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Abstract

Background. Computational approaches have been widely used for dissecting tu-
mor subtypes through mixture models. One successful approach involves formu-
lating this as a problem equivalent to identifying simplices in a high-dimensional
space of genomic point clouds, where the vertices of a simplex are assumed to
represent unique cell clones such as healthy stem cells, tumor progenitors and
tumor subtypes. The highly heterogeneous nature and the complex evolutionary
trajectories of tumors pose significant challenges to conventional methods for un-
mixing tumor composition, which can be simplified by using clustering methods
to separate tumor evolution lineages.

Aim. The goal of this project is to design a clustering method that addresses the
specific challenges posed by the properties of tumor genomic data: 1) the number
of cluster is unknown; 2) data points are clustered according to their belonging
simplices; 3) the data clouds from two clusters may overlap; 4) there is no existing
probabilistic model yet developed to describe the distribution of the data points
inside a cluster; 5) the edges of two simplices may form sharp angles.

Methods. The new clustering method is based on standard medoidshift but cou-
pled with specialized non-positive kernel functions. It converges on vertices of
the simplices instead of density maxima, and classify data points with respect to
the distance to the converging vertices. The convergence is guaranteed when the
shadow kernel function is non-increasing and concave.

Data. Synthetic datasets are produced from 5 hypothetical tumor progression
scenarios. The method was also applied on two real breast cancer datasets and
one real lung cancer dataset.

Results. The new method shows consistently better clustering than stand medoid-
shift in all test scenarios, and improvements over k-medoids in certain applica-
tions. It also captures some interesting structural characteristics of the real cancer
dataset that could not be detected by prior automated approaches to tumor mixture
separation.

Conclusions. The medoidshift-based method described in this work better han-
dles the structural constraints of subdividing simplicial complex by finding cluster
“centers” at vertices of the simplices, whereas standard medoidshift is heavily in-
fluenced by the density on shared margins and may fail to distinguish adjacent
simplices. Comparing to the previously used k-medoids method, the new method
removed the often difficult model selection question of choosing &, which requires
a priori knowledge of the number of oncogenetic lineages.



1 Background

Genomics research has dramatically improved our understanding of the nature of tumor progression
and the means of possible treatment. Tumor progression, or tumorigenesis, is an evolutionary pro-
cess by which tumor cells accumulate successive mutations that lead to decreased growth control,
increased invasiveness and eventually metastasis. There has been much interest in reconstructing
this process of evolution because of its relevance to identifying the driving factors of mutation and
predicting drug response and future prognosis. Our understanding of tumor progression has been
radically reshaped by the application of new technologies for probing the genome, gene and pro-
tein expression profiles of tumors, which have made it possible to identify key sub-types of tumors
that may be clinically indistinguishable yet have very distinct prognoses and responses to treatments
[, 2L 3L 14]]. Uncovering these tumor sub-types has helped drive the development of novel therapeu-
tics, known as “targeted therapeutics”, that are more specifically targeted to the particular genetic
defects that cause each cancer [5, |6, [7]. Despite the profound impact molecular genetics had on
cancer research, however, we are only starting to embrace the full complexity of tumor evolution.
As a result of that, some recognized sub-types remain poorly defined and many patients do not fall
into any currently recognized sub-type [8]. Nevertheless, clinical treatment of cancer could receive
considerable benefit from better techniques to identify sub-types missed by the prevailing expres-
sion clustering approaches, their diagnostic signatures, and the genes essential to the pathogenicity
of particular sub-types [8]].

More sophisticated computational models have stemmed from the field of phylogenetics, where
tumors are not considered as merely random collections of mutated cells, but rather evolving pop-
ulations. The pioneering work of Desper et al. inferred tumor pylogenies, or oncogenetic trees, by
treating observed tumors as leaf nodes in a species tree, estimating evolutionary distances from ge-
nomic and gene expression profiles, and applying a variety of methods to obtain reasonable models
of the major progression pathways by which tumors evolve across a patient population. [9} 10} [11].
Maximum likelihood estimation has also been used to work with common measurements of tumor
state [12].

