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Abstract

Consecutive to the human genome project, the human proteome project seeks to
explore the function, structure, variability and interaction of proteins which support
the daily operation of our human bodies. The identification of protein locations
within cells is an essential part. The appearance of the residence of proteins may
illustrate the status and functioning of cells, and then organs, tissues or systems.
Microscopy images have been widely used in this field. However, due to the mas-
sive scale of the combinations of proteins and organelles in cell, we are not able
to annotate all images manually. Therefore, we would like to take advantage of
automated analysis and machine learning skills to build accessible tools to help biol-
ogists annotate protein patterns faster and more accurate, and to correct the human
annotations as well.

This project includes two tasks. In the first task, we describe automated ap-
proaches to analyze the confocal immunofluorescence images from the Human Pro-
tein Atlas (HPA) which show subcellular location for thousands of proteins and are
currently annotated by visual inspection, and approaches to improve annotation.
We began by training Support Vector Machine (SVM) classifiers to recognize the
annotated patterns. By ranking proteins according to the confidence of the classifier,
we generated a list of proteins that were strong candidates for reexamination. In
parallel, we applied hierarchical clustering to group proteins and identified proteins
whose annotations were inconsistent with the remainder of the proteins in their clus-
ter. These proteins were reexamined by the original annotators, and a significant
fraction had their annotations changed. The results demonstrate that automated
approaches can provide an important complement to visual annotation.

In the second task, we address this classification problem using region-based (or
patch-based) computer vision methods. The HPA images contain stains for three
reference components and the protein subcellular pattern can be viewed as spatial co-
localization between the reference components and the protein distribution. However
there are many other components that are invisible. We first randomly selected
local image regions within the cells, and then extracted various carefully designed
features from these regions. This region based approach enables us to explicitly
study the relationship between proteins and different cell components, as well as the
interactions between these components. To achieve these two goals, we propose two
discriminative models that extend logistic regression with structured latent variables.
The first model allows the same protein pattern class to be expressed differently
according to the underlying components in different regions. The second model
further captures the spatial dependencies between the components within the same
cell so that we can better infer these components. To learn these models, we proposed
a fast approximate algorithm for inference, and then used gradient based methods
to maximize the data likelihood. In the experiments, we show that the proposed
models help improve the classification accuracies on synthetic data and real cellular
HPA images. The best overall accuracy we report in this project is about 84.6% for
HPA images, which to our knowledge is the best so far. In addition, the dependencies
learned are consistent with prior knowledge of cell organization.
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1 Introduction

Knowledge of the subcellular locations of proteins provides critical context necessary for under-
standing their functions within the cell. Hence the field of location proteomics is concerned with
capturing informative and defining characteristics of subcellular patterns on a proteome-wide
basis [11,14]. Automated methods for systematic study of protein locations, which combine fluo-
rescence microscopy techniques with computer vision, pattern recognition and machine learning
algorithms, have been extensively described [11, 6, 16, 23, 21]. Most of these studies involve ex-
tracting subcellular location features (SLFs) from images or cells [23, 15]. Automated analysis
of subcellular patterns has been described for a proteome-scale image collection for yeast [10]
and for a wide range of human tissues [24].

The latter study used images generated for thousands of proteins by the Human Protein
Atlas (HPA, http://proteinatlas.org) using immunohistochemistry methods [33]. More recently,
the HPA has been expanded to include high-resolution and high-throughput images of cultured
cells obtained by confocal immunofluorescence microscopy [2,4]. These images have been anno-
tated by visual inspection with specific terms describing protein subcellular location patterns,
and each image contains one channel of stained protein, and three reference channels for cell
components (nucleus, microtubules and endoplasmic reticulum (ER)). Some proteins are termed
as single pattern proteins which have spatial distribution mainly co-localized with sole or single
cell component (organelle) (i.e. a “Golgi” single pattern protein). Other proteins are termed as
mixed pattern proteins which on the other hand have spatial distribution over more than one
cell components (i.e. a Golgi mixed with ER pattern). Figure 1 shows an example of such an
image. We have previously described preliminary results demonstrating the feasibility of per-
forming automated analysis of these confocal images with single pattern protein [23]. The goal
was to characterize the protein spacial distribution in cell with numerical features and classify
each cell image according to its protein location pattern efficiently and accurately.

Figure 1: One sample image from the HPA data set. The left panel shows the three reference
channels reflecting different components (blue:nucleus, yellow:ER and red:cytoskeleton). The
right panel shows the channel of the stained protein (green).

In this project, the first task is to extend this approach to include more classes and more
proteins using a supervised learning approach, and add unsupervised learning to complement
it. Based on these approaches, we furthermore identified proteins whose annotations appeared
at odds with those of similar proteins. Re-examination of the images of these proteins revealed

3



that a considerable number had been incorrectly annotated. Thus, our approaches can be used
not only for the purpose of annotations de novo, but also for improving the accuracy of human
annotations. This task has be done in Chapter 2.

We applied feature calculation and multi-class classification methods on the whole cell in
the first task. In order to improve the classification performance, in the second task, we used
region-based computer vision methods to incorporate more local information about the protein
location patterns. As a matter of fact, such a pattern can be represented as the spatial co-
localization between protein distribution and various cell components (organelles). However,
a key difficulty is that we can only observe three types of reference components due to the
limitation of staining and imaging techniques. Therefore, it is hard to infer the locations of the
invisible components given the observations. For example, we may want to classify a protein
into the class of “Golgi complex” if it mainly overlaps with the Golgi complex, but the Golgi
complex is not directly visible to us in the images. Thereby it is important to uncover these
invisible parts and then use them for classification from their co-occurrence information with
the protein.

Although invisible, we still have some clues about the presence of a component in some
region of one cell. For instance, one component may have an effect on the appearance of another
overlapping and/or interacting component. We can also make inference about the component
in the given image region based on the distribution of certain proteins in the cell (e.g. locations
and shapes), and its relative distances to other components. If we can discover the dependencies
between the observed features extracted from regions and the underlying components, as well
as the co-localization relationships between components, then the presence of those hidden
components can be inferred and our classification task would be easier. The second task, on
the basis of this intuition, has be done in Chapter 3.
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2 Automated Analysis and Reannotation of Subcellular Loca-
tions in Confocal Images from the Human Protein Atlas

1

2.1 INTRODUCTION

In this Chapter, we built a framework consisting of using Support Vector Machine (SVM)
and hierarchical clustering to automatically recognize protein subcellular location patterns in
images from HPA, and then utilizing the outputs from the two methods to identify those proteins
that have high chances of being incorrectly annotated to improve the pattern recognition. An
overview of the whole framework is shown in 2. We did two rounds of analysis in this Chapter.
The first round was using the framework on HPA dataset version 4.0, and the second round was
repeating the framework on an updated version 5.0 with proteins deleted, added or reannotated.

Figure 2: An overview of the framework introduced in this Chapter. We first collect immunoflu-
orescence images from confocal microscopy that are annotated visually by HPA. These image
fields are then segmented into single cells and various features (SLFs) are calculated. We then
do two parallel analyses on the features. One is a supervised classification using a Support Vec-
tor Machine, and the other is an unsupervised hierarchical clustering. This results in two lists
of proteins which have high probabilities of needing reannotation. Combined with another list
of proteins sampled randomly, a final list which contains only the protein IDs are reexamined by
the HPA annotation group. The annotations of some proteins may change, and these modified
annotations can be incorporated in another cycle of analysis.

2.2 MATERIALS AND METHODS

2.2.1 Image Data Collection

Confocal images of A-431 cells from the HPA were used for these studies. These images are
stored as one 8-bit uncompressed TIFF file for each of four fluorescence channels. One channel
was collected for immunofluorescence labeling with monospecific antibodies, while the other

1This chapter is joint work with Justin Y. Newberg, Mathias Uhlén, Emma Lundberg and Robert F. Murphy
and is based on a submitted manuscript coauthored with them.
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channels were acquired using standard stains for the nucleus, endoplasmic reticulum and mi-
crotubule cytoskeleton [2]. After images were acquired, they were visually annotated. One or
more location labels were assigned to each protein (i.e., a protein could be annotated as Golgi
pattern if it mainly distributes in the Golgi apparatus, or viewed as consisting of a centrosome
pattern mixed with cytoplasm pattern). Up to two image fields were taken for each protein.

2.2.2 Cell Segmentation and Feature Calculation

We used the same cell segmentation and feature calculation strategies as in our previous work
[23]. The result was a total of 714 features for each cell, for an average of 9 cells per image.
The much larger number of features compared to cells in each class suggested the need for some
feature reduction or selection method, and we chose Stepwise Discriminant Analysis as it has
worked well in this field of application [17]. After selection there were around 100 features left.

