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ABSTRACT  

We present the Generalized Fast Subset Sums (GFSS) method, an extension of the 
recently proposed Multivariate Bayesian Scan Statistic (MBSS) and Fast Subset Sums 
(FSS) approaches for detecting irregularly shaped spatial clusters efficiently and 
effectively.  The MBSS framework (Neill and Cooper, 2010) can integrate multiple data 
streams for detection of emerging events, but its detection power is primarily limited by 
computational considerations, which limit it to searching over circular spatial regions.  
The FSS method (Neill, 2011) enables more accurate and timely detection by defining a 
hierarchical prior over all subsets of the N locations. The GFSS method generalizes the 
FSS framework by introducing a sparsity parameter p to describe how likely each 
location in the neighborhood (defined by the center location and the neighborhood size) 
is to be affected. The sparsity parameter allows us to consider all possible subsets of 
locations (including irregularly-shaped spatial regions) but also puts higher weight on 
more compact regions. In this study, we first learn the distribution of the sparsity 
parameter p from a fully labeled dataset, given the spatial extent of each labeled event.  
The detection power of GFSS, using the learned distribution of p, was compared to GFSS 
with uniformly distributed p, as well as the original FSS and MBSS approaches. Our 
evaluation results (on synthetic disease outbreaks injected into real-world hospital 
Emergency Department data) show that the distribution of p can be learned reasonably 
well based on 100 simulated outbreaks, and that the GFSS method with learned sparsity 
parameter has higher detection power and spatial accuracy than MBSS and FSS, 
particularly when the outbreak region is irregular or elongated.  We also demonstrate 
that the learned models can be used for event characterization, accurately 
distinguishing between two otherwise identical outbreak types based solely on the 
sparsity of the affected spatial region. 
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1. INTRODUCTION 

The multivariate Bayesian scan statistic (MBSS), proposed by Neill and Cooper [1], is a 
general framework that detects and characterizes emerging events (such as an outbreak 
of disease) using multivariate spatial time series data. MBSS has multiple advantages 
over previously proposed, frequentist spatial scan methods: it is computationally 
efficient, can accurately differentiate between multiple event types, and its results (the 
posterior probability distributions of each event type over time and space) can be easily 
visualized and used for decision-making [1,2]. However, as is the case for many spatial 
scan methods, MBSS is primarily limited by computational considerations, which only 
allow circular spatial regions to be searched.   
    The Fast Subset Sums (FSS) method [2] is an extension of the previous MBSS 
framework. By introducing a hierarchical prior distribution over regions that assigns 
non-zero prior probability to each of the 2N subsets of locations, FSS can compute the 
total posterior probability of an event and its spatial distribution by computing the sum 
of the exponentially many region posterior probabilities efficiently and effectively. 
    In present study, we propose a generalized version of the FSS framework which 
improves the detection power of the original FSS method, especially for irregularly 
shaped outbreaks. A new parameter p, representing the sparsity of the outbreak region, 
is introduced into the framework.  This parameter can be viewed as the expected 
proportion of locations affected in the local neighborhood consisting of a center 
location and its k – 1 nearest neighbors.  We show that two specific values of p, p = 1 
and p = 0.5, reduce to the previously proposed MBSS and FSS methods respectively, but 
detection performance can often be improved by considering a range of possible p 
values from 0 to 1.  We show that the distribution of the p parameter can be accurately 
learned from labeled training data, and that the resulting learned distribution of p can 
be incorporated into the GFSS detection framework, resulting in substantially improved 
detection power and spatial accuracy. 
 

2. METHODOLOGY 

    In this section, we first briefly review the recently proposed Multivariate Bayesian 
Scan Statistics (MBSS) and Fast Subset Sums (FSS) methods, present the new 
“Generalized Fast Subset Sums” (GFSS) framework, and finally consider how the 
distribution of the sparsity parameter can be learned from labeled training data within 
this framework. 
 