An alternative to the above tumor-by-tumor phylogenetics, the cell-by-cell approach relies instead
on heterogeneity between individual cells within single tumors to identify likely pathways of pro-
gression [131[14,[15/[16}[17]]. The Pennington model forms tumor evolution as a Steiner tree problem
within individual patients, and uses pooled data from many patients to build a global consensus net-
work describing common evolutionary pathways across a patient population [[13,[14]. It is based on
the assumption that tumors preserve remnants of their earlier cell populations as they develop, and
any given tumor sample will therefore consist of a heterogeneous combination of cells at different
stages of progression along a common pathway, as well as possibly contamination by healthy cells
of various kinds. This assumption is supported by numerous studies using recent techniques such as
fluourescence in situ hybridization (FISH) and single cell sequencing. [15}[16}17,[18].

Each of the above two methods has its shortcomings. The tumor-by-tumor approach overlooks the
intratumor heterogeneity that can provide valuable clues to tumor progression, and the cell-by-cell
approach considers the intratumor heterogeneity information but at the cost of limiting the number
of probes per cell and therefore the resolution of measure. The more recent single-cell sequencing
technique increased the resolution of a single cell measurement to the genomic level, but so far the
data is affected by noise and the sample size is limited by the high cost [[19, 20} 21} 22} [23]].

2 Related works

Schwartz et al. proposed a gap-bridging method that computationally infers cell population from
tissue-wide measurements by using “unmixing”, a mathematical formalism of the problem of sep-
arating fundamental components of mixed samples in which each observation is presumed to be
an unknown convex combination of several hidden components. [8]. In the context of tumor phy-
logeny, each component corresponds to a cell clone (“node”) on the underlying oncogenetic tree.
Their specific approach views components as vertices of a multi-dimensional simplex that encloses
the observed points, which makes unmixing essentially the problem of inferring the vertices and
boundaries of the simplex from a survey of the points inside it [24]. Tolliver et al. revised the



unmixing model and derived a “soft” geometric unmixing algorithm that robustly handles noisy
observations [25]].

Instead of focusing on sub-structural information of the data clouds, other popular mixture inference
methods are centered around the probability density estimation that best fits the observed data [26].
Both optimized for data acquired from single-nucleotide polymorphism (SNP) array, ABSOLUTE
fits optimal CNV model and uses a karyotype likelihood model as a “prior” [27], and ASCAT uses
additional information such as variant allele frequency (VAF) based upon the availability of the raw
sequencing data [28]. Some methods also relies on sequencing and VAF data, such as PyClone
that uses hierarchical Bayesian clustering [29] and SciClone that uses Bayersian mixture modeling
[26]. CNAnorm is a another method designed for sequencing data and infers heterogeneity and copy
numbers separately, but it relies on the assumption that tumor is largely monoclonal [30]. Assuming
that the tumor sub-populations can be distinguished by CNV information, the THetA algorithm
poses heterogeneity inference as a maximum likelihood mixture decomposition problem [31].

The above numerous strategies towards deconvolution of tumor genomic data can typically resolve
up to approximately 10 distinct cell types, which limits their ability to resolve finer details of cellular
heterogeneity within tumors [32]. To address this issue, Roman et al. proposed a methodological im-
provement on genomic mixture modeling by exploiting the fact that mixed genomic data from cells
evolving according to an evolutionary tree model would be expected to have finer mathematical sub-
structures than a single uniform simplex assumed by prior work. In particular, point clouds produced
by representing tumors as points in a genomic space (e.g., by gene expression or gene copy numbers)
would be expected to yield simplicial complexes: conjunctions of low-dimensional sub-simplices,
corresponding to distinct tumor subtypes, joined to one another via lower-dimensional surfaces cor-
responding to shared ancestral cell populations including healthy cells [32]. Reconstructing these
simplicial complexes can be considered a special case of the technique of manifold learning [33]. In
the work of Roman et al., k-medoids clustering is employed to separate point clouds from different
sub-simplices, but it requires the pre-selection of cluster number & that corresponds to the number
of lineages in the unknown oncogenetic tree.

In this project, the structural-based clustering approach is extended with a medoidshift-based method
that is designed to better identify clusters of points on distinct low-dimensional subspaces of the full
manifold and remove the often difficult task of model selection regarding the choice of k. The
standard medoidshift method automatically seeks the density centers of the point clouds known as
“modes”, but it may break down in the context of separating individual simplices from simplical
complex due to the possibility that density centers may locate on the conjunction surface. The gen-
eral methodology of medoidshift provides a good platform for designing problem-specific classifier
for tumor genomic data, as it is free from any pre-assumption on data distribution or cluster number,
and guaranteed to converge with only one-time computation of pairwise distances [34]],

3 Problem description

The project is aimed to design a problem-specific algorithm for clustering tumor samples with re-
spect to their belonging simplices in a simplicial complex embedded in high-dimensional feature-
space. The vertices of each simplex are assumed to represent the cell clones that map to the nodes
on the oncogenetic tree of the particular type of tumor, and the number of shared nodes by two lin-
eages determines the number of vertices shared by two simplices. The input dataset is organized as a
matrix whose rows and columns are associated with samples and measurements of certain features,
respectively.