2.2.3 Support Vector Machine Classification

We trained SVM to classify cells by their subcellular location patterns in two rounds. We uti-
lized two levels of nested 5-fold cross-validation so that training parameters could be optimized
without using the final testing data. The fraction of representatives of each class within each
fold was kept as close to the original fractions as possible, and all cells for a given protein were
included in the same fold to give the most conservative estimate of classification performance.
The inner level of cross validation involved using 3 folds for training and one fold for select-
ing the optimal values of the radial basis function (RBF) kernel parameter g and the slack
parameter C; the outer level used the remaining fold to get the final generalization accura-
cies. Additionally, class weights were used during training in order to account for the different
number of cells in representing each class. Classification was implemented using the LIBSVM
toolbox [9] (http://www.csie.ntu.edu.tw/ cjlin/libsvm) with one-against-one multi-class SVM
(unless otherwise indicated). Since the classifiers output probabilities that each cell belongs to
the classes, we boosted the classification accuracy of single cells by summing class probabilities
for all cells for the same protein, and then assigning all of these cells the class with the maximum
value. For identifying potential proteins that may need to be reannotated, we designed an al-
gorithm on the basis of the output probabilities estimated by SVM classifiers. From the output
probabilities, we find a set of samples (we call set R) that are incorrectly classified but have
low predicted probabilites. These samples are near to the decision boundaries. On the other
hand, there is another set of samples (set F) that are also incorrectly classified but with higher
predicted probabilities, which are farther away from decision boundaries. The fundamental idea
of the algorithm is that R has little impact on F. Even if we flip the labels of samples in R from
their previous class labels to the classified labels and train the classifiers again, at least a subset
of samples in F will still be stable and stay in the status of incorrectly classified. Therefore
F are identified as potentially being incorrectly annotated. This algorithm is nonparametric
and robust, and bears an analogy to the distillation process. The detailed procedure follows:
(1) find the proteins whose automated and human classes disagree and sort them in ascending
order of classifier-assigned probability; (2) change the annotations for the top N (we used N=5)
proteins in this ranked list to match the automated assignment (so that all combinations of
changes of these labels are considered), and (3) retrain the classifiers and repeat steps 1 and
2 for M (we used M=20) levels of recursion. At the end of this process, the proteins that
appeared in all ranked lists were considered for reannotation. In addition to using the classifier
for reannotation, we sought to determine how well it could be used for initial annotation of
proteins. In this case, we do not know a priori which proteins show single patterns and which
show mixed ones. We applied the classifier (trained on only the single pattern proteins) to
images for 2749 proteins after the second round of reannotation with single or mixed patterns
which have at least 5 proteins, and sorted the proteins by the magnitude of the maximum out-
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put probability value for each protein. An increasing threshold on this probability was used to
generate precision-recall curves using two approaches for defining precision and recall. In the
first case of variation, we defined correct classifications as assigning at least one of a protein’s
labels correctly with probability above the threshold. In the second case, we defined only as-
signments (with probability above the threshold) to single class proteins as correct (and thus
all assignments above the threshold made to proteins with two or more labels were considered
incorrect). In our preliminary work on classification of subcellular location patterns using HPA
images [23], a subset of images of single pattern proteins were evaluated by both SVM and
Random Forest [32] methods. The results indicated slightly better performance for the latter
approach, and we therefore also evaluated Random Forest classifiers for the tasks on the larger
datasets used in this project. Since the performance was lower than for SVM (data now shown
), we used SVMs throughout this Chapter.

2.2.4 Hierarchical Clustering for Reannotation

As an alternative to classification (which requires labels for training), we used an unsupervised
machine learning method, hierarchical clustering, to identify candidate proteins for reannota-
tion in two rounds. For this we used the same features and a normalized Euclidean distance
metric with Stepwise Discriminant Analysis feature selection. Since there was more than one
cell for each protein (and some of these might be atypical), we chose the cell closest to the mul-
tivariate median normalized feature value for a given protein to represent that protein in the
clustering. The resulting tree can be cut at various values of the distance measure to give dif-
ferent numbers of clusters. We defined the cluster annotation for each protein as the dominant
human annotation in the cluster in which the protein is found. To choose the optimal number
of clusters, Akaike information criterion was used. It balances the log-likelihood of the data
given the clustering against the number of clusters. After we decided the clustering of proteins,
the clusters were ordered by optimal leaf ordering [1] using the associated annotations. Once
we obtained the clustering of proteins, we computed two scores for each protein to measure
and identify the proteins whose annotations might be not correct. The first score is the ratio
of the number of proteins of that protein’s class in its cluster to the number of proteins in the
dominant (plurality) class of that cluster; the smaller the ratio is, the higher confidence the pro-
tein is wrongly annotated. The second score is the normalized feature distance of each protein
to the ”median feature vector” of proteins in that protein’s cluster which have the dominant
annotation; a small distance means that the protein is likely to be correctly clustered. In the
first round, we found a subset of all proteins with the below one value of the first score (in total
285 lowest scores by the first definition) and another subset of proteins with the 300 lowest
scores by the second definition (which were from the range between zero and the value around
the peak of the histogram of the second score, data not shown), and then selected proteins in
the intersection of the two subsets as candidates for reannotation. However, we restricted the
final list by requiring that each cluster could only have one protein in this list to minimize the
effect that the presence of more than one mis-annotated protein might have on the quality of a
cluster. In the second round, we released these restrictions. Proteins were sorted with the first
score and with the second score respectively in ascending order; then they were sorted with the
sum of the two ranks ascendingly. As a result, we had all proteins sorted in one list, and the
more confidence we had on one protein for its being incorrectly annotated, the higher it would
be in the sorting. The final subset of proteins that would be reexamined by annotators was
thus generated from the top until we thought that the number of proteins in the subset would
not be an inappropriate burden of work for the annotators.
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2.2.5 Random Sampling for Reannotation

To serve as a baseline for evaluating the reannotation enrichments we would obtain from au-
tomated methods (SVM and hierarchical clustering), we created another list of proteins to be
reexamined. Due to the highly imbalanced dataset, we made a compromise schema for the ran-
dom sampling. For each class, we uniformly randomly sampled a small number (r) of proteins
with replacement. Thus we were easily able to ensure that we sampled proteins from all classes
especially those with small size and meanwhile to control the number of proteins in this list to
reduce the burden of reannotation work. On the other hand, we could reduce the chances of
selecting the majority (or even all) proteins from some small classes with replacement sampling.
Then the unique set of proteins (without the duplicates) was merged with those identified from
the automated methods and subjected to reexamination. In both rounds of analyses, we used
r = 7 proteins for each class for a reasonable and acceptable number of proteins.

2.3 RESULTS

In the following sub-sections, we present our results for two rounds of analyses. The first round
and second round are consecutive with the same framework of analysis shown in Figure 2. They
only differ in that they deal with two different but successive releases (4.0 and 5.0 respectively)
of datasets from HPA.

2.3.1 Automated selection of proteins for reannotation

We began by segmenting confocal immunofluorescence images from the A-431 cell line in re-
lease 4.0 of HPA. These images had been previously annotated as being present in one or
more subcellular locations by visual examination. The dataset contained images for 1551 pro-
teins, of which 878 were localized specifically (solely) to one of eleven major subcellular lo-
cation patterns (classes): centrosome, cytoplasm, cytoskeleton, endoplasmic reticulum, Golgi,
lysosome/peroxisome/endosome, mitochondria, nucleoli, nucleus, nucleus without nucleoli, and
plasma membrane. The number of proteins per class ranged from five to 326. We termed these
single pattern proteins, and others which localized to more than one organelle as mixed pattern
proteins. The ability of SVMs to recognize the eleven classes was estimated by nested five-fold
cross-validation using the single pattern proteins.

The confusion matrix is shown in Table 1, with an overall accuracy of 82.4%. Despite
the use of class-based weighting during training, it is clear that classes with fewer proteins
have lower accuracies. It is also clear that plasma membrane and cytoplasmic patterns are
difficult to distinguish using our current feature set (and that some cytoskeletal proteins are
also misclassified as cytoplasmic).

Using this classification approach, we can generate a list of proteins whose assignment by the
classifier does not match the human annotation. There are many potential reasons for a protein
being misclassified. A protein’s pattern may be different from those of most of the others in
its class (e.g., a protein found only in the rims of Golgi cisternae may be annotated as Golgi
along with many other proteins yet have a distinctly different pattern from the perspective of
image analysis). Misclassfication may also occur if the features used to request the patterns
do not capture subtle differences. Of course, some misclassification may result from incorrect
annotation of the images. We therefore sought to identify proteins that we estimated as having
a high probability of being incorrectly annotated. Using the approach described in Materials
and Methods, we generated a list of 99 proteins for reannotation.

