, the estimator hg,[k] is a consistent estimator of
P(Z =k|L(x) = S;,0).

Proof. For brevity of notation, we replace £(x) = S; with S;. We now derive
an estimate for this quantity. By the law of total probability:
P(Z = K|S:, 0) / P(Z = k|Si, %, 0)p(x|S;, 0)dx
X
= Eyjs,.0 (P(Z = k|S;,%,0)) . (5)

By the law of large numbers, and the consistency of 6}, a consistent estimator
for the expectation in Eq. 5 is:

n®

1 ~
hSi [k} = WZP(Z = k|SiaXija0k)' (6)
J=1

O

Proposition 3.3. Using the estimate for Vie defined in Equation 6, ilsi [k] is
also MLE for P(Z = k|L(x) = S;,0)

Proof. We begin with the log-likelihood for X and the labels. For simplicity of
notation, we drop conditioning on @, which is fixed in all of these calculations.
We also let the event z stand for Z = z.

M=

(X, L(X)) =) logP(x;, L(x;))

N
Il
_

K
log > P(xi| £(x1), 2)P(2] £(x1))P(L(x1))

1 z=1

[
NE

~

Now, we wish to maximize this quantity with respect to the variable P(z|L(x;)).

To do this, we use a Lagrange multiplier from the constraint Zle P(z|L(x1))
1:

K
0(X, L(X)) + X (Z P(2|L(x;)) — 1)

z=1



Without loss of generality, we take the derivative with respect to P(Z = z|L(x;) =
S;) and set equal to zero. Using this, we can rewrite the above as follows:

PIS) = — 0 P(x,|S:, 2)P(2]S;)

nt?) {x1:L(x1)=5;} 25:1 P(Xl|Sivz)P(Z\5i).

Here, We write the event £(x;) = S; as S;, and Z = z as z. Examining the
term in the above summation, we have:

P(x|S;, 2)P(2]S;)

e = P(z|5;,x).
2 amy P(x[Si, 2)P(2]S:)
So we have that the MLE for P(z|S;) is the empirical average in Eq. 4. O

3.5.3 Special Case: Gaussian Mixture Models

A popular type of mixture model is the Gaussian Mixture Models (GMMs), a
related technique to kmeans. GMMs represent a density p(x) as a mixture of
K Gaussian distributions, under the following model:

K
p(x) =Y p(Z = g)p(x|Z = g),
g=1

(x|Z = g) ~ N(pg, Zg).

We define 6 = {p,, 31, g, 3o, ..., Uy, Xk} as the set of all the Gaussian

component parameters. After fitting a GMM, we obtain an estimate for 8, 6.
We thus define:

Vi(x) = p(Z = klx, fu, Zi) (7)

3.6 Distances Between Distributions

So far, we have outlined practical ways to obtain estimates fLSi for the quantized
estimates of the conditional data sources distributions. Next, we compute the
pairwise distance or dissimilarity between these histograms to obtain a & x S
matrix D where entry (4,j) contains the estimated distance or dissimilarity
between source S; and source Sj; d(izsi , izsj). D can be used to cluster or classify
the data sources in a variety of ways; such as nearest neighbors, support vector
machines, minimal spanning trees, or hierarchical clustering. We now give some
effective ways from literature to compute the distance or dissimilarity between
these estimates. [9] gives a thorough review of various distance measures. Two
commonly used distance measures between a pair of histograms {hq, ho} are:

e L2 distance:

A, ha) — ¢Z<h1m ~ halk])2. ®)
k



e Quadratic form distance [7]:

d(hy,ha) = \/(hs — ha)T A(hy — ). (9)

Here, A is typically a pairwise similarity matrix between all of the bins.
We base the similarity between bins on similarities between the ¢y.

L? distance is the simplest approach, but it ignores inter-bin relationships
in the space X. This is a particular problem when points are put into bins via
hard assignment. Quadratic form attempts to take relative position of bins into
account. Earth mover’s distance [9] is another popular measure, used commonly
in image analysis. However, in our experiments, we found it did not lead to
better classification results.

3.6.1 Weighting the Quantization

We now consider an extension of our method particularly adapted for the clas-
sification setting. In many applications the data from the various classes can be
highly overlapping, complicating the classification task. In this case, drawing
a decision boundary between classes becomes more difficult. Therefore, data
points in these areas of overlap may make make classifying the related sources
more difficult. Thus, in the classification setting, some areas of the marginal
distribution may be more valuable for classification than others. Recall our
method is based on a quantization of the marginal distribution px. For exam-
ple, in the kmeans case, a bin containing only vectors from a single class might
be considered more important than a bin which contains an equal mix of vectors
from all classes.