4 Method

4.1 Algorithms and implementation

Besides the development of medoidshift with non-positive kernel (NPK), this project also involves
standard medoidshfit and k-medoids as competing algorithms, and adjusted rand index as a measure
of clustering results. NPK-medoidshift, standard medoidshift and ARI are scripted in MATLAB
R2014b, and k-medoids is implemented as a built-in function of MATLAB R2014b with k-means++



seeding. The built-in function graphallshortestpaths of MATLAB R2014b is used whenever the
shortest L2-squared path is needed as distance metric.

4.2 Standard medoidshift revisited

The derivation of the medoidshift algorithm mainly follows the work of Sheikh et al. [34] and
Comaniciu et al. [35]. Similar to meanshift, the medoidshift algorithm is designed to find the modes
of estimated kernel density, but only at data points rather than in the whole continuous parameter
space:

n

fla) = > @) (1)

J

Here ®(-) is the kernel function using profile notation, and x;, z; are data points such that 1 < 4 <
n,1 < j < n. The factors ¢ and h are the normalizer and kernel bandwidth, respectively. The
distance measure z;; can be any non-negative distance metric between data points x; and x;, for
example, the scaled L2-squared distance:
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To formulate a medoidshift task, first the original kernel, or “shadow kernel” ®(-) must be translated
into a medoidshift kernel by:
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where the iterative update rule is:
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Here y, is the medoid at pt" step. In fact, because the sequence of 3 belongs to the set of data
points, one iteration of the above minimization will provide enough information to trace out the
convergence trajectory for all data points. The trace terminates when yx11 = yx.

Sheikh et al. proved that medoidshift is guaranteed to converge when the shadow kernel function
®(-) is convex. The resulting sequence y has the property that f(y,+4) > f(y,) forall ¢ > 0 (Theo-
rem 2.1 in [34]). Equivalently, a convex shadow kernel means ¢'(-) < 0, or ¢(x) is a monotonically
non-increasing function on x > 0 because of the symmetry of ®(-) and ¢ ().

4.3 Medoidshift with non-positive kernel (NPK)

As discussed in the background section, the standard medoidshift clustering may not work well
for separating simplices from a simplicial complex due to the possibility that the simplices, despite
occupying distinct subspaces, may yield point clouds so overlapping that will result in a super cluster
that includes all adjacent simplices. By the structural characteristics of a simplicial complex, a better
strategy is to find the class centers located at density minima, often one vertex that is farthest from
the density center for each simplex, and group the points in the containing simplex into one cluster.
Intuitively, this can be achieved by reversing the sign of the kernel function in Equation [3}

o) = () (5)



The convergence of medoidshitht with ¢(-) is guaranteed with a concave shadow kernel ®(-) and
the same update rule in Equation {4 with ¢(-) instead of ¢(-). To prove that, it is sufficient to show
that the resulting sequence y has the property that f(y,+4) > f(y,) for all ¢ > 0. From Equation[l]
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and the concavity of ®(-),
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By the update rule in Equation 4] and the termination at 11 = ¥,
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Combining the two above inequalities, we conclude that f(y,+1) < f(p) for all p, thus the sequence
f(y) is strictly decreasing. This guarantee of convergence will however break down if a hard cut-off
is applied. Hard cut-offs, such as ®(z) = 0 if ||z|| > 1, are common for other kernels but they will
break the concavity of ®(z). Although the convergence only requires concavity, non-decreasing
®(-) such as log(z;; + 1) will result in an estimated kernel density that is inversely proportional
to data density, making a decreasing sequence of f(-) converge at the density maxima. A non-
increasing ®(-) implies a non-positive first derivative, i.e. ¢(-) < 0, and the concavity of ®(-)
implies ¢'(+) < 0, i.e. ¢(-) is non-increasing.