Since this supervised learning procedure relies on the human annotations to define classes,
we also sought to use an unsupervised approach to group proteins by their patterns. Thus
we implemented an alternative approach to identifying reannotation candidates by hierarchical
clustering of single pattern proteins (see Materials and Methods). The optimal number of
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Accuracy% centro. cyto. cytosk er golgi l/p/e mitoch. nucleoli nucleus nucleus w/o PM

Centrosome (12) 42 8 0 0 33 0 8 0 0 8 0

Cytoplasm (326) 0 97 1 0 0 0 2 0 0 1 0

Cytoskeleton (37) 0 51 46 0 0 0 3 0 0 0 0

ER (34) 0 18 0 76 0 0 6 0 0 0 0

Golgi (41) 0 2 0 0 90 0 5 0 0 2 0

lyso/pero/endo (26) 0 15 0 0 4 62 15 0 4 0 0

Mitochondria (104) 1 13 0 0 1 0 86 0 0 0 0

Nucleoli (37) 0 0 0 0 0 0 0 92 0 8 0

Nucleus (87) 0 0 0 0 0 2 0 6 34 57 0

Nucleus w/o nucleoli (167) 0 0 0 0 0 0 0 1 8 92 0

Plasma membrane (7) 0 86 0 0 0 0 14 0 0 0 0

Table 1: Classification results before first round of reannotation. Cell level feature classification
confusion matrix. Bold values indicate agreement between the classifier and the true class.
Overall classification accuracy is 82.4%. The number of proteins in each class is shown in
parenthesis after the class name.

clusters determined by the Akaike information criterion was 56, and when proteins were assigned
the dominant annotation of their cluster, an accuracy of 67% was obtained. We considered
proteins that were included in a cluster containing mostly proteins from other classes as good
candidates for reannotation. Using the fairly tight criteria described in the Methods, only 12
proteins were identified for reannotation by this approach.

2.3.2 Reannotation and Retraining

We combined the lists of candidates obtained from the two methods above resulting in 106
(99 + 12 − 5 duplicates) proteins and provided them to the HPA team responsible for initial
annotation of confocal images from the project. To enable estimation of the rate of annotation
errors, we also included in the list 65 single class proteins obtained from random sampling (see
Materials and Methods). Only the HPA index number was provided, so that the annotation
team could not be influenced by the results from either the prior visual analysis or the automated
analysis. After annotation of the total of 149 (106 + 65 − 22 duplicates) proteins, the labels
were compared with those from the initial annotation and from classification or clustering.
The results are summarized in Table 2. Of the proteins selected for reannotation by either
classification or clustering, 41 proteins had their labels changed (the sum of the counts in the
first and third columns for the first, second, fifth rows, and sixth row, minus 2 proteins present on
both lists). An image of a top ranked example from the proteins identified by SVM classification
is shown in Figure 3 (a). Figure 4 (a) shows the image of a top ranked example identified by
clustering. These illustrate cases in which the automated approach resulted in correction of
prior annotations.

In addition to the possibility of single class proteins being incorrectly annotated, it was
also possible that a protein showing more than one pattern might be incorrectly annotated
as showing only a single pattern. An example of such a protein (identified by clustering) is
shown in Figure 5. Furthermore, we can identify proteins annotated to the same location but
that are clustered into different but nearly pure clusters, suggesting that they represent sub-
patterns (Figure 6). Given the results of Table 2, it was of interest to evaluate the yield of the
two methods for finding proteins needing reannotation compared to that expected for random
choice. Those entries in the first, second, fifth, and sixth rows of the table represent proteins
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Figure 3: Examples of mis-annotated proteins identified by the SVM classification reannotation
algorithm. (a) Protein “Thiosulfate sulfurtransferase” is identified in the first round analysis.
The protein was visually annotated as “cytoskeleton” but was classified as “mitochondria” by an
SVM classifier. The latter annotation is found to be correct upon re-examination. (b) Protein
“proline-rich transmembrane protein 2” is identified in the second round analysis. The protein
was visually annotated as “cytoplasm” but was classified as “Golgi” by an SVM classifier. The
latter annotation is found to be correct upon re-examination.

Figure 4: Examples of mis-annotated proteins identified by the hierarchical clustering reanno-
tation method. (a) Protein “S100 calcium binding protein A12” is identified in the first round
analysis. The image of the protein was visually annotated as “nucleus” but was annotated as
“nucleus without nucleoli” by clustering. (b) Protein “Rho/Rac guanine nucleotide exchange
factor (GEF) 2” is identified in the second round analysis. The image of the protein was visually
annotated as “nucleus” but was annotated as “nucleus without nucleoli” by clustering. In both
cases the latter annotation is chosen upon re-examination.
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whose annotations changed upon reexamination. The reannotation rate for proteins chosen
at random was therefore 14/65 = 22%, while the rates for proteins identified by SVM and
hierarchical clustering respectively were (21+7+11)/99 = 39% and (2+2)/12 = 33% (the rate
for the combination of the two was 41/106 = 39%). Thus, we observed between 1.5-fold and
1.8-fold enrichment in identifying incorrectly annotated proteins above random.

To calculate the statistical significance of reannotation from either SVM or clustering com-
pared to that from random sampling, we modeled the number of reannotated proteins as suc-
cesses in a binomial distribution. Therefore, the p-value of reannotation from SVM was 1 −
binocdf(39, 99, 14/65) = 1.7e−5, from clustering was 1−binocdf(4, 12, 14/65) = 0.095 and from
the combination of the two was 1 − binocdf(41, 106, 14/65) = 1.9e − 5, where binocdf(X, N, P )
represented the cumulative distribution function of binomial distribution at each of the values
in X (the number of successes) using the corresponding parameters in N (the number of trials)
and P (rate of success in each trial). Thus under the significance level α = 0.05, reannotations
from SVM and combination are statistically significant while that from clustering is not.

Using the new annotations, we repeated the SVM classification. The overall accuracy im-
proved to 86.4% compared with 82.4% in Table 1. This improvement is due directly to the
changes in the annotations of the re-examined proteins, and no improvement in classification of
other proteins is observed.

Figure 5: Example of detection of mixed patterns by clustering. Protein “nerve growth factor
receptor” was visually annotated as “cytoplasm”, but was annotated as “nucleus without nu-
cleoli” mixed with “cytoplasm” by clustering in the first round. The latter annotation is chosen
after re-examination.

2.3.3 Second round reannotation

After incorporating the results from the first round analysis (i.e. some proteins reannotated),
the same framework was applied on a new release (5.0) of HPA for a second round of analy-
sis. The new dataset for the A-431 cell line contained images for 2749 proteins (extended and
updated from release 4.0 used in the first round analysis), of which 958 were localized to one
of thirteen major subcellular location patterns (classes): centrosome, cytoplasm, endoplasmic
reticulum, Golgi, mitochondria, nucleoli, nucleus, nucleus without nucleoli, plasma membrane,
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Figure 6: Example of sub-patterns identified by clustering. Proteins “neuronal pentraxin recep-
tor” and “eukaryotic translation initiation factor 5” were visually annotated as “cytoplasm”,
but hierarchical clustering assigned them to separate clusters in the first round. The images
indicate that they indeed display two cytoplasmic sub-patterns.

svm reannotation random svm clt reannotation random clt

AM right 21 4 2 4

partially right 7 5 0 1

both right 0 17 0 33

AM wrong 60 34 8 18

both wrong 9 4 1 8

Negative 2 1 1 1

Total 99 65 12 65

Table 2: Summary of first round reannotation results. The column “svm reannotation” includes
the proteins identified by SVM classification reannotation method; the column “random svm”
includes the proteins randomly drawn; the column “clt reannotation” includes the proteins
identified by hierarchical clustering for reannotation; the column “random clt” includes the
proteins randomly drawn. The row “AM right” indicates the proteins whose automated clas-
sified or clustered annotations were right, while the previous human annotations were wrong;
the row “partially right” indicates the proteins whose automated annotations were partially
right, in that reannotation added the predicted annotation to the previous one; the row “both
right” indicates the proteins whose automated annotations were the same as previous human
annotations, and where reannotation did not change it; the row “AM wrong” indicates the
proteins whose automated annotations were wrong, while the previous human annotations were
right; the row “both wrong” indicates the proteins whose automated annotations and previous
human annotations were wrong, and a new assignment was made during reannotation. “Nega-
tive” indicates those proteins that were reannotated as “non-specific location” and designated
for removal from the next release of the dataset. They could correspond to bad antibodies.

