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Abstract

Processes such as disease propagation and information diffusion often spread over some
latent network structure which must be learned from observation. Given a set of unlabeled
training examples representing occurrences of an event type of interest (e.g., a disease out-
break), our goal is to learn a graph structure that can be used to accurately detect future
events of that type. Motivated by new theoretical results on the consistency of constrained
and unconstrained subset scans, we propose a novel framework for learning graph structure
from unlabeled data by comparing the most anomalous subsets detected with and without
the graph constraints. Our framework uses the mean normalized log-likelihood ratio score
to measure the quality of a graph structure, and efficiently searches for the highest-scoring
graph structure. Using simulated disease outbreaks injected into real-world Emergency De-
partment data from Allegheny County, we show that our method learns a structure similar
to the true underlying graph, but enables faster and more accurate detection.

Keywords: graph learning, event detection, disease surveillance, spatial scan statistic

1 Introduction

Event detection in massive data sets has applications to multiple domains, such as information

diffusion or detecting disease outbreaks. In many of these domains, the data has an underlying

graph or network structure: for example, an outbreak might spread via person-to-person contact,

or the latest trends might propagate through a social network. In the typical, graph-based event

detection problem, we are given a graph structure G = (V,E) and a time series of observed counts

for each graph node vi, and must detect connected subgraphs where the recently observed counts
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are significantly higher than expected. For example, public health officials wish to achieve early

and accurate detection of emerging outbreaks by identifying connected regions (e.g., subsets of

spatially adjacent zip codes vi) with anomalously high counts of disease cases.

Assuming that the graph structure is known, various graph-based event detection meth-

ods (Patil and Taillie, 2004) can be used to detect anomalous subgraphs. We review these methods

in §1.1 below. Typically, however, the network structure is unknown. For example, the spread

of disease may be influenced not only by spatial adjacency but also by commuting patterns (e.g.,

individuals work downtown but live in a suburb), contamination of food or water sources, animal

migrations, or other factors. Assuming an incorrect graph structure can result in less timely and

less accurate event detection, since the affected areas may be disconnected and hence may not be

identified as an anomalous subgraph. In such cases, learning the correct graph structure (e.g.,

from historical data) has the potential to dramatically improve detection performance.

Thus we consider the graph-based event detection problem in the case where the true graph

structure GT is unknown and must be inferred from data. To learn the graph, we are given a

set of training examples {D1 . . . DJ}, where each example Dj represents a different “snapshot”

of the data when an event is assumed to be occurring in some subset of nodes that is connected

given the (unknown) graph structure. We assume that training examples are generated from

some underlying distribution on the true latent graph structure, and wish to accurately detect

future events drawn from that same distribution. Thus our goal is to learn a graph structure that

minimizes detection time and maximizes accuracy when used as an input for event detection.

Several recent methods (Gomez-Rodriguez et al., 2010; Myers and Leskovec, 2010; Gomez-

Rodriguez and Schölkopf, 2012) learn an underlying graph structure using labeled training data,

given the true affected subset of nodes STj for each training example Dj. However, in many

cases labeled data is unavailable: for example, public health officials might be aware that an

outbreak has occurred, but may not know which areas were affected and when. Hence we focus

on learning graph structure from unlabeled data, where the affected subset of nodes STj for each

training example is not given, and we observe only the observed and expected counts at each node.

In the remainder of this paper, we present a novel framework for graph structure learning from

unlabeled data, and show that the graphs learned by our approach enable more timely and more

accurate event detection. We support these empirical evaluations with new theoretical results on
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the consistency of constrained and unconstrained subset scans, as described in §3 and §4.4 below.

1.1 Graph-Based Event Detection

Given a graph G = (V,E) and the observed and expected counts at each graph node, existing

methods for graph-based event detection can be used to identify the most anomalous connected

subgraph. Here we focus on the spatial scan framework for event detection, which was first

developed by Kulldorff (1997), building on work by Naus (1965) and others, and extended to

graph data by Patil and Taillie (2004). These methods maximize the log-likelihood ratio statistic

F (S) = log Pr(Data |H1(S))

Pr(Data |H0)
over connected subgraphs S. Searching over connected subgraphs,

rather than clusters of fixed shape such as circles (Kulldorff, 1997) or rectangles (Neill and Moore,

2004), can increase detection power and accuracy for irregularly shaped spatial clusters.

In this paper, we assume that the score function F (S) is an expectation-based scan statis-

tic (Neill et al., 2005). The null hypothesis H0 assumes that no events are occurring, and thus

each observed count xi is assumed to be drawn from some distribution with mean equal to the

expected count µi: xi ∼ Dist(µi). The alternative hypothesis H1(S) assumes that counts in sub-

graph S are increased by some constant multiplicative factor q > 1: xi ∼ Dist(qµi) for vi ∈ S, and

xi ∼ Dist(µi) for vi 6∈ S, where q is chosen by maximum likelihood estimation. We further assume

that Dist is some distribution in the separable exponential family (Neill, 2012), such as the Poisson,

Gaussian, or exponential. This assumption enables efficient identification of the highest-scoring

connected subgraph and highest-scoring unconstrained subset, which will be important compo-

nents of our graph structure learning framework described below. Our evaluation results below

assume the expectation-based Poisson statistic (Neill et al., 2005). In this case, the log-likelihood

ratio score can be computed as F (S) = C log(C/B) + B − C, if C > B, and 0 otherwise, where

C =
∑

vi∈S xi and B =
∑

vi∈S µi.