4.4 2-stage medoidshift

To suppress the noise in data clouds, a standard medoidshift is used as a generic denoiser before
using NPK medoidshift. Without knowing the underlying noise distribution, we collapse the data
clouds by stepping one iteration forward with standard medoidshift, and then use NPK medoidshift
to cluster the remaining points. Labeling is preserved when tracking the trajectory of medoids across
the two stages.

4.5 Assessment of clustering results

It is a non-trivial work to find a good measure that tells the quality of clustering, as the values of
true positive (TP), true negative (TN), false positive (FP) and false negative (FN) are hard to define
when the number of clusters given by medoidshift is not always the same as ground truth. One
promising measure is the adjusted Rand index (ARI), which defines TP, TN, FP and FN according
to the pairwise relations among data points [36]:
o TP: a pair of points that belong to the same true cluster are also in the same inferred cluster.
e TN: a pair of points that belong to different true clusters are not in the same inferred cluster.
e FP: a pair of points that belong to different true clusters are in the same inferred cluster.
e FN: a pair of points that belong to the same true cluster are not in the same inferred cluster.

Assume there are v true clusters denoted by V;,1 < i < v, w inferred clusters denoted by W;, 1 <
J < w,and m;; = |V; N W;|, then the value of ARI is computed as [37]:
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One advantage of using ARI is its stringent penalty for random clustering and trivial clustering. As
mentioned above, standard medoidshift often creates a trivial cluster that includes all data points,
which will be rated as low as 0 by ARI but still as much as 0.5 by Jaccard index, another popular
measure of clustering results [38,[39]].

4.6 Kernel functions and bandwidth selection

In this project, the following shadow kernel and kernel are used with the standard medoidshift
method and the first stage of 2-stage medoidshift:
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and the following shadow kernel and kernel are used with NPK medoidshift and the second stage of
2-stage medoidshift:

(bl(Zij) = Zij — exp(zij)
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To provide a relatively fairer comparison across datasets with varying sparsity and distance metric,
the kernel bandwidth was not set to a fixed value, but rather decided by the mean of pairwise distance
and the choice of a bandwidth factor h.. The following is an example for L2-squared distance:
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and the distance metric is therefore scaled as:
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5 Dataset

5.1 Synthetic scenarios

Evaluation of the effectiveness of the methods is complicated by the lack of ground truth mixture
compositions from real heterogeneous tumor data. Synthetic datasets generated from simulated
scenarios with known mixture components, mixture fractions, and simplicial structures therefore
provide a relatively fair testbed to quantify effectiveness of the methods. Five tumor evolution
scenarios are considered here, each involving a model of tumors evolving into two or three subtypes:

e Scenario T2E consists of a model in which a healthy state evolves into an early precan-
cerous state that subsequently branches into two subtypes of late state (Figure [I] A). This
model results in a structure of two triangles sharing an edge (Figure[I|F). One triangle has
50 data points and the other has 100.



Figure 1: The simulated tumor progression scenarios for producing synthetic datasets. Subfigures
A, B, C, D, E show five oncogenetic trees of the synthetic model (T2E, T2V, Q2V, L3V, TLV,
respectively), each with healthy cells at root, tumor progenitor cells as internal nodes, and tumor
subtypes at leaves. Their corresponding simplicial complex structures are shown in subfigures F, G,
H, 1, J, respectively, and synthetic data points are randomly drawn from the enclosed simplices. Note
that the structures are embedded in 10-Dimensional space while illustrated in 3-D for diagrammatic
view.

e Scenario T2V consists of two subtypes each with its own early and a late progression
stages (Figure [T] B), yielding a structure of two triangles joined at a vertex (Figure [I G).
One triangle has 50 data points and the other has 100.

e Scenario Q2V consists of a more complex two-subtype model, in which each subtype is de-
fined by early, intermediate, and late progression stages (Figure [T| C). The resulting struc-
ture is a pair of tetrathedra joined at a vertex (Figure [I| H). One tetrahedron has 50 data
points and the other has 100.

e Scenario L3V assumes an ancestral healthy cell subpopulation that diverges into three dis-
crete subtypes each with a single progression state (Figure [T D). The result is a simplicial
complex structure consisting of three lines joined at a vertex (Figure[I|T). Each of the lines
have 25, 50, 75 data points, respectively.

e Scenario TLV consists of two subtypes with unequal number of intermediate stages: one
is the direct descendant of healthy cell, the other has one precancerous stage (Figure [I| E).
The resulting structure is a line and a triangle sharing a vertex (Figure[]J). The line has 25
data points and the triangle has 100 data points.