12



vesicles, actin filaments, intermediate filaments and microtubules (the last three had previously
been grouped under cytoskeleton). The number of proteins per class ranged from ten to 255.
Most images of single class proteins in the first round were kept in the second round. However,
a number of new proteins were added, some were removed, some proteins were reimaged and
some proteins were reannotated based on the results of the first round. Given the updated
dataset, we then repeated the approach used in the first round analysis for this second round.
When SVM classifiers were trained and tested as before, we obtained the confusion matrix in
Table 3, with an overall accuracy of 77.9%. Using the SVM classification method, a list of
156 proteins was generated as potentially mis-annotated. To reduce the burden of annotation
work and make the whole process efficient, we selected a sub-list of 58 proteins of these us-
ing uniformly random selection. On the other side, we hierarchically clustered single pattern
proteins into 119 clusters, with an accuracy of 66% when comparing their annotations with
the dominant one of their cluster. Using a slightly different criterion (see Materials and Meth-
ods), 63 proteins were identified for re-examination. We combined the two lists into one with
103 (58 + 63 − 18 duplicates) proteins and merged it with 80 proteins from random sampling
(see Materials and Methods). As a result, in total 162 (103 + 80 − 21 duplicates) proteins
were again subjected to reannotation. The validation results and statistics are presented in
Table 4. 31 proteins were reannotated Two images of top ranked representative examples from
the proteins generated both by SVM classification for reannotation and by clustering for re-
annotation are shown in Figure 3 (b) and Figure 4 (b) respectively. The results of Table 4
indicate that the reannotation rate for proteins chosen at random was 9/80 = 11% and the
rates for SVM and hierarchical clustering respectively were (14 + 3 + 2 + 2)/58 = 36% and
(14 + 5 + 1)/63 = 32%. Hence the enrichment of automated methods was between 2.9-fold and
3.3-fold above random. The subset of proteins chosen for reannotation by both methods showed
an enrichment 5-fold above random (10/18 = 55%). The p-value of reannotation from SVM
was 1− binocdf(21, 58, 9/80) = 1.3e−7, from clustering was 1− binocdf(20, 63, 9/80) = 2.9e−6
and from both of the two was 1− binocdf(10, 18, 9/80) = 5.4e− 7. Thus under the significance
level α = 0.05, reannotations from SVM, clustering and both are all statistically significant.
Upon retraining the SVM classifier with the reannotations and the resulting 950 single pattern
proteins, the overall accuracy increased to 82.3% (Table 5). Unlike the first round, this im-
provement is attributed both to the changes in the annotations of the re-examined proteins,
and to correctly classifying a few additional proteins with the improved classifier.

2.3.4 Identifying single pattern proteins in mixed collections

The frequency of changes in annotations observed when re-examining randomly selected proteins
in the two rounds (11 − 22%) indicates that the reproducibility, and likely the accuracy, of
such assignments is approximately 89 − 94% which was calculated from 1 - (22%)/2 or 1 -
(11%)/2 (assuming that the probability of error on reannotation is independent of whether an
error had been made originally). Given that the accuracy estimated for the SVM classifier
(77.9− 86.4%) is similar to this when considering just single class proteins (as we can do when
using it for reannotation since initial labels are available), we sought to determine whether a
similar accuracy could be obtained when considering all proteins (as would be required if doing
initial annotations). We considered two variations on this test. We used a dataset consisting of
2749 proteins (after some reannotations in the second round) in 77 classes of single and mixed
patterns that contain at least 5 proteins (a total of 46739 cells).

In the first variation, we applied the single pattern classifier to all proteins (including mixed
pattern proteins) and determined how accurately it could assign at least one correct label and
how accurately it could recognize proteins with just a single class. We split the 950 single
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Accuracy% centro. cyto. actin inter. micro. er golgi mitoch. nucleoli nucleus nucleus w/o PM vesicles

Centrosome (16) 38 6 0 0 0 0 19 0 0 13 0 0 25

Cytoplasm (129) 0 90 0 0 1 0 1 3 0 0 0 0 5

Actin filaments (10) 0 60 0 10 0 0 0 10 0 0 0 10 10

Intermediate filaments (9) 0 33 0 33 11 0 0 22 0 0 0 0 0

Microtubules (21) 0 29 0 0 67 5 0 0 0 0 0 0 0

ER (41) 0 20 0 0 0 68 0 10 0 2 0 0 0

Golgi (64) 0 2 0 0 0 0 86 8 0 0 0 0 5

Mitochondria (148) 0 0 0 1 0 0 1 96 0 0 0 0 2

Nucleoli (67) 0 0 0 0 0 0 0 0 87 6 4 0 3

Nucleus (110) 0 1 0 0 0 0 0 0 5 36 58 0 0

Nucleus w/o nucleoli (255) 0 0 0 0 0 0 0 0 2 11 87 0 0

Plasma membrane (17) 0 59 0 0 0 0 0 6 0 6 0 18 12

Vesicles (71) 1 4 0 0 0 1 4 4 0 1 0 0 83

Table 3: Classification results before second round of reannotation. Cell level feature classi-
fication confusion matrix. Bold values indicate agreement between the classifier and the true
class. Overall classification accuracy is 77.9%. The number of proteins in each class is shown
in parenthesis after the class name.

svm reannotation random svm clt reannotation random clt

AM right 14 2 14 2

partially right 3 6 0 3

both right 0 48 0 29

AM wrong 37 23 43 42

both wrong 2 1 5 4

Negative 2 0 1 0

Total 58 80 63 80

Table 4: Summary of second round reannotation results. See legend to Table 2 for definitions
of row and column headings.
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Accuracy% centro. cyto. actin inter. micro. er golgi mitoch. nucleoli nucleus nucleus w/o PM vesicles

Centrosome (16) 31 6 0 0 0 0 19 13 6 6 0 0 19

Cytoplasm (126) 0 94 0 0 0 0 0 2 0 0 0 0 4

Actin filaments (10) 0 40 10 10 0 0 0 10 0 0 0 20 10

Intermediate filaments (12) 0 25 0 42 0 8 0 25 0 0 0 0 0

Microtubules (18) 0 17 0 0 78 6 0 0 0 0 0 0 0

ER (40) 0 13 0 0 0 78 0 10 0 0 0 0 0

Golgi (64) 0 2 0 0 0 0 97 0 0 0 0 0 2

Mitochondria (148) 0 1 0 1 0 1 1 95 0 0 1 0 1

Nucleoli (66) 0 2 0 0 0 0 0 0 88 5 3 0 3

Nucleus (91) 0 0 0 0 0 0 0 0 7 30 64 0 0

Nucleus w/o nucleoli (272) 0 0 0 0 0 0 0 0 1 4 94 0 0

Plasma membrane (14) 0 50 0 0 0 0 0 7 0 7 0 29 7

Vesicles (73) 0 5 0 0 0 0 1 7 0 3 1 0 82

Table 5: Classification results after second round of reannotation. Cell level feature classifica-
tion confusion matrix with reannotated proteins. Bold values indicate agreement between the
classifier and the true class. Overall classification accuracy is increased to 82.3% compared with
77.9% in Table 3. The number of proteins in each class is shown in parenthesis after the class
name.

pattern proteins into 5 folds (ensuring that all images for a given protein were in the same
fold) and also split the mixed pattern proteins into 5 folds. Every four single pattern folds
were used to train a classifier (the training set was further divided for tuning parameters as
described in the Materials and Methods), and it was used to assign labels to the remaining
fold of single pattern proteins and one of the multiple pattern folds. After classification we
performed precision-recall analysis, which determines accuracy of the classifier as a function
of the confidence that it estimates for each prediction. We assessed how we would recognize
at least one of the labels for multiple-class proteins. This is demonstrated by the solid blue
curve in Figure 7. The precision was defined in this case as the number of proteins correctly or
partially correctly classified with probability above a varying threshold divided by the number of
proteins classified with probability above that threshold, and the recall as the number of proteins
correctly or partially correctly classified with probability above the threshold divided by total
number of proteins. With a zero threshold, we could correctly assign at least one annotation
for 73.7% of the proteins. As the threshold is increased (reducing the recall), the accuracy
rises almost linearly. We then considered the effect of requiring that all labels be correctly
assigned. In this case, all multiple-class proteins are by definition incorrectly classified, and we
seek to determine whether single class proteins can be recognized by the single-class classifier
with higher confidence than multiple-class proteins. As shown in Figure 7 (dashed black line),
the system with zero threshold obtained an overall precision of 28.5%. The precision in this
case was defined as the number of single pattern proteins correctly classified with probability
above the threshold divided by the number of all proteins classified with probability above the
threshold, and recall was defined as the number of single pattern proteins correctly classified
with probability above threshold divided by the total number of single pattern proteins. When
the threshold was increased to obtain a recall of 60%, the classification accuracies increased to
only 42.0%. Thus, we cannot use the single pattern classifier to find single-class proteins in a
set of proteins with no annotations (e.g., a new batch of images). However, the previous results
show that we can still assign one label to both single-class and multiple-class proteins with good
precision.