We propose a weighting method which automatically considers the impor-
tance of bins and adapts to the distance measure we use. Specifically, we wish
to find a weighting scheme which emphasizes the difference between sets from
different classes as well as preserves the commonplace between sets from the
same class. Note that this method now takes into account the labels of all the
points in the training set, bringing the method closer to supervised learning.

Let Z represent the collection of classes, so Z = {1,2,...C}, let Z, = {i :
S; € ¢,c € I}. When we have K bins, we represent the weights as a vector
w = {w1, ws, .. wk}. For each data source S;, we have a representation hg, of
Px|s, in terms of the quantization of the input space. We weight by taking the
dot product w - hg,. Thus, we denote the distance between two sources S;, S;
without weighting as d(hs,, hs, ), and the distance with weighting as d(w-hg,, w-
hs,). Towards our goal, we seek to minimize the difference between the average
distance between data sources from the same class and the average distance
between data sources from different classes. We propose the following scheme

10



for the weights:

W= argmin Ar — As,
w:we[0,K]K ||w||1=K
1
.A1=F1 N Z d(w - hs,, W - hs;),
(4,J)E{Zc XTI}
1
hmg T dw s

2 (,§)E{Te X T,icc’ }

Where Ny = 25:1 W is the count of pairs with the same class label

and Ny = @ — Nj is the count of pairs with different class labels. Such a
minimization scheme suffers from two fatal problems.

1. For many choices of d(-,-), the solution tends to put all the weight on
the bin in which data sources are maximally differentially present (for
example, where only a single source is present) and zero weight on the
others. Usually, we wish to consider a wide range of bins in our distance
measure.

2. The average distance between sets may be heavily affected by outliers. For
example, if the distance between a particular pair of sources is much larger
than other pairs, then this weighting scheme tends to favor bins containing
these sources. However, we are often very concerned with sources that are
highly overlapping and/or separated by relatively small distances.

We address the first problem by adding a regularization term ||w||3. To address
the second issue, we normalize the distances between sources by dividing by the
unweighted distance. Thus, the new optimization problem becomes:

W = argmin Az — Ay + N|w|]3,
w:we(0,K]X ||w]|1=K
1 d(w - hs,, w - hs,)
A= 2 d(hs;,hsy)
(i,5)€{TcxT:} B
1 d(W'hSmW'th)

S d(ha, hs))
(1,)E{Te X TLic#c’} i1 778]

Here, we let A > 0 be a tuning parameter, which controls the amount of
regularization (see Section 3.7).

If we use Lo or quadratic distance for the function d(-,-), we can write the
minimization problem as a quadratic programing problem. Under this case
d(w - hg,,w - hg,) = (lhs, — hs,| - W)T A(|hs, — hs,| - w). Here, Ais a K x K
matrix. For Lo distance, A = I. For quadratic form distances, A may be any
matrix; a common choice is a similarity matrix between the K bins. Letting

11



x;j = |hs, — hs,|, we can rewrite the optimization problem as:
J i VARl

W= argmin wl (A5 — Ag + M) w, (10)
w:we[0,K K ||lw||1=K

As = L Z M
1, . Z‘TAZ'I ’
(i,§)e{TexT,y “WTTH
1 1‘”1‘3; oA
TR
(6,)E{TexTlictc’y "W

Here, A o B denotes the Hadamard product of the matrices A and B. The
above problem can be solved by a variety of optimization software packages.

3.7 Choice of Tuning Parameters

Our method now involves up to two tuning parameters: the number of bins K
and the regularization parameter A\. The quantization schemes we proposed also
have applications in clustering, so it might seem natural to choose K using one
of numerous clustering criteria. However, this often leads to a poor quantization
with too few bins. The goal of our method is to give a rich representation of
the marginal px rather than to cluster the data directly into groups. Towards
this goal, we instead recommend that K is chosen via cross-validation in the
classification setting. Generally, kmeans needs fewer bins than a GMM. This
is because a GMM considers the relative position of bins and therefore is more
stable. Kmeans is also sensitive to starting points. For our applications, we
borrow the idea of “combining classifiers” by running kmeans many times and
predicting based on a majority vote . This process makes kmeans less sensitive
to both starting points and the choice of K.