The structures are embedded in 10-Dimensional space by placing the vertex that represents healthy
cells at the origin, and each of the other vertices on a unique base vector with unit distance away from
the origin. Under noiseless condition, data points are uniformly randomly placed inside the enclosed
simplex; and under noisy conditions, Gaussian noises with standard deviation o = 0.05,0.1, 0.2 are
added to each dimension of each data point.

5.2 Real tumor data

Using array comparative genomic hybridization (aCGH), a molecular cytogenetic technique for
analysing copy number variations (CNVs) relative to ploidy level in the DNA of a test sample com-
pared to a reference sample, Navin et al. assayed CNVs of 83,055 genes from 87 breast tumor
samples, forming an 87-by-83,055 matrix [40]. Principle component analysis (PCA) reduced the



dimensionality down to 86, with the projected space consisting of the first 10 principle components
(PC) capturing approximately 90% of the data covariance.

Jones et al. measured the expression levels of 40368 genes in 91 lung cancer cells by complementary
DNA (cDNA) microarray [41]]. The pre-process of the dataset follows previous work in Schwartz et
al. [8]], where the data points were translated from log space to linear space and the upper and lower
limits are set to 2° and 272, respectively. The values outside the limits were set to the closer limit,
and two outliers were discard from the dataset. The dimensionality was reduced to 88 by PCA.

Retrieved from the cancer genome atlas (TCGA), the third dataset consists of 1100 breast tumor
samples profiled at 20,243 expression levels with RNASeq [42], a technology that uses the capa-
bilities of next-generation sequencing to reveal a snapshot of RNA presence and quantity from a
genome at a given moment in time. Three outliers were discarded, and the remaining data points
were normalized by dimension-wise standard deviation. The dimensionality was reduced to 1096
by PCA.

For all three datasets, the data points projected in the PC space were linearly scaled to fit in a range
of [0, 1] in each dimension.

6 Results

The standard medoidshift, NPK medoidshift and 2-stage medoidshift methods were applied to all
synthetic scenarios (Figure [2), where data points are randomly generated for 100 replicates per
scenario per choice of o. For the first 2 methods, h. takes the values from 0.2 to 2 with a step size
of 0.2, and for 2-stage medoidshift, A, is fixed at 1 for the first stage and ranges from 0.2 to 2 with
a step size of 0.2 for the second stage. The results of the three methods obtained at A, = 1 are then
compared against k-medoids with the data generated under the same scenarios and levels of noise
(Figure[3).

By applying NPK medoidshift (with A, = 1) on the first 3-PC space of the real aCGH data, one can
find 3 line-shaped clusters joined at one vertex, and the cluster “centers” located on the disjoined
endpoints of the lines (Figure[d] B). The spatial distribution of the data points projected in the first 3-
PC space may inspire people using 3-medoids clustering, which yields indeed quite similar clusters
for aCGH data, but with cluster centers located at the density centers (Figure 4] A).

Applied to the first 5-PC space of the aCGH cancer data, NPK medoidshift (with h, = 1) finds
one more cluster that resides near the origin in the first 3-PC space (Figure [5] A). Although indis-
tinguishable in the first 3-PC space, the new cluster shows considerable divergence in the additional
PC spaces (Figure[5|B, C) from the other clusters.

The distribution of cDNA data points in the first 3-PC space shows a similar “3-arm” shape to the
aCGH case, with the difference being arched “arms” and sharper angles between each pair of “arms”
(Figure ] C, D). Shortest L2 squared path is used as distance measure between points in the aCGH
data, and NPK medoidshift (with A, = 1) classified each “arm” as its own cluster with “centers”
located again on the disjoined endpoints of the “arms” (Figure 4| D). The application of 3-medoids
failed to give desirable clusters that could separate the “arms” (Figure[d C).

The data clouds in TCGA dataset have a much noisier appearance which makes the separation of
potential clusters a much harder task than in the previous two real datasets (Figure[6). Coupled with
shortest L2-path distance metric and kernel bandwidth factor A, = 1, the application of 2-stage
medoidshift on TCGA dataset discovered 3 clusters in the first 4-PC space (Figure [6). Despite the
noisiness, the red cluster shapes like a tetrahedron in the first 3-PC space, and a flat disk in the 2-
3-4-PC space; and the blue and black clusters appear to be a triangle and a rod respectively in both
1-2-3-PC and 2-3-4-PC spaces (Figure [6).