In a second variation, we retrained the SVM classification framework with classes consisting
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of all label combinations observed for both single and mixed patterns (there were 77 unique
classes), explicitly giving it the ability to recognize single class proteins in the presence of
multiple-class proteins. The overall accuracy of the classifier for all patterns was only 45.4%,
illustrating the difficulty of assigning all labels correctly. We therefore asked how well the single
protein classes could be recognized. The precision-recall curve for this task is shown as the
dotted red line in Figure 7. The precision was defined as the number of single pattern proteins
correctly classified with probability above the threshold divided by the number of proteins
classified as single pattern with probability above the threshold, and recall as the number of
single pattern proteins correctly classified with probability above the threshold divided by the
total number of single pattern proteins. At a zero threshold, the accuracy for recognizing single
class proteins was found to be 64.0%. At a threshold corresponding to 17% recall, the precision
improved to 90.1%. Thus single class proteins can be correctly recognized with reasonable
accuracy by a classifier trained on either single or multiple-class proteins.

Figure 7: Precision-recall curves for protein annotations for single and multi-class classifiers. For
the solid blue and dashed black line, we predicted the annotations of single pattern and mixed
pattern proteins used a classifier trained with only single pattern proteins. For the solid blue
line, annotations were considered correct if one of the annotations of one protein was predicted.
For the dashed black line, only recognition of single pattern proteins was considered correct.
For the dotted red line, a classifier trained on both single and mixed pattern proteins was used,
but only the accuracy of recognizing single pattern proteins was assessed.

2.4 DISCUSSION

Microscopy images are rich sources of information about cell structure and function for systems
biology. We have presented a framework to classify proteome-scale collections of proteins con-
taining complex subcellular location patterns, and our classifier provides performance similar
to human annotation on single-class proteins.

The only prior work on the automated classification of proteins using HPA confocal im-
munofluorescence images was described by Newberg et al. [23]. In this Chapter, we obtain
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similar classification accuracies on single-class proteins but analyze many more proteins and
patterns. The cytoplasm pattern, which has the second largest number of proteins, was added
and introduces some confusion with other patterns because of non-specific staining over the
cell. The nucleus pattern was split into nucleus pattern and nucleus without nucleoli pattern to
provide more detailed annotations, notwithstanding the two are highly blended in the staining
and are difficult to distinguish visually in many images. The small class of cytoskeleton was also
even split into three further patterns of actin, intermediate filaments and microtubules which
reduces the number of training images available for each. Nonetheless, good classification ac-
curacies were maintained, which represents a significant advance over our prior work. However,
the accuracies are not yet high enough to replace human annotators. In the future, we plan to
implement new features specific for the centrosome pattern, and hope to add features for better
discriminating the cytoskeleton and plasma membrane patterns from the cytoplasm pattern.

One of the main novelties we describe in this Chapter is the introduction of approaches
to identify possible mis-annotated proteins, derived from SVM classification and hierarchical
clustering, and the demonstration that they could identify proteins needing reannotation at a
rate higher than random. Our results show that selecting proteins using both schemes achieves
higher yield of reannotated proteins than either of them alone or in combination. We plan
to continue cycles of reannotation, and to incorporate the automated system in the annotation
pipeline. Note that in this Chapter we only provide results for the A-431 cell line, but the whole
framework introduced here can be applied to other cell lines, such as U-2OS and U-251MG. As
a matter of fact, some preliminary results have already been obtained (data not shown; included
in Reproducible Research Archive as described in Materials and Methods). We hope thereby
to maximize the accuracy of reported annotations in the Human Protein Atlas. We anticipate
that a similar approach may be applied to other proteome-scale image collections.

The dataset used in this Chapter contains 2D, static confocal images of fixed cells from
HPA. In the future, the temporal dynamics of the variations of protein subcellular location
patterns and the evolution over the course of stem cell differentiation can be explored by our
framework as datasets become available.

Another novel aspect of this work is the results on full or partial recognition of mixed pattern
proteins. Our results highlight the difficulty of handling these patterns. The main problem is
that the features are affected by the degree of mixture. This is unlike the case for tasks like
document classification, in which the addition of a second topic associated with new words does
not alter the detection of words associated with the first topic. It is also unlike the case in
many natural scene images in which adding a dog to an image of a cat does not change the local
features associated with the cat. In these cases, a number of multiclass learning strategies have
been successfully used. For protein patterns consisting of vesicular objects, we have used similar
methods to show that the frequency of object types can be used to estimate mixing between
patterns (using both supervised [28] and unsupervised [12] approaches). Unfortunately, this
approach does not generalize to mixtures involving non-vesicular proteins, and preliminary
work indicates that local features such as SIFT [22] also do not perform well in that case.
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3 Protein Subcellular Location Pattern Classification in Cellu-
lar Images Using Latent Discriminative Models

2

3.1 INTRODUCTION

The fully automated recognition of protein subcellular location patterns requires as high ac-
curacy as possible for the classification framework. In this Chapter, we has improved the
classification performance on the basis of region-based (or patch-based) computer vision meth-
ods which incorporates much more local protein distribution information compared with cell
level features in Chapter 2.

We in fact aim at learning from the data the dependencies among features, cell components,
and the protein pattern classes into which the images have been divided. To accomplish this,
we build two graphical models with latent variables to capture the cell components (invisible
or hidden) and these dependencies. These two models are based on logistic regression [5]. The
first model, called hidden logistic regression (HLR), introduces the concept of component as a
latent variable into the simple logistic regression, so that the protein and the component can
determine the expressed features together. The second model, called hidden conditional random
field (HCRF), further introduces spatial dependencies among components at different locations
within cell as in conditional random field (CRF) developed by [20]. These two models can
capture the components’ influence on the expressed features and their spatial configurations,
thus improving our ability to recognize the patterns.

We use gradient based methods to estimate the models’ parameters. We show that the
gradients depend on the marginal probabilities on the nodes and edges in the model. For HLR,
this computation is easy. But for the HCRF model, inferences for these marginals cannot be
done exactly. To address this difficulty in inference, we propose to remove certain edges in
the HCRF model so that the component variables are “clustered”. By doing this, the exact
inference is greatly accelerated while most of the local interactions between cell components can
be retained.

The effectiveness of both the HLR and HCRF models are tested on synthetic data and real
HPA images. We show that using latent variables to model the components can enhance the
classification accuracy. Furthermore, spatial dependencies can significantly improve the perfor-
mance. With the proposed models, we are able to achieve the best classification performance
on this task to our knowledge.

The rest of the Chapter is organized as below. First we describe the data set and define the
problem we try to solve in Section 3.2. Then the proposed classification methods are described
in Section 3.3. Experimental results are shown in Section 3.4 on both synthetic simulations and
real cellular images. In Section 3.5 we discuss some related work and summarize this Chapter.

3.2 BACKGROUND

3.2.1 Data Set

Similarly to the Chapter 2, we also used HPA images. For the experiments in this Chapter,
we chose a subset of the HPA images consisting of 1882 images of 9423 proteins from one of
13 classes: centrosome, cytoplasm, actin filaments, intermediate filaments, microtubules, ER,
Golgi, mitochondria, nuclei, nucleus without nucleoli, nucleoli, plasma membrane, and vesicles.

2This work is a collaboration with Liang Xiong (Machine Learning Department at Carnegie Mellon Univer-
sity), and is adapted from “Protein subcellular location pattern classification in cellular images using latent
discriminative models” by Jieyue Li, Liang Xiong, Jeff Schneider, and Robert F. Murphy which appeared in
Bioinformatics 28:i32-i39 (2012).

3A little more proteins were reannotated after Chapter 2
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To preprocess the image data, we first used the seeded watershed method to segment the
image fields into single cells [23]. After that, for every cell we randomly select 50 regions of
size 41 × 41 pixels, each of which must contain some of the stained protein signal (i.e. not
empty). The size is chosen so that an individual region captures fine enough information about
the specific component in it, and the number of regions is chosen so that most of the area of
the cell is covered while it is computationally feasible to solve the problem.

To extract features from the sampled regions, we computed various subcellular location fea-
tures (SLF) according to [23] on individual channels separately as well as on the combinations
of different channels. These features essentially characterize the appearance, the texture infor-
mation, the multi-resolution aspect, and the spatial distribution of different cell components in
the image regions. After feature extraction and removing bad regions and cells, we have 15990
cells, containing 799015 regions with 2538 dimensional features.

3.2.2 Problem Definition

To begin with, we give a brief re-statement of the problem. The data we have is a set of cellular
images. For each small rectangular (square) region in those images, we can observe some vector
of features, and we know the class of the protein stained in this cell and region. Given these
data, our goal is to train a model that can classify the distribution pattern of the protein stained
in unlabeled images.

We introduce some notations here. Suppose there are N cells containing M image regions,
T types of cell components, and K classes. The features we have for region m is Fm ∈ R

DF ,
where DF stands for the size of feature. For this region, we have a label Cm indicating the class
of the stained protein.

3.3 METHODS

3.3.1 The Latent Discriminative Models

We take a discriminative approach and design models to solve the classification problem directly.
The most straightforward way of modeling is to let the region’s protein class label Cm

directly determine the features Fm we observe in that region. We can describe this simple
model using the undirected graphical model in Figure 8.

Cm Fm
M

Figure 8: The Logistic Regression (LR) model for regions. Fm are the features and Cm is the
label.