For A, consider Equation 10. If the matrix H = A5 — Ag + Al is positive-
definite the objective function is convex and will have a unique global minimum.
In particular, we can show that there exists A\g, such that when A\ > \g, the
function is convex. Denote H' = H — A\I, with eigenvalues a1, as,...a,. Let
a = min(ay, @, ...ap). If a > 0then Ao = 0. else let \g = |a|, then H = H'+ I
is positive definite for any A > Ag.

Note that the term A roughly controls how evenly the entries of w are dis-
tributed. When A = 0, the W tends to have be a zero vector except for one entry
with weight K, as discussed above. As A\ grows larger, the weights become more
evenly distributed. As \ goes towards infinity, each bin has weight 1, which cor-
responds to the unweighted solution. We are principally concerned that A > Ag
and is not too large, rather than a particular choice of A\. Consequently, A need
not be tuned very carefully.

4 Applying our method to the dataset

Instead of following a usual pipeline method where we represent each image
as a number of features, we consider computing Optimal Transportation (OT)

12



distance between each pair of nuclei, as discribed in [12]. In this applica-
tion, each nuclear structure is characterized by a set of n? pixel measurements.
The simplest approach is to compute the Euclidean distance between vectors
representing different images, but this was shown to not be able to capture
nuclear mophology [12]. For this reason, Wang et al instead considered an
optimal transportation (OT), i.e. Kantorovish-Wasserstein, based metric. The
idea is to measure the amount of effort to “transport” the chromatin content,
as discribed in the images’ pixel intensity values, of one nuclear configuration
to another. The distance measure takes into account the “overall” difference
between nuclear mophology, but it is most sensitive to changes in the chromatin
distribution. The formula of such a transportation is given by:

N, N,
minzzd(Xian)fi,j (11)

=1 j=1

Here, N, and N, are the number of pixels in each image, d(X;,Y;) is a mea-
sure of work to move a unit of mass from location X; in the first image to Y}
in the second, and f; ; represents the amount of mass moved. In the optimal
transportation setting we have d(X;,Y;) = ||X; — Y;||?. This can be easily
formulated into a linear programming proGram and solved by a variety of soft-
ware packages. Please refer to [9] for a detailed introduction of related distance
measures.

The optimal transportation step results in a pair-wise N x IV distance where
N is the number of nuclei. We apply our method to this distance measure
data set. We consider one nearest neighbor as our classifier. By considering a
nearest neighbor classifier, we match each tissue sample to the “most similar
tissue sample”, and the label of the tissue samples should be similar. We next
compare our results with an effective baseline method in which each individual
nuclei is classified with SVM and the label of a sample tissue is obtained by a
majority vote [12] [5] [11]. For the SVM baseline we report the classification
results, where the parameters are chosen using 5-fold cross validation, and the
classification risk is estimated with a test set of one tissue sample. The reported
results are averaged over 30 runs, where each run consists of using each tissue
sample as the test set, and the parameters are chosen via cross validation on
the remaining tissue samples.

The SVM baseline ignores the tissue sample structure in the data. Rather,
it considers the data point and class as independent — disregarding whether
two nuclei came from the same tissue sample. Therefore, we also compare our
results to another optimal transport (OT) based method. In this approach, we
compute the OT between each pair of tissue samples, rather than each nuclei.
We compute the OT distance between tissue samples ¢ and j by using the matrix
of OT distances between all pairs of nuclei in ¢ and j. These distances are used
as d(X;,Y;) as in Equation 11. Since we wish to consider each nuclei as equally
important, we assign a weight of 1/n; to each nuclei from tissue sample i. Here,
n; denotes the number of nuclei from tissue sample 7. This approach yields

13



Method ‘ Classification Rate

SVM - RBF Kernel 96% (average over 30 runs)
Our Group Method 98% (average over 30 runs)
OT between tissue samples (Non-geometric) 95%

Table 2: A summary of classification results on the cancer imaging data on the
optimal transportation distance we constructed. The SVM baseline and the OT
between tissue samples approaches were, on average, able to classify all but one
case (19/20) correctly. Our diffusion kmeans approach is able to more often
attain perfect results.

a pairwise distance matrix between all tissue samples, which can be used for
classification by a simple nearest neighbor method.

We report the results of our experiments in Table 2. Due to the potential
instability of kmeans, we report the average of 30 runs of our diffusion kmeans
method. The SVM baseline and the OT between tissue samples approaches
were, on average, able to classify all but one case (19/20) correctly. Our diffusion
kmeans approach is more often able to attain perfect results.