7 Discussion

Comparing across the five scenarios, finding the right clusters for Q2V and T2V is much easier than
for the others, because under these scenarios the two simplices share only one vertex while having
most of the data clouds away from the joining vertex. Scenario T2E is a much harder case due to its
density center being placed on the joining edge. In theory, TLV is an easier case than L3V, which is
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Figure 2: Comparing clustering results of synthetic Scenarios Q2V (B, C, D, E), T2V (G, H, 1, J),
TLV (L,M, N, 0),L3V (Q, R, S, T) and T2E (V, W, X, Y) by standard medoidshift (red curves), NPK
medoidshift (blue curves) and 2-stage medoidshift (black curves). Gaussian noise is added to the
datasets withoc =0 (B, G, L, Q, V),0.05(C,H,M,R, W),0.1 (D,IN, S, X),and 0.2 (E,J,O, T, Y).
For each subfigure of errorbars, the vertical axis indicates the value of ARI for every subfigure, the
horizontal axis indicates the kernel bandwidth factor, and the errorbars show one standard deviation
above and below the mean ARI value. The structural illustrations of the scenarios are shown in
Subfigures A, F, K, P, U, respectively. In general, 2-stage medoidshift (black curves) gives the
highest ARI values, while standard medoidshift gives the lowest and most bandwidth-sensitive ARI.

proved by k-medoids, but NPK medoidshift has a slightly lower success rate in clustering TLV than
L3V, which is caused by occasionally mistaking the two vertices in the triangle as two endpoints in
different simplices. All methods perform poorly at noise level 0.2 under all scenarios.

Comparing across the first three methods, the standard medoidshift yields low and h.-sensitive ARIs
for all scenarios, while 2-stage medoidshift gives overall the highest and most stable ARIs. Scenario
TLV is relatively sensitive to kernel bandwidth with NPK medoidshift (Figure |Z|L, M, N, P), which
prefers the choice of smaller bandwidth value under all noise conditions. The performance of NPK
medoidshift is close to 2-stage medoidshift in term of ARI value under Scenario L3V (Figure 2] Q,
R, S, T). Adding k-medoids to the comparison, it is obvious that the k-medoids method has slight
advantages over 2-stage medoidshift under Scenarios Q2V (Figure@B, C,D,E), T2V (Figure@G,
H, I, J) and TLV (Figure |§| L, M, N), but slight disadvantages under the other two harder scenarios
(Figure[3|Q, R, S, V, W, X).
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Figure 3: Comparing clustering results of synthetic Scenarios Q2V (B, C, D, E), T2V (G, H, I,
I), TLV (L, M, N, O), L3V (Q, R, S, T) and T2E (V, W, X, Y) by standard medoidshift, NPK
medoidshift, 2-stage medoidshift and k-medoids with the correct k. Gaussian noise is added to the
datasets with ¢ =0 (B, G, L, Q, V), 0.05 (C, H, M, R, W), 0.1 (D, I, N, S, X), and 0.2 (E, J, O,
T, Y). For each subfigure of boxplots, the vertical axis indicates the value of ARI, the horizontal
axis corresponds to the list of methods, the red bars indicate the median, the boxes include the first
to the third quarter quantile, the whiskers reach to extrema, and the red pluses mark the outliers.
The structural illustrations of the scenarios are shown in Subfigures A, F, K, P, U, respectively. K-
medoids gives the highest ARI under scenarios Q2V, T2V and TLV, while 2-stage medoidshift and
NPK medoidshift give higher ARI under scenarios L3V and T2E.

Applications of NPK medoidshift and 2-stage medoidshift on real cancer datasets show reasonable
clustering results which one would expect from their sub-structural appearances. In the cases of
aCGH and cDNA datasets, where data clouds spread in 3 distinct arms in the first 3-PC space,
the NPK medoidshift performs superior than standard medoidshift even k-medoids, which is in
accordance with the similar synthetic scenario L3V. In the cases of cDNA and TCGA datasets where
inter-cluster distances may be shorter than intra-cluster distances for some data points measured in
Euclidean space, using shortest path as distance metric might be able to create the correct clustering
as in other cases of manifold learning [33]].