We adopt a discriminative approach here. Instead of modeling the joint probability of
the labels and features, we directly characterize the probabilities of labels conditioned on the
features, since our focus here is prediction. Based on this principle, we can use a log-linear
model to realize the model in Figure 8 as follows:

P (Cm = k|Fm, Θ) ∝ exp
(

wT
k Fm

)

(1)

where the parameter set Θ contains w1, · · · , wK , one for each class, and the footnote T in all
equations stands for transpose. We can see that this model is in fact Logistic Regression (LR)
for multi-class problems. After training, the LR model is able to predict the class label for each
test region, based on which cell-level and protein-level predictions can be obtained by voting.
This simple LR model is our starting point.
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3.3.1.1 Hidden Logistic Regression (HLR) The LR model implies the assumption that
the region features Fm are solely determined by the protein label Cm in that region. This
assumption is obviously inadequate in our problem. Clearly, the features (appearance) of a
region are determined by both the protein and the cell component(s) in it. Therefore, in addition
to the protein variable Cm, we introduce a new variable Om to represent the component(s) in
that region, and let Cm and Om determine the features Fm together.

The resulting graphical model is shown in Figure 9. Note that we only have the cellular
images and do not know the value of Om for each region. So, Om is a latent variable and has
to be inferred.

M

Cm Fm

Om

Figure 9: The Hidden Logistic Regression (HLR) model for regions. Om is the latent variable
categorizing the underlying cell component(s).

We again use a log-linear model to characterize what is in Figure 9. The conditional prob-
ability of the protein label Cm and the component Om can be written as:

P (Om = t, Cm = k|Fm, Θ)

∝ exp
(

ΘT f (Om = t, Cm = k, Fm)
)

= exp



F T
m

∑

t′,k′

wt′k′δ
(

t′ = t, k′ = k
)



 (2)

where Θ are the linear parameters, f(·) is a class-dependent feature function, and the last line
shows the concrete form of this conditional probability. Intuitively, this model is an extended
multi-class logistic regression model in which we treat each pair of (Om, Cm) as one class, and
then normalize the probability globally. We refer to it as the Hidden Logistic Regression (HLR)
model.

While the conditional probability above is intuitive, we can not directly maximizing the
likelihood under this model since the values of {Om} are not observed. Therefore, we instead
estimate the parameters by maximizing the marginal probability of the labels as below:

Θ = arg maxΘ

∑

m

lnP (Cm|Fm, Θ)

= arg maxΘ

∑

m

ln
∑

Om

P (Om, Cm|Fm, Θ) (3)

The results produced by HLR are still region-level classification. In the following we consider
the structural information within the cell.

3.3.1.2 Hidden Conditional Random Field (HCRF) In the HLR model, we relax the
assumption that the features of different regions are identically distributed given the protein
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class label, and let one protein class be expressed differently at different parts of the cell. But
we are still assuming that the regions are independent of each other. However, in fact we know
that there are spatial dependencies among the components. For example, the Golgi complex is
usually located near the nucleus. So when we see the nucleus, which is easy to recognize, we
have some clue that the Golgi complex will be nearby. This type of reasoning is frequently used
when human experts try to classify a protein pattern. Our next step is trying to emulate this
process and capture the spatial dependencies among the components.

Unlike previous sections where we focus on regions, here we treat cells as the units in
classification. For cell n, we let Mn be the number of regions in it. Further, Fn/Gn, Cn are the
features and the label for the cell n, and On,m is the component(s) in the mth region of the cell
n.

The new model extends HLR described in Section 3.3.1.1 by allowing the components in the
same cell to interact with each other. The graphical model that captures all the dependencies
is shown in Figure 10.

On,2

Cn

On,1

On,3
N

Fn, Gn

Figure 10: The Hidden Conditional Random Field (HCRF) model for cells. All the components
{On,m} are latent variables.

As before, we use log-linear models to characterize the dependencies between variables, as
in conditional random field (CRF) by [20]. The conditional probability of the protein label and
component is as follows:

P (Cn, On|Fn, Θ) ∝ exp(Ψ) (4)

Ψ =
∑

i∈Nn

ΘT
f f (Cn, On,i, Fn)

+
∑

(i,j)∈En

ΘT
g g (Cn, On,i, On,j , Fn)

=
∑

i

F T
n,i

∑

t′,k′

wt′k′δ
(

On,i = t′, Cn = k′
)

+
∑

(i,j)

GT
n,ij

∑

s′,t′

vs′t′δ
(

On,i = s′, On,j = t′
)

, (5)

where N , E are the node and edge sets. In this model, the parameter set Θ includes {wtk} and
{vst}. The association features Fn,i ∈ R

DF provide evidence for an individual region i, and
the interaction feature Gn,ij ∈ R

DG provides evidence for the dependency between a region
pair (i, j). {wtk} define the potential on each region, and {vst} define the potential for pairs
of regions. As before, the components On are not observed. We call this model the Hidden
Conditional Random Field (HCRF).

To learn this model, we also need to maximize the marginal likelihood of the labels Cn.
That is, our goal is to solve the problem in the following:
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Θ = arg max
Θ

∑

n

lnP (Cn|Fn, Θ)

= arg max
Θ

∑

n

ln
∑

On

P (Cn, On|Fn, Θ). (6)

Note that unlike LR and HLR, HCRF is able to produce cell-level prediction directly.

3.3.2 Learning

In this section, we describe how to learn the proposed HLR and HCRF models, and use them
for prediction.

3.3.2.1 Training We use gradient based optimization to train the parameters of the HLR
and HCRF models. As shown in Section 3.3.1, the goal of learning is to maximize the marginal
probability of the data:

Θ = arg max
Θ

∑

n

Ln,

Ln = ln
∑

On

P (Cn, On|Fn, Θ) (7)

In log-linear models, the conditional probabilities in general can be written as:

P (Cn, On|Fn, Θ) ∝ exp
(

ΘT f (Cn, On, Fn)
)

= exp (Ψ (Cn, On, Fn, Θ))

= exp(Ψn). (8)

Meanwhile, the marginal of the label Cn can be written as follows:

P (Cn|Fn, Θ) =
∑

On

P (Cn, On|Fn, Θ) =

∑

On
exp (Ψn)

Zn

(9)

Zn =
∑

Cn

∑

On

exp (Ψn) (10)

By taking the derivative of Ln with respect to some parameter θ, the following results can
be derived:

∂ log
∑

On
exp (Ψn)

∂θ
=
∑

On

P (On|Cn, Fn, Θ)
∂Ψn

∂θ
, (11)

∂ log Zn

∂θ
=
∑

Cn,On

P (Cn, On|F, Θ)
∂Ψn

∂θ
, (12)

∂Ln

∂θ
=

∂ log
∑

On
exp (Ψn)

∂θ
−

∂Zn

∂θ

=
∑

On

P (On|Cn, Fn, Θ)
∂Ψn

∂θ

−
∑

Cn,On

P (Cn, On|F, Θ)
∂Ψn

∂θ
. (13)

22



From Eq (13), it is easy to obtain the derivative for any parameter in HLR and HCRF. Here
we omit the details and only show the final results.

For the HLR model, the derivatives are

∂Lm

∂wtk

= Fm

(

P (Om = t|Cm, Fm, Θ) δ (Cm = k)

−P (Om = t, Cm = k|Fm, Θ)

)

(14)

For the HCRF model, the derivatives are

∂Ln

∂wtk

=
∑

i∈Nn

Fn,i

(

P (On,i = t|Cn, Fn, Θ) δ (Cn = k)

−P (On,i = t, Cn = k|Fn, Θ)

)

(15)

∂Ln

∂vst

=
∑

(i,j)∈En

Gn,ij

(

P (On,i = s, On,j = t|Cn, Fn, Θ)

−P (On,i = s, On,j = t|Fn, Θ)

)

(16)

Given these results, we can use gradient based optimizers to train the parameters by maxi-
mizing the marginal likelihood of the data. For example, we can use L-BFGS [25] or stochastic
gradient descent [7]. Note that the key quantities required to calculate these gradients are the
marginal probabilities in the forms of P (O|C, F ) and P (C, O|F ).

3.3.3 Inference

In Section 3.3.2.1, we have derived that in order to apply gradient based learning we need to
first calculate the marginal probabilities in the forms of P (O|C, F ) and P (C, O|F ). Therefore,
inference algorithms are necessary.

For the HLR model, inference is straightforward since the number of terms in the partition
function is only T × K. We can easily enumerate all of them to get the exact values of those
marginal probabilities. Given the exact gradients and the objective values, we apply L-BFGS
to learn the HLR model.

For the HCRF model, the inference problem becomes intractable because of the dependence
structure of the graphical model. Brute force is infeasible since the partition function contains
K × TM terms, where M is the number of regions in one cell. Other exact methods such as
variable elimination [18] are also not viable because the nodes can be densely connected and
therefore the tree-width [18] of the graph, which determines the complexity of inference, can be
very large. Therefore, we need approximate methods.