In the SVM voting baseline method, we implicitly assume that tissue samples
with the same class label (NL, FA, FTC) have the same distribution. This
might not be the case for our data, as shown in Figure 4. The Figure displays
the overall distribution of each class, as well as a comparative plot for two
selected samples from each class. These are plotted in the coordinates returned
by applying the diffusion map. We see that the three classes have somewhat
overlapping distributions, making the classification challenging. In particular,
we see that support of each tissue sample is not necessarily the same as the
support of the corresponding class distribution. Our approach, as opposed to
the SVM baseline, takes these properties into account, leading to our superior
results.

On the other hand, the OT between tissue samples method does consider
the special structure of the data. As with our approach, we calculate a pairwise
distance between tissue samples, rather than basing everything on distances
between nuclei. However, for a given pair of tissue samples, the OT approach
only considers the OT distances between nuclei within those two samples. This
ignores the overall structure of the data. In contrast, the diffusion map con-
structs a low dimensional representation of the overall distributional structure
of the data. Our geometry-based approach therefore effectively finds the struc-
ture of the dataset, giving us an additional advantage over an approach that
only considers pairwise structure.

14
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Figure 2: Diffusion map projection of the cancer pathology data. Left column:
all nuclei for all tissue sample plotted by class. Right column: two selected
samples from each class. We see that the classes have highly overlapping dis-
tributions, and that each tissue sample does not have the same distribution as
the corresponding class.
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5 Further improvement with Kernel Logistic Re-
gression

5.1 Introduction to KLR

As shown in the previous section, a one nearest neighbour classifier produces
comparable result to SVM. Although one nearest neighbor is a robust method
which produces highly non-linear solutions, it is not stable. Small changes in
the starting points of kmeans might dramatically affect the result. Further, the
weighting scheme is not directly tied to the classification result. Rather, it is tied
to a pair of heuristic quantities that we believe are related to the performance
of a nearest neighbor classified.

We now consider Kernel Logistic Regression (KLR), a method which gives
stable performance and allows us to directly incorporate weighting into a classi-
fication based objective function. Recall that that we obtain a distance matrix
between data sources after the binning step. KLR methods built on top of the
distance matrix result in non-linear and stable solution.

We now give the basics of Kernel Logistic Regression. The nonparametric
model is

ef (@)
14 ef(@’

Where f € Hg, a Reproducing Kernel Hilbert Space (RKHS). As is typical
with kernel methods, we must regularize the function f to prevent overfitting.
Putting this together with the log-likelihood, we obtain the following regularized
risk functional:

p(Y = 1X) =

n

Tl N) = D2 008(1 + /) — yf(w)) + S 17k

i=1
Representing this in dual form leads to the following objective function:

Jn(a, \) = Z(log(l + exp(K;a)) — y: K;a) + %aTKa. (12)

i=1

Here @ € R"™ is a vector of coefficients that represents the function f on the
observed data. The Gram matrix K is a matrix of inner products between all
pairs of training data sources. We can use our pairwise distance between sources
along with a Gaussian radial basis kernel to obtain the Gram matrix. Explicitly,
for some fixed o > 0, entry i,j of the Gram matrix is: K;; = ePii/7  where
D;; is the distance between source ¢ and j. We can use Newton’s method to
compute « iteratively.

5.2 Incorporating Weighting in KLR

We now demonstrate a method for incorporating a bin weighting scheme to
KLR. Recall that K;; = ¢4/, In other words, K is a function of D, the
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distance between different data sources. Additionally, if we allow for bin weights,
DZ; = ((hi = hj) o w)A((hi — h;j) ow)", so D is in turn a function of w, the
weight of bins. Therefore, we can write K as K(w). We then can rewrite the
objective function in terms of both o and w. This optimization problem can be
formulated as:

min J (w, a)

W,

Subject to: ||w||2 < ¢;w > 0. (13)

We require the regularity condition ||w]||2 < ¢ so that the weights do not over-
fit and explode. The second constraint comes from the belief that each entry
of the weights should be positive, otherwise the weights have no interpretable
meaning.