2.1 Multivariate Bayesian Scan Statistics 

The MBSS methodology aims at detecting emerging events (such as disease 
outbreaks), identifying the type of event and pinpointing the affected locations. MBSS 
compares a set of alternative hypotheses H1(S, E) with the null hypothesis H0, where 
each hypothesis H1(S, E) represents the occurrence of some event type E in some subset 
of locations S, and the null hypothesis H0 assumes that no events have occurred.  All of 
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these hypotheses are mutually exclusive.  Therefore, according to Bayes’ Theorem, the 
posterior probability of each hypothesis (given the observed dataset D) can be 
expressed as: 
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where the total probability of the data can be written as:   ( )    ( |  )   (  )   
 ∑    ( |  (   ))   (  (   ))   . The standard MBSS method introduced in [1] 
assumes that the prior    (  (   )) is uniformly distributed over all event types and all 
possible circular spatial regions S.  Only circular regions are considered because this 
simplification reduces the computation time from exponential to quadratic in the 
number of locations N; however, this assumption reduces the power of MBSS to detect 
non-circular clusters, especially if the affected region is highly elongated or irregular. 

The dataset D in the MBSS framework consists of multiple data streams Dm, m=1…M, 
and each stream contains spatial time series data collected from a set of locations si, for 
i=1…N.  For each location si and data stream Dm, we have a time series of observed 
counts     

  and the corresponding expected counts (or baselines)     
 , where the 

baselines are estimated from time series analysis of the historical data for the given 
location and data stream. The subscript t=0 represents the current time step, and t=1…T 
represent from 1 to T time steps ago respectively. For instance, a given count     

  may 

represent for a given zip code on a given day the total number of Emergency 
Department (ED) visits for fever symptoms, and the corresponding baseline     

  would 

represent the expected number of fever ED visits for that zip code on that day [1, 2]. 
Besides the prior    (  (   )), another important quantity to consider is the 

likelihood function   ( | ), as shown in Figure 1. We assume that the observed count 
    
  is modeled using the Poisson distribution:     
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the relative risk. Further, the relative risk is modeled as     
       (     ) under 

the null hypothesis, and as     
       (    
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where    and    are parameter priors calculated from historical data, and     
  is the 

impact of the outbreak for the given data stream Dm, location si, and time step t. The 
distribution of     

  is conditioned on the outbreak region S, the event type E, the 

temporal window W and the severity parameter θ, which is assumed to be drawn from 
a discrete uniform distribution Θ. The temporal window W is drawn uniformly at 
random between 1 and Wmax, the maximum temporal window size. In present study, 
Wmax is set to 3 for better detecting more quickly emerging outbreaks, as suggested by 
Neill [3]. 

The total likelihood of the data given the alternative hypothesis    (   ) can be 

expressed as:   ( |  (   ))  
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likelihood ratio for each location in a given region S can be expressed as     

∏ ∏
   (    
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       )
             as described in [1, 2]. The likelihood ratio for 

each spatial region S, conditioned on W, θ, and E, is obtained by multiplying the 
likelihood ratios of all locations in that region.  We then marginalize over these 
parameters to obtain the total likelihood of region S, and combine the prior with the 
likelihood (as given above) to obtain the posterior probability of each event type E in 
each region S. 
 
2.2 Fast Subset Sums 

    As discussed in the previous section, the MBSS method is primarily restricted by its 
exhaustive computation over spatial regions S, which requires us to limit our search 
space to a small fraction of all the O(2N) possible subsets of locations.  More precisely, 
all non-circular regions are assumed to have zero prior probability, thus reducing the 
method’s computation time but also its detection power for irregular clusters.  However, 
two important insights allow us to circumvent this limitation: the total posterior 
probability of an outbreak is the sum of the region probabilities    (  (   )| ), and the 
posterior probability that each spatial location si has been affected is a sum over all 
spatial regions which contain si.  The FSS framework defines a non-uniform, hierarchical 
prior distribution    (  (   )| ) such that all 2N subsets have non-zero prior probability, 
but more compact regions have a larger prior.  The spatial region   affected by the 
outbreak is assumed to be drawn from a generative distribution conditioned on two 
latent variables: the “center” location sc and the “neighborhood size” k.  Here we 
assume that the center sc is drawn uniformly at random from the set of N locations, and 
the neighborhood size k is also drawn uniformly at random between 1 and some 
constant maximum neighborhood size kmax.  The center and neighborhood size together 
define the local neighborhood    , consisting of the center location sc and its k – 1 
nearest neighbors.  Finally, we assume that the affected subset of locations S is drawn 
uniformly at random from the neighborhood    , i.e. all 2k subsets of     are equally 
likely.  This hierarchical prior, and particularly the assumption that S is drawn uniformly 
at random given the center and neighborhood size, enables us to calculate the posterior 
probabilities much more efficiently.  Conditioning on the outbreak type E, severity θ, 
temporal window W, center location sc, and neighborhood size k, we can compute the 

average likelihood ratio over all 2k subsets of Sck:  ∑   ( | )  
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)      , as shown by Neill [2].  We must then marginalize over the five 

variables E, θ, W, sc, and k to compute the total posterior probability of an outbreak. 
 
 
2.3 Generalized Fast Subset Sums 

The fundamental improvement of the newly proposed method in the present study is 
that a sparsity parameter is introduced into the FSS framework.  For a given local 
neighborhood Sck, we do not simply choose the subset of affected locations S uniformly 
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at random, but instead we independently choose whether to include or exclude each 
location si in Sck.  Each location is included with probability p or excluded with 
probability 1 – p, where p is a constant (0 < p ≤ 1) which we term the sparsity parameter.  
The sparsity parameter p can also be viewed as the expected proportion of locations 
affected within a given (circular) local neighborhood.  Hence, the previous MBSS and FSS 
approaches are two special cases in the GFSS framework: when p = 1, all of the locations 
in a circular region     are affected, and thus GFSS becomes equivalent to the MBSS 
framework.  When p = 0.5, each location is equally likely to be affected or unaffected: 
thus each of the 2k subsets of Sck is equally probable, and GFSS becomes equivalent to 
FSS.  Higher values of the sparsity parameter p result in improved detection of more 
compact clusters, while lower values of p enhance detection of more elongated or 
irregular clusters.  We now explain the GFSS detection framework, and then present 
algorithm for learning p from labeled training data. 

The detection method of GFSS is developed based on the original FSS method, and 
still enables us to efficiently compute the average likelihood ratio for the 2k subsets in a 
given local neighborhood Sck. The only difference between GFSS and FSS is that the 
sparsity parameter is now applied when we calculate the likelihood ratio for each 
location in the region      . Thus, the sum of the 2k products of the locations’ likelihood 
ratios can again be expressed as a product of k sums: 

∑    ( | )      ∑ ∏         ∏ ((   )       )           . Furthermore, the 

total posterior probability of an outbreak is now marginalized over the distribution of 
the sparsity parameter p as well as the event type E, temporal window W, severity θ, 
center location sc, and neighborhood size k. 

Based on fully labeled data, we can also learn the distribution of the sparsity 
parameter p to improve the detection ability of the GFSS method. The assumption of 
fully labeled data means that we are given the affected subset of locations S for each 
labeled training example; however, we are not given the values of the three latent 

variables (center sc, neighborhood size k, and sparsity p).  Let  ⃑ = S1…SJ represent a set 
of J labeled training examples.  We can then apply Bayes’ Theorem to learn the 
posterior distribution of p: 

  ( | ⃑)    ( )   ( ⃑| )     ( )∏∑ ∑    (  |      )   (  )   ( )
   

 

   

 

where  ⃑ is the fully labeled training dataset, p is the sparsity parameter, and J is the 

total number of outbreak regions in the training dataset  ⃑.  The likelihood of outbreak 
region    given the center sc, the neighborhood size k, and the sparsity parameter p can 

be further expressed as   (  |      )   
|  |(   )|   | |  | if all of the affected 

locations in    are fully contained in the local neighborhood    , and   (  |      )    

otherwise, where |  | is the total number of locations in outbreak    and |   | = k is the 

total number of locations in region     .  We consider a discrete uniform prior 
distribution of p with ten distinct values (p = 0.1, 0.2, …, 1) and obtain the posterior 
probability for each value of p. 
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2.4 Related work 

The present study proposes the Generalized Fast Subset Sums (GFSS) method to 
extend the current FSS [2] and MBSS [1] methods for multivariate Bayesian event 
detection.  The Bayesian spatial scan framework is a variant of the traditional 
frequentist, hypothesis test-based spatial scan methods [4, 5]. Two recently proposed 
frequentist spatial scan methods, the Kulldorff’s parametric scan *6+ and the 
nonparametric scan [7], also allow integration of multiple data streams for detection; 
however, unlike MBSS and FSS, these methods cannot differentiate between multiple 
event types.  The recently proposed “linear-time subset scanning” (LTSS) method [8], 
enables an efficient search over the 2N subsets of locations while only evaluating O(N) 
subsets.  However, the LTSS method simply finds the most anomalous (highest scoring) 
subset, and cannot be used to compute the total posterior probability of an outbreak or 
its posterior distribution in space and time, which require summing over all subsets of 
locations. Previously, incorporating learning approaches to improve detection power by 
using non-uniform priors on each search region were explored in [1, 9].  However, these 
methods are still constrained by the computational issues presented in the MBSS 
framework, preventing them from being used to define priors over all subsets of the 
data rather than just circular regions. 
 

3. EVALUATION 

In this section, we evaluate the learning performance, as well as compare the 
detection power and spatial accuracy of the GFSS method with the MBSS and FSS 
approaches. The dataset and simulation procedure are introduced first. 

 
3.1 Description of training and testing data 

 The training and testing data are generated based the same dataset used in (Neill, 
2011). The original dataset contains de-identified Emergency Department visit records 
collected from ten hospitals in Allegheny County from January 1, 2004 to December 31, 
2005. The records are further classified into various data streams according to the 
different chief complaint types, such as “cough” and “nausea” which are the two 
streams used in the present study. For each data stream, we have the count of ED visits 
of that type (cough or nausea) on each day for each Allegheny County zip code. 

We injected simulated outbreaks into the two original data streams to generate 
simulated training and testing datasets.  The simulated outbreaks were generated using 
the same hierarchical generative model as assumed in the GFSS framework; evaluation 
for the case where the model is misspecified, and the simulated outbreaks are not 
generated according to this framework, will be addressed in future work.  We 
considered six different outbreak types: outbreaks generated using five different values 
of the sparsity parameter p (p = 0.2, 0.4, …, 1.0), and a sixth outbreak type which 
consisted of an equal mixture of p = 0.2 and p = 0.8.  For each combination of the value 
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of sparsity parameter p and data stream, 100 outbreaks were injected to form a set of 
training data and another 100 outbreaks for forming the testing data. This gives us a 
total of six datasets for training and another six corresponding datasets for testing, with 
each pair of datasets assuming a different value or mixture of the sparsity parameter p.  
 
3.2 Learning performance 

    In present study, we set the number of components of p equal to 10, which means 
that a multinomial distribution with ten components was used to describe the 
probability of each of the ten possible values of p (from 0.1 to 1.0). For each of the 12 
training datasets (six for each data stream), the posterior distribution of the sparsity 
parameter was learned and shown in Figures 2 and 3.  For all 12 training datasets, we 
observe that the learned distribution of p peaks either at the true value of p or at a 
value that is 0.1 less than the true value.  This is occurring probably because of the 
sparsity of the data: occasionally, a zip code does not get any cases injected, and 
therefore it is not counted as part of the "correct" inject region.  So even though we 
attempt to inject into proportion p of the zip codes, we are actually injecting into a 
slightly lower proportion of zip codes, and this discrepancy is correctly captured by the 
learned distribution of p. 
 
3.3 Detection power and spatial accuracy 

In this section, we compare the detection power and spatial accuracy of four different 
methods: (1) original MBSS; (2) original FSS; (3) GFSS with uniform distribution of 
sparsity parameter p (each value of p from p = 0.1 to p = 1.0 has an equal probability of 
0.1); and (4) GFSS with a learned distribution of p. 

The comparison of detection times for each of the two data streams is shown in 
Figures 4 and 5 respectively. The average detection time of each method, assuming a 
fixed false positive rate of one false positive per month, is displayed on the graphs.  
When the value of p is small, corresponding to an elongated or irregular outbreak region, 
GFSS with learned p is able to detect the outbreaks substantially earlier than the other 
methods.  The FSS method (equivalent to putting of all of the probability mass at p = 0.5) 
performs well for values of p near 0.5, and the MBSS method (equivalent to putting all 
of the probability mass at p = 1.0) performs well for values of p near 1.0, as expected, 
but both methods lose detection power when the assumed value of p is incorrect.  Next 
we evaluated the spatial accuracy of each method by computing the average overlap 
coefficient between the true and detected clusters.  The spatial accuracy results shown 
in Figures 6 and 7 also demonstrate that the GFSS method with learned distribution of p 
has higher spatial accuracy when the outbreak region is elongated or irregular, while 
achieving similar performance to the other methods for more compact outbreak regions. 
 
3.4 Detection ability for mixture outbreak type 

In this section, we examine the detection time and spatial accuracy of these different 
methods for the mixed outbreak type (half of outbreaks generated with p = 0.2 and half 
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of outbreaks generated with p = 0.8).  We first consider a single distribution of p learned 
from the mixed outbreak type, as compared to MBSS, FSS, and GFSS with a uniform 
distribution of p.  The last graphs of Figure 2 and 3 demonstrate that the single model 
can accurately capture the bimodal distribution of p. 

The results of detection time and spatial accuracy for the mixed outbreaks by using 
four different methods are listed in Table 1.  The GFSS with learned p slightly 
outperforms FSS and GFSS with uniform p for detecting mixture outbreaks, with all 
three methods outperforming MBSS by a large margin. 
 
Table 1. Comparison of detection time and spatial accuracy for the mixed outbreak type 

  MBSS FSS GFSS with 
uniform p 

GFSS with 
learned p 

Cough 
Data 

Days to detect 
(1 fp/month) 

6.05 5.37 5.52 5.51 

Spatial overlap 
coefficient 

0.495 0.589 0.611 0.617 

Nausea 
Data 

Days to detect 
(1 fp/month) 

4.11 3.91 3.88 3.88 

Spatial overlap 
coefficient 

0.516 0.671 0.691 0.695 

 
Next we assumed that the two values of p in the mixed outbreak type corresponded 

to two different outbreaks, and evaluated the ability of the GFSS framework to 
distinguish between these two outbreak types.  Figure 8 is the result of learning the 
mixed type of outbreaks by using two GFSS models. We note that each model can 
capture each outbreak type quite well for both data streams. Additionally, using two 
models to learn the mixed outbreak type can also help us improve the ability to 
discriminate between the two different outbreak types. Figures 9 and 10 show the 
posterior conditional probability of the correct outbreak type, Pr(correct type | Data) / 
(Pr(correct type | Data) + Pr(incorrect type | Data)), as a function of the outbreak day.  
As we can see, near the start of the outbreak, the posterior probability of an outbreak is 
divided nearly 50/50 between the correct and incorrect outbreak type, but by the end of 
the outbreak, posterior conditional probability of the correct outbreak type has risen to 
72% for a cough outbreak or 75% for a nausea outbreak.  

Finally, we note that, in addition to learning the distribution of the sparsity parameter, 
we can also learn the distribution of each outbreak type’s relative effects on the two 
data streams from the same labeled training data, as in [1].  We considered two 
outbreak types which had both different values of p for the injected outbreaks (p = 0.2 
and p = 0.8, as above) and also different relative effects on the two data streams (one 
outbreak type affected the cough stream twice as much as the nausea stream, and one 
type affected nausea twice as much as cough).  As can be seen from Figure 11, either 
learning the sparsity or learning the effect alone enables the correct outbreak type to be 
identified with approximately 80% probability, but learning both the sparsity and effect 
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simultaneously allows the probability of identifying the correct outbreak type to 
increase to approximately 90%. 

 
3.5 Learning performance vs. training sample size 

The last aspect we evaluate is the relationship between the learning performance and 
the training sample size.  For each of the six outbreak types described above, we form 
four different training sets consisting of 25, 50, 100, and 200 injects respectively.  And 
then, a separate probability distribution of p was learned from each training dataset. 
Figures 12 to 17 illustrate that the distribution of the sparsity parameter p can be 
learned reasonably well even if the size of training outbreaks is as small as 25. 
 

4. Conclusion 

The Generalized Fast Subset Sums (GFSS) method is an extension of the previously 
proposed Fast Subset Sums framework. The new sparsity parameter p in the GFSS 
framework describes the expected proportion of locations affected within a given 
circular neighborhood, and thus can be varied to emphasize detection of more compact 
or more dispersed clusters.  We demonstrate that the posterior distribution of the 
sparsity parameter can be learned accurately based on fully labeled training data even 
when the size of the training sample is small. With the learned sparsity parameter, the 
GFSS method has higher detection power and higher spatial accuracy than the 
previously proposed FSS and MBSS method, especially for elongated or irregular 
outbreaks. Additionally, learning two different models for outbreak types which have 
different sparsities (but are otherwise identical) allows us to precisely distinguish 
between the two outbreak types.  Finally, we demonstrate that the relative effects of 
each outbreak type on the two monitored data streams can also be learned from the 
training data, and that learning the effects and the sparsity together further improves 
performance as compared to learning either parameter alone. 

In future work, we will evaluate the impact of using a larger or smaller number of 
discrete components for the learned distribution of the sparsity parameter p.  We will 
extend the GFSS framework by also learning the distributions of the center location sc 
and the neighborhood size k from labeled training data.  We will also consider the case 
of partially labeled data, when only a subset of the affected locations is identified.  
Finally, we will also evaluate the performance of the GFSS method in the case of a 
misspecified model, when the outbreaks are not generated under the same framework 
that was used for detection. 
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Figure 1. The structure of the multivariate Bayesian scan statistic framework, from Neill 

and Cooper [1]. 
 
 
 

 
Figure 2. True value and learned distribution of sparsity parameter p, for six different 

simulated outbreak types injected into cough data from Allegheny County, PA. 
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Figure 3. True value and learned distribution of sparsity parameter p, for six different 

simulated outbreak types injected into nausea data from Allegheny County, PA. 
 
 
 

 
Figure 4. The detection time of four competing methods, for five different simulated 

outbreak types injected into cough data from Allegheny County, PA. 
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Figure 5. The detection time of four competing methods, for five different simulated 

outbreak types injected into nausea data from Allegheny County, PA. 
 
 
 

 
Figure 6. The spatial accuracy (overlap coefficient) of four competing methods, for five 

different simulated outbreak types injected into cough data from Allegheny County, PA. 
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Figure 7. The spatial accuracy (overlap coefficient) of four competing methods, for five 

different simulated outbreak types injected into nausea data from Allegheny County, PA. 
 
 
 
 

 
Figure 8. True value and learned distribution of the sparsity parameter p for the mixed 
outbreak type (equal mixture of p = 0.2 and p = 0.8) assuming two different outbreak 
models. 
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Figure 9. Posterior probability of the correct outbreak type as a function of day of 

outbreak, for cough data. 
 
 
 

 
Figure 10. Posterior probability of the correct outbreak type as a function of day of 

outbreak, for nausea data. 
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Figure 11. Posterior probability of the correct outbreak type as a function of day of 
outbreak, assuming two outbreak models and monitoring two data streams. 
 
 
 
 

 
Figure 12. Learned distributions of sparsity parameter p given different training sample 
sizes (true p = 0.2). 
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Figure 13. Learned distributions of sparsity parameter p given different training sample 
sizes (true p = 0.4). 
 
 
 
 

 
Figure 14. Learned distributions of sparsity parameter p given different training sample 
sizes (true p = 0.6). 
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Figure 15. Learned distributions of sparsity parameter p given different training sample 
sizes (true p = 0.8). 
 
 
 
 

 
Figure 16. Learned distributions of sparsity parameter p given different training sample 
sizes (true p = 1.0). 
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Figure 17. Learned distributions of sparsity parameter p given different training sample 
sizes (true p is a mixture of p = 0.2 and p = 0.8 with equal probabilities). 
 