Unfortunately, classical approximate inference methods are difficult to apply here. For exam-
ple, mean field approximation [18] is not applicable because we need the marginal probabilities
on edges, which are not available from a completely factorized mean field distribution. The
choice of belief propagation (BP) [26] seems reasonable considering the forms of derivatives in
Eq (15) because it provides all the marginal probabilities we need. However, the HCRF model
contains numerous small loops like “C-O-O” and “O-O-O” in Figure 10, which make the BP
algorithm inaccurate or even non-convergent. Moreover, the approximate inference result will
prevent the marginal likelihood from being optimized efficiently, due to the fact that we cannot
evaluate the objective value correctly.

To solve these problems, we propose to use an approximate model and exact inference,
as opposed to using an exact model and approximate inference. Concretely, we first reduce
the tree-width of the model and then use variable elimination for inference. We partition the
latent ’O’ nodes of HCRF into small clusters, then the tree-width is equal to the largest cluster
size. For example, given that a cell contains 50 components in regions, we can partition these
components into 10 clusters of size 5 based on their spatial locations in the cell. Then, we
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remove the ’O-O’ edges that cross cluster boundaries, while still keeping all the ’C-O’ edges.
By doing this, the tree-width of the model is always limited to a small number regardless of the
total number of components (regions), making exact inference by variable elimination tractable.

An illustration of this process is shown in Figure 11. We can see that by making this
simplification of model, we lose a few edges, but most of the important local interactions between
regions are kept. In return, the inference and learning of the simplified model become efficient.
Suppose there are M regions in one cell and we partition them into clusters of size s. Then after
the partition, inference can be done in O(M

s
KT s). Note that now the complexity grows only

linearly with the number of regions. However it still grows exponentially with the cluster size
s, which therefore cannot be large. Note that when s = 1, the HCRF degenerates into HLR.

Figure 11: An illustration of how to simply HCRF for tractable exact inference. Each node
represents an ’O’ node in HCRF.

In summary, we used a “Expectation-Maximization” style to learn the parameters. We
iteratively did inference in section 3.3.3 (with initially random parameters) and likelihood max-
imization in section 3.3.2.1.

3.3.4 Implementation

To construct the interaction graphs of HCRF among the components within the same cell, we
add edges between components and their nearest neighbors. In this Chapter we always use the
3 nearest neighbors to build the interaction graph. Currently, the feature G on each edge in
HCRF is just the distance between the centers of two regions. In the future we may add more
descriptive features for the edges.

Since we have adopted the “approximate model, exact inference” approach, both the gradient
and objective value of the data likelihood can be computed exactly, making the optimization
straightforward. Here we use L-BFGS to maximize the marginal likelihood due to its fast
convergence and low memory consumption.

It should be pointed out that HCRF has a large number of parameters. In order to avoid
overfitting and enhance the generalization ability, we regularize the L2-norm of the parameters
as in ridge regression with a penalization parameter λ. This part is straightforward and details
are omitted.

Since the time required to infer the HCRF model grows exponentially with the cluster size
into which regions are grouped, we set the cluster size to 5 with trade-off between speed and
approximation accuracy. With this setting and T = 3, inference took approximately 20 hours
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on one 2.40 GHz 64-bit processor for the HCRF model. The HLR model took about 10 minutes
when T = 3.

3.4 RESULTS

In this section, we show the performance of the proposed methods on both synthetic data and
real HPA images.

3.4.1 Simulation

First, we ran a simulation experiment to verify the effectiveness of latent variables in HLR and
HCRF. The synthetic data contains M = 10000 regions, D = 10 dimensional feature vectors,
T = 3 types of components, and K = 3 classes of protein. To generate such a data set, we use
the mechanism described in Figure 9). This experiment aims at showing that ordinary logistic
regression is not able to handle the case where features depend on factors other than just the
label.

The HLR model is used here. We try T from 1 to 10 and compare the performance. For
every T , we run 10 times of 5-fold cross-validations. Due to the non-convexity of the HLR
model, in each training step of each run, we try 5 random starts, and pick out the one with
the maximum training accuracy. The best value of λ is picked from 0.01 to 1000 also using
cross-validation.

The mean accuracies for different values of T are shown in Figure 12. Standard deviations
are not shown since they are very small. We can see that when the number of latent components
are less than the true value T = 3, the performance is poor. Once we use T ≥ 3 components,
nearly perfect accuracies have been achieved. Note that from Eq. 2 when T = 1, the HLR model
is equivalent to the regular multi-class logistic regression. Moreover, note that for T ≥ 3, little
sign of over-fitting is observed. The results demonstrate that incorporating latent components
for this problem greatly helps.
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Figure 12: Results of the simulation study, showing the accuracies of various choices of T (the
number of latent components). The true number of components is T = 3.
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3.4.2 HPA Protein Classification

We also compare the performance of different methods on the HPA data set. As described
before, we have M = 799015 regions, DF = 2538 dimensional features for each region, and
K = 13 protein pattern classes. These regions are from 15990 cells and 942 proteins. After
applying PCA to reduce the feature dimension, we obtained DF = 131 features for each region.
This data set suffers from moderately imbalanced class distribution problem, in which about
30% of the samples belong to the largest class.

The Support Vector Machine (SVM) is used as our baseline. We use linear SVM (liblinear
1.5.1, [13]) to classify these regions. We predict the labels and the class probabilities for regions
in 5-fold cross-validations and automatic tuning of the slack parameter C. Then we let the
region results vote for the cell-level labels as follows. For each cell, we add together the class
probabilities of all the regions from this cell, and then normalize the sum as the class probabilities
for this cell. The class with the maximum probability is selected as the label for this cell. Using
the same voting schema, we can also obtain labels and the associated probabilities for the
proteins.

After using 5 different runs of cross-validation with random partitioning, we obtain that
the resulting overall accuracies for proteins are 69.1 ± 0.25%. In addition, for the best run, we
plot the precision and recall curve in Figure 14 using the following procedure. We first sort the
proteins by the magnitude of the maximum probability value (voted from the cells as above)
for each protein. An increasing threshold on this probability is used to generate this precision-
recall (PR) curve. The precision is calculated as the number correct divided by the number of
proteins classified with probability above the threshold. The recall is defined as the number
correct divided by the total number of proteins. The area under the curve (AUC) is 0.60. It
is important to note that in this and all experiments in this Chapter, when we split the data
set into training and testing sets for cross-validation, all of the regions and cells belonging to
the same protein were in either the training or the testing set (i.e. the same protein cannot be
in both the training the testing sets simultaneously). As a result, the learner must generalize
across different proteins with the same label and the accuracy might be conservative.

We first test the performance of the HLR model on this data set. We use T from 1 to 10,
and other settings are similar to those in Section 3.4.1 and in the SVM experiment. The mean
performance and standard deviations for the voted accuracies on proteins are shown in Figure
13. A clear improvement is achieved when increasing T from 1 to 2. The highest mean accuracy
is about 80.7%, achieved when T = 2. For the best run of cross-validation in T = 2, a PR curve
is plotted in Figure 14 and the AUC is 0.69. Therefore, HLR outperforms the basic logistic
regression (the T = 1 case) and the SVM baseline significantly. This result again verifies the
effectiveness of the latent components.

Next, we test the performance of HCRF in the task of classifying the cells and proteins. In
this case, we can only afford the time and memory usage to try T from 1 to 6. For efficient
inference, we divide the regions in each cell into clusters of size 5 as described in 3.3.3 and 3.3.4.
We do 5 runs on each T to get the mean and variance of the performance. In each run, we use a
different seed to randomly split the data and do 5-fold cross-validation. Again at the beginning
of every training step, we use 5 trials of random starts and the one with the maximum training
accuracy will be used to do the testing.

The resulting accuracies are shown in Figure 13. We can see that the HCRF model signif-
icantly improves the accuracies over the HLR model. The best mean overall accuracy on the
protein-level which is obtained by voting across cells is 84.6% acquired when T = 3, and the
confusion matrix for best run with T = 3 is shown in Table 6. The confusion matrix shows
that larger classes tend to have higher accuracies. The nuclei pattern is often confused with
the “nucleus without nucleoli” pattern because the latter has many more member proteins and
these are often difficult to distinguish visually. This is also the case for proteins of the plasma
membrane and cytoplasm classes. For the best cross-validation run, we plot the PR curve in
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Figure 14 which has an AUC of 0.82. From the figure, we can see that if we increase the
threshold to have recall of about 60%, the precision is about 95%.
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Figure 13: Classification accuracies on HPA proteins by HLR and HCRF. These accuracies are
obtained from cell-level results by probability voting.

Since the HCRF with T ≥ 2 outperforms the one with T = 1, we can conclude that the
latent components and spatial dependencies introduced in HCRF are indeed useful.