The optimization problem in Equation 13 can be solved via gradient descent.
Note that we may tackle the £5 constraint on w by writing the Lagrangian form:
J =J 4 Xo||wl|2. The second constraint is handled using barrier methods. We
now give the gradient equations for w and a:

9 n exp(Z.Kijon n n 0 Ao o 0
90" = 2 | T o>, Ky D I R o O | R s

=1 j=1 Jj=1

(14)

) ( exp(Ka)

8aJ 1+ exp(Ka)

- y) + Ko (15)
It remains to state the partial derivative 6L The kernel is a function of the
pairwise distance between data sources. The welghtlng will change the pairwise

distance. Note that, by the chain rule:
2
0K;; 0K, 0D

dw, — OD% dw,

Therefore, we must figure out the partial derivative - 8 . Recall that D;; is the
distance between ith and jth source.

ng = (hU o W)A(h” (9] W)T

where h;; = h; — h;, which is a 1 x K vector, where K is the number of
clusters. A is a K x K matrix, which represents the similarity between each
cluster. o denotes the Hadamard, or entry wise, product. We can rewrite
Dij = Zp,q Hij7pquhij7quwq. Therefore,

0

%Dijz = Z hijpApghij,qwq + thg pAppWp.
P

q,97#p
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And

K. 0D :
i = OKij OD;; (16)
awp 8D” awp
D, _ D2,
_ aj exp(— 2; )( Z hijpApghis.awe + 203, AppW,).  (17)

4,97#p

Based on these equations, we are able to iteratively solve w and « jointly
using gradient descent:

W:W—)\g—i,
aJ
=a—A\—.
a=a ox

5.3 Prelimary Results

We now compare the result of KLR with and without weighting. In order to
rule out the effect of the binning step, we compare the result of KLR+weighting
and KLR under the same binning scheme. We further compare across different
values of K, the number of bins. We repeat the procedure 250 times for different
starting points for each K. Note that our problem involves three classes, so we
classify each tissue sample in two steps. In the first step we classify a tissue
sample as normal or abnormal. In other words, in the first step, we consider FA
and FTC as the same class. If a tissue sample is labeled as abnormal, we next
determine what type of caner it is in the second step (FA or FTC). We therefore
attack the 3-class classification problem as a pair of two class problems.

As with nearest neighbors, the KLR classifiers are able to achieve perfect or
near perfect classification. It is not possible to compare the performance only
based on classification rate. However, for KLR, the method returns a probability
of assignment rather than a class label. Therefore, we consider Brier score, which
measures the average squared deviation between prediction and the true label.
The score is defined as + Zf\il(yz —y;)? and the smaller the score is, the better.
This score roughly measures the confidence of the classification. We report the
Brier scores for both steps.

Note that for K = 8, we are able to obtain perfect classification results for
both KLR and weighted KLR in nearly every binning simulation. The result of
the analysis is shown in Figure 3 and Figure 4. As we can see, for all choices
of K that we considered, weighting improves the result dramatically. In fact,
for any particular run, the weighted version always has a lower Brier score. We
also observe that, as K increases, the Brier score gets worse for both methods.
We can roughly conclude that a good choice of K is around 8 for this problem.
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Figure 3: The Brier score for weighted and unweighted KLR in labeling whether
a tissue sample is cancerous or not. As we can see, for all K’s, weighing dra-
matically improves the performance. The box plot is obtained over 250 runs.
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Figure 4: The Brier score for weighted and unweighted KLR in labeling whether
a cancer tissue is FA or FTC. As we can see, for all K’s, weighing improves the
performance, even though the improvement is not as big as the in the previous
plot. The boxplot is obtained over 250 runs.
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6 Summary and future work

In this paper we focuses on a pathology dataset with special structure. In this
application, instead of labeling each data point, we need to label a collection
of data points. We name these collection of data points data sources. We
suggested a practical way to create the quantization, and compare quantized
distributions. We considered different classifiers on the resulting distance ma-
trix. The technique has room for improvement with additional schemes based on
different quantizations, weighting approaches, or distance measures. In our em-
pirical studies, we used very straightforward approaches in these aspects. Our
quantization approach shows good promise in our data applications, achieving
comparable or superior results to state-of-the-art methods. When comparing
two data sources, competing methods only use data from the two sources of
interest. Our method benefits greatly from using all of the data to make such a
comparison, a claim we have backed empirically.

In the future, we hope to prove such a claim theoretically. We would also like
to consider different weighting schemes — including different optimization func-
tions as well as different penalties. We would like to understand the impact
of weighting on the hilbert kernel space. Also, the Brier score will help us on
choosing the optimal K for our binning strategy. Note that the choice of K is
important for the choice of support so it is a question of interest. Also note that
we consider /5 penalty here — we will consider ¢; penalty for a sparse solution
in the future. In our context, a sparse solution is of great interest — some bins
might simply be dropped.
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