In comparison, standard medoidshift failed to produce any desirable clustering with a range of band-
width when being applied to the first 3-PC space of real aCGH and cDNA data(Figure[J). Affected
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Figure 4: Comparing clustering results of the aCGH (A, B) and cDNA (C, D) data projected in the
space consisting of the first 3 PC by 3-medoids (A, C) and NPK medoidshift (B, D). Data points are
colored with respect to their belonging clusters, and the circles indicate the corresponding cluster
centers. The 3-medoids method found the cluster center located at local density maxima, while NPK
medoidshift found them located at vertices farthest away from the conjoint point.

by the fluctuation in the spatial density of the data cloud, a small bandwidth may lead to too many
smaller clusters, and a large bandwidth may include two or more clusters in a super cluster.

K-medoids works reasonably well with the correct number of clusters. In the applications on aCGH
and cDNA datasets, it seems obvious that £ should be set to 3 while clustering the first 3-PC
space with k-medoids method in both cases, but adding more PCs to the space hinders the deter-
mination of cluster numbers by visually checking the distribution of data points, and the use of
k-medoids method therefore requires the inference of k£ by model selection under these conditions.
Medoidshift-based methods do not rely on predefined cluster numbers; instead the number of in-
ferred clusters is influenced by kernel bandwidth, and such influence is less prominent with NPK
medoidshift.

8 Limitations

When developing the synthetic scenarios, the vertices of the simplices are assumed to occupy dis-
tinct subspaces in the synthetic scenarios, resulting in perpendicular edges joined at the origin. This
assumption follows as a consequence of embedding a low-dimensional manifold in a much higher
dimension, where it is less likely to have more than one vertex in one dimension. Another simplifi-
cation in the scenarios is that the vertices have equal distance from the original, which follows the
sole criterion for classifying data points with respect to the found cluster centers being minimizing
the distance from each data point to the center of its belonging cluster. As a consequence of that,
when a vertex is chosen to be the “center” of a simplex by NPK medoidshift, the correctness of
clustering relies on the distance from that vertex to the decision boundary. Taking scenario L3V for
an example, the resulting clusters might be skewed if the lines have different length measured in
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certain distance metric. A possible remedy for more complicated situation in manifold learning is to
develop more sophisticated metrics.

Lots of factors in the real world may affect the accuracy of clustering, with an important one being
the noisy observations. In the synthetic scenarios, Gaussian noise is added with standard deviation
up to 0 = 0.2, and the k-medoids and 2-stage medoidshift can produce meaningful clusters up to
o = 0.1 for some scenarios. It is non-trivial to estimate the noise induced by experimental measures
with different genomic profiling techniques; Su et al. estimated o to range from 0.05 to 0.38 for
RNA-seq [43]. When these datasets usually have much higher dimensionality than the number of
data points, PCA may serve as a denoiser but complicates the quantification of the remaining noise
after PCA. Two other factors - the surface shared by two or more simplices and the number of
data points in each simplex - are inherent to the structure of the tumor phylogenetic tree and the
source of the samples. The results from clustering the synthetic datasets show the tendency of a less
accurate clustering if a higher proportion of the precancerous states is shared among the lineages.
The synthetic scenarios are created deliberately with unequal cluster size, which accounts for the
uncertainty in the possible real applications to some extent. The accuracy of every method increases
substantially when data points are evenly distributed across the simplices (results not shown).

The clustering results are influenced by more PCs adding to the space (Figure [7} [§), but whether
the fluctuation in clustering is a reflection of actual oncogenetic meaning or merely driven by noise
requires further oncogenetic analysis.

9 Conclusion

The work in this project fits in the framework of tumor phylogenetic study by facilitating unmixing
tumor heterogeneity with the separation of possible phylogenetic lineages. The new-introduced NPK
medoidshift method works as a desirable classifier that handles the special challenges in clustering
generic tumor genomic data, and is less dependent on the a priori knowledge and experimental
source of the data. Non-conventional kernels such as ®;(-) and ¢ (-) may have little meaning in
most statistical applications that involve kernel density estimation, but they serve the purpose in
finding data points located at geometric extrema of the simplices. Application on the synthetic
scenarios proves that 2-stage medoidshift can produce clusters of similar quality to k-medoids with
known cluster numbers, and outperforms standard medoidshift method in general. NPK medoidshift
and 2-stage medoidshift captured previously undiscovered sub-spacial characteristics of the point
clouds from real breast cancer data, but the biological meaning of the discovered clusters in real
dataset requires verification from unmixing and further oncogenetic studies.