Note that the overall accuracy appears to saturate at around 84% in Figure 13. We have
estimated that the overall accuracy of human annotation of these labels in other work is about
90% (see section 2.3.4 in Chapter 2), which our classification accuracy approaches. Moreover,
any errors in labeling by human experts may result in confusion when used for training the
classifiers. Therefore, we believe that the accuracy achieved by HCRF is indeed approaching
the limit, although there is probably some room for improvement.

To provide further insight into the basis for the improvement in accuracy by HLR or HCRF,
we investigate the meaning of the latent components learned from data and their relationships
with the classes of protein distribution patterns. To interpret these components, we infer the
matrix P (Cm, Om|Fm, Θ) of size of K × T using Eq. (2) and (14), or (15) for each region. The
calculation is based on the setting that produces the best overall accuracy. We then sum the
matrices over all the regions to get one matrix that represents the co-occurrence relationship
between C and O. After being normalized so that the entries sum to one, this matrix can
represent the co-occurrence probabilities between the classes and latent components. We show
the probability maps from HLR and HCRF in Figure 15.

From Figure 15, we can see the distinct relationships between different latent components
and different classes. Each latent component is associated with a unique combination of classes.
In Figure 15 (a), the two latent components mostly differ in the distribution relative to nucleus,
i.e. close to nucleus (the first) or not (the second). The first one has larger coefficients on inter-
mediate filaments and microtubules, because the projection from 3D distribution onto the 2D
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Accuracy% centro. cyto. actin inter. micro. er golgi mitoch. nuclei w/o nucleoli PM vesicle

Centrosome (15) 40 6.7 0 0 0 0 20 0 0 13.3 0 0 20

Cytoplasm (125) 0 92 0 0 0 0 0 3.2 0 0 0 0.8 4

Actin filaments (10) 0 20 10 0 0 0 0 30 0 10 0 10 20

Intermediate filaments (12) 0 8.3 0 66.7 0 0 0 25 0 0 0 0 0

Microtubules (18) 0 5.6 0 0 94.4 0 0 0 0 0 0 0 0

ER (39) 0 0 0 0 0 89.7 0 7.7 2.6 0 0 0 0

Golgi (63) 0 1.6 1.6 0 0 0 81 9.5 1.6 0 0 1.6 3.2

Mitochondria (148) 0 0.7 0 0 0 0 0 99.3 0 0 0 0 0

Nuclei (75) 0 0 0 0 0 0 0 0 37.3 57.3 5.3 0 0

Nucleus w/o nucleoli (284) 0 0 0 0 0 0 0 0 1.4 96.8 1.8 0 0

Nucleoli (65) 0 1.5 0 0 0 0 1.5 0 3.1 4.6 87.7 0 1.5

Plasma membrane (14) 0 35.7 21.4 0 0 0 7.1 7.1 0 7.1 0 14.3 7.1

Vesicles (74) 0 1.4 1.4 0 0 0 4.1 2.7 1.4 1.4 0 0 87.8

Table 6: Confusion matrix of classification on proteins using HCRF model. It is the one having
best overall accuracy from trails of T = 3. The values in the parentheses are the numbers of
proteins in each class.
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Figure 14: Precision and recall curves on protein classification probabilities from SVM, HLR
and HCRF. Each of them is from the one having the best overall accuracy.
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image makes these two have high intensity within and around the nucleus area. The “Nuclei”
pattern and “Nuclei without nucleoli” pattern are distinct, so they should be in different com-
ponents. This also explains the phenomenon in Figure 13 that HLR apparently do better with
2 components than with ≥ 3 components, because HLR may find the most conspicuous clue
for identifying the location patterns of proteins to be inside or near to the nucleus or outside.
Other clues compared to the nucleus may have little help or even hurt by overfitting (actually
the training likelihood still grows as T increases, data not shown). In Figure 15 (b), the first
latent component again represents the patterns distributing inside or tightly close to nucleus,
the second involves granular distribution over the cytosolic space, and the third involves smooth
distribution over the cellular space (including the nucleus).
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Figure 15: Two probability maps representing the co-occurrence relationships between the
learned latent components and classes. (a) is from HLR and (b) is from HCRF.

3.5 DISCUSSION

3.5.1 Related Work

Recently, there have been several studies using latent discriminative models to solve structured
prediction problems with partially observed data. Here we discuss the most relevant two.
Our proposed HCRF model is similar to the work Discriminative Random Field by [19]. The
difference is that in our case the labels for the regions are latent variables, and each cell has
only one label. The concept of hidden conditional random field has also been raised in the work
done in [29], and the structure of their graphical model is quite similar to ours; nevertheless
in their model, the cell label is only associated with the latent labels of the regions. In our
model, these connections are also conditioned on the observations, which reflects the fact that
the protein classes and the latent components determines the features together.

The most recent prior work on the automated classification of proteins using HPA im-
munofluorescence images is presented in Chapter 2 where each cell is treated as a single region
and SVM directly applied to classification. The experiment using that approach on the data
set used here gives the overall accuracy on proteins to be 81.3%± 0.61%. Therefore, our HCRF
model is statistically better.

3.5.2 Conclusion

In this Chapter, we address the problem of classifying proteins based on their subcellular local-
ization patterns. Given the spatial distribution of a protein in the cells, we want to know the
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class of this protein.
To solve this problem, we proposed two discriminative models that extend logistic regression

with latent variables. The first one, called the Hidden Logistic Regression (HLR), extends
regular logistic regression so that the features can depend on factors other than the class label.
The HLR model addresses the issue that the same protein can be expressed differently at
different locations of the cell. The second model, called the Hidden Conditional Random Field
(HCRF), further extends the HLR model by allowing the regions in the same cell to interact
with each other. HCRF is able to “guess” the component at a location based on information
from other regions, thus helping us better predict the class of the protein.

In both synthetic and real data experiments, we demonstrate that the proposed models are
able to enhance classification performance. Particularly, on the HPA data set, HCRF achieved
84.6% overall accuracy on proteins, which is best result up to now.

In the future, we plan to enhance the performance by using better features and devise more
accurate learning algorithms. For example, we can incorporate richer dependencies between
components. The features can also be transformed to take potential nonlinearity into consider-
able. More efficient inference algorithm can be developed to allow for more complex interactions
between components. Moreover, because there are much larger amounts of images of proteins
that can localize in more than one component in cell, we want to apply the models proposed in
this Chapter to classify more challenging protein subcellular location pattern complexes.
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4 Overall Conclusion and Discussion

In this data analysis project, we completed two tasks which were both applied on HPA im-
ages for computational experiments. Those HPA images were previously visually annotated to
their protein subcellular location patterns. One task (Chapter 2) was to build a first proteome-
scale classification system using SVMs for automated recognition of protein subcellular location
patterns and also to adopt unsupervised hierarchical clustering to complement. Moreover, on
the basis of the outputs from the two methods, we designed algorithms to identify potential
proteins which had high probabilities of being incorrectly annotated. Compared with the ran-
dom sampling equivalence, we obtained up to 5.5-fold enrichment of such an identification of
mis-annotated proteins.

The second task (Chapter 3) tackled the classification problem making use of the region-
based computer vision methods with discriminative modeling and latent variables. Given the re-
gions, we were empowered with much more local information to model the spatial co-occurrence
between protein distribution and cell components and between different cell components within
the same cell. This strategy enabled us to improve the classification accuracy statistically sig-
nificantly better than that from Chapter 2, and we got the highest overall accuracy around
84.6%.

However, given the assumed limit in section 2.3.4 in Chapter 2, we still have space to improve
further. Probably, we can design more sophisticated features on cell images to help us recognize,
for example centrosome or plasma membrane patterns better, and also to design better solutions
for heavily imbalanced dataset as we had in this project. Moreover, as shown in section 2.3.4
in Chapter 2, we do not have good enough performance to recognize mixed pattern proteins.
Local features may help, but we need to either optimize more on the algorithms in Chapter 3
to be efficient enough to handle much more larger dataset, or to applied other local features
like SURF [3]. We can also try to learn a local low dimensional embedding along a manifold in
the high dimension feature space to represent and “unmix” the continuous variations in mixed
pattern between its individually constitutive patterns.

Furthermore, all the models and methods we discussed in this project are discriminative
which basically can only answer the question of which protein pattern(s) is in a given image.
To understand more of how such pattern(s) is generated, we should use generative models. In
the past, there were many works [8] having been done in this field to build generative models on
vesicular patterns [34,27] and filament microtubules patterns [30,31]. We can improve on these
models and use them to represent subcellular protein patterns in HPA, and then to identify the
conditional dependences between them. Therefore, we shall eventually construct a complete,
dynamic and quantitative network about subcellular location patterns in various human cell
lines, which will be significant and beneficial, i.e. to identify potential cancer biomarkers or to
facilitate drug screening and development.
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