Maximizing the log-likelihood ratio statistic F (S) over connected subgraphs is a challenging

computational problem for which multiple algorithmic approaches exist. The two main methods we

consider in this paper are GraphScan (Speakman et al., 2015b) and Upper Level Sets (ULS) (Patil

and Taillie, 2004). GraphScan is guaranteed to find the highest-scoring connected subgraph for

the expectation-based scan statistics considered here, but can take exponential time in the worst

case. ULS scales quadratically with graph size, but is a heuristic that is not guaranteed to find the
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optimal subgraph. GraphScan requires less than a minute of computation time for a ∼100 node

graph, and improves detection power as compared to ULS, but is computationally infeasible for

graphs larger than 200 to 300 nodes (Speakman et al., 2015b). We also note that the previously

proposed FlexScan method (Tango and Takahashi, 2005) identifies subgraphs nearly identical to

those detected by GraphScan, but is computationally infeasible for graphs larger than ∼30 nodes.

As shown by Speakman et al. (2015b), the detection performance of GraphScan and ULS is of-

ten improved by incorporating proximity as well as connectivity constraints, thus preventing these

methods from identifying highly irregular tree-like structures. To do so, rather than performing

a single search over the entire graph, we perform separate searches over the “local neighborhood”

of each of the N graph nodes, consisting of that node and its k − 1 nearest neighbors for some

constant k. We then report the highest-scoring connected subgraph over all local neighborhoods.

2 Problem Formulation

Our framework for graph learning takes as input a set of training examples {D1 . . . DJ}, assumed

to be independently drawn from some distribution D. For each example Dj, we are given the

observed count xi and expected count µi for each graph node vi, i = 1 . . . N . We assume that

each training example Dj has an set of affected nodes STj that is a connected subgraph of the

true underlying graph structure GT ; note that both the true graph GT and the subgraphs STj are

unobserved. Unaffected nodes vi 6∈ STj are assumed to have counts xi that are drawn from some

distribution with mean µi, while affected nodes vi ∈ STj are assumed to have higher counts. Given

these training examples, we have three main goals:

1) Accurately estimate the true underlying graph structure GT . Accuracy of graph learning is

measured by the precision and recall of the learned set of graph edges G∗ as compared to the true

graph GT .

2) Given a separate set of test examples {D1 . . . DJ} drawn from D, identify the affected subgraphs

STj . Accuracy of detection is measured by the average overlap coefficient between the true and

identified subgraphs.

3) Distinguish test examples drawn from D from examples with no affected subgraph (STj = ∅).

Detection power is measured by the true positive rate (proportion of correctly identified test ex-
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amples) for a fixed false positive rate (proportion of incorrectly identified null examples).

The second and third performance measures assume that the learned graph G∗ is used as an

input for a graph-based event detection method such as GraphScan, and that method is used to

identify the highest scoring connected subgraph of G∗ for each test example.

A key insight of our graph learning framework is to evaluate the quality of each graph structure

Gm (m denotes number of edges in the graph) by comparing the most anomalous subsets detected

with and without the graph constraints. For a given training exampleDj, we can use the fast subset

scan (Neill, 2012) to identify the highest-scoring unconstrained subset S∗j = arg maxS⊆V F (S), with

score Fj = F (S∗j ). This can be done very efficiently, evaluating a number of subsets that is linear

rather than exponential in the number of graph nodes, for any function satisfying the linear-time

subset scanning property (Neill, 2012), including the expectation-based scan statistics considered

here. We can use either GraphScan (Speakman et al., 2015b) or ULS (Patil and Taillie, 2004) to

estimate the highest-scoring connected subgraph S∗mj = arg maxS⊆V : S connected inGm
F (S), with

score Fmj = F (S∗mj). We then compute the mean normalized score F̄norm(Gm) = 1
J

∑
j=1...J

Fmj

Fj
,

averaged over all J training examples, as a measure of graph quality.

As noted above, we assume that the affected subset of nodes for each training example is a

connected subgraph of the true (unknown) graph structure GT . Intuitively, if a given graph Gm

is similar to GT , then the maximum connected subgraph score Fmj will be close to the maximum

unconstrained subset score Fj for many training examples, and F̄norm(Gm) will be close to 1. On

the other hand, if graph Gm is missing essential connections, then we expect the values of Fmj to

be much lower than the corresponding Fj, and F̄norm(Gm) will be much lower than 1. Additionally,

we would expect a graph Gm with high scores Fmj on the training examples to have high power

to detect future events drawn from the same underlying distribution. However, any graph with

a large number of edges will also score close to the maximum unconstrained score. For example,

if graph Gm is the complete graph on N nodes, all subsets are connected, and Fmj = Fj for all

training examples Dj, giving F̄norm(Gm) = 1. Such under-constrained graphs will produce high

scores Fmj even when data is generated under the null hypothesis, resulting in reduced detection

power. Thus we wish to optimize the tradeoff between higher mean normalized score and lower

number of edges m. Our solution is to compare the mean normalized score of each graph structure
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Gm to the distribution of mean normalized scores for random graphs with the same number of

edges m, and choose the graph with the most significant score given this distribution.

3 Theoretical Development

In this section, we provide a theoretical justification for using the mean normalized score, F̄