10 Future works

The results suggest further work may be needed to build more realistic synthetic scenarios that can
better reflect the nature of tumor genomic data. Some directions seem promising in making im-
provements in synthetic data generation, for example, deriving a better data generating method that
approximates the noise in real measurements, and designing new scenarios without the assumptions
of vertices occupying individual dimension and equal distance from vertices to the origin.

In case of clustering data with more complicated structures, one might consider finding a problem-
specific distance metric, but might also benefit from a problem-specific kernel function. Unlike
standard kernel density estimation where the choice of kernel functions plays a much less impor-
tant role than that of the kernel bandwidth, coupling medoidshift with different NPKs may lead to
unexpected clustering results. For example, by using a flat kernel ¢; () = —1 medoidshift will sim-
ply create a single trivial cluster centered at the point that has the largest total distance to the other
points:

n
y = argmin Z —|lz; — yl? (15)
y€{$1...$n} i
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The use of ¢;(z;;) = —z;; will result in undesirable insensitivity to the choice of bandwidth:

. - 2 | — ypH2T
yp+1 = argmin Z ||$7, — y” ( — T)
yE{Tl-Ln} i
1 ¢
= argmin 5 D —llw = ylPll: — gpl*r (16)
y€{$1~-~$n} i

n

= argmin Y i —yl*|lzi - yp
ye{z1...xn} 7

”27"

The NPK ¢1(z;;) = exp(—z;;) — 1 has some interesting features. When £ is too small, exp(—z;;) —
1 approximates -1 and creates trivial clustering. When h is too large, exp(—z;;) — 1 approximates
—z;; and becomes insensitive to h.

Nevertheless, the results from clustering tumor genomic data, even the candidates from unmixing
each cluster, are inconclusive of any biological meaning until further oncogenetic validations have
been performed.
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Figure 5: Resulting clusters of the aCGH data projected in the space consisting of the first 5 PC
by NPK medoidshift. Data points are colored with respect to their belonging clusters. The data
points are shown in 3D spaces consisting of the 1st-2nd-3rd (A), 2nd-3rd-4th (B), and 3rd-4th-5th
(C) PC. Despite indistinguishable in Subfigure A, the magenta cluster diverse from the other clusters
in Subfigures B and C.
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Figure 6: Resulting clusters of TCGA data projected in the space consisting of the first 4 PC by
2-stage medoidshift. Data points are colored with respect to their belonging clusters. The data
points are shown in different view angles in 3D spaces consisting of the 1st-2nd-3rd (A, C, E, G)
and 2nd-3rd-4th (B, D, F, H) PC. The clusters appear to have distinct shapes and spacial occupation.
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Figure 7: Resulting clusters of aCGH data projected in the space consisting of the first 8 PC by
medoidshift with non-positive kernel. Data points are colored with respect to their belonging clus-
ters. The data points are shown in 3D spaces consisting of the 1st-2nd-3rd (A), 2nd-3rd-4th (B),
3rd-4th-5th (C), 4th-5th-6th (D), 5th-6th-7th (E), and 6th-7th-8th (F) PC. The increased dimension-
ality influences the clustering result with the risk of fitting noise.
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Figure 8: Resulting clusters of cDNA data projected in the space consisting of the first 6 PC by
medoidshift with non-positive kernel. Data points are colored with respect to their belonging clus-
ters. The data points are shown in 3D spaces consisting of the 1st-2nd-3rd (A), 2nd-3rd-4th (B),
3rd-4th-5th (C), and 4th-5th-6th (D) PC. The increased dimensionality influences the clustering re-
sult with the risk of fitting noise.
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Figure 9: Comparing clustering results of aCGH data projected in the space consisting of the first 3
PC by standard medoidshift with kernel bandwidth factors of 0.5 (A), 1.0 (B), 1.5 (C), 2.0 (D), 2.5
(E), and 3.0 (F). Cluster centers are marked with red circles. The clustering is sensitive to the choice
of bandwidth factor, and it fails to give desirable clustering in all cases.
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Figure 10: Comparing clustering results of cDNA data projected in the space consisting of the first
3 PC by standard medoidshift with kernel bandwidth factors of 0.5 (A), 1.0 (B), 1.5 (C), 2.0 (D), 2.5
(E), and 3.0 (F). Cluster centers are marked with red circles. The clustering is sensitive to the choice
of bandwidth factor, and it fails to give desirable clustering in all cases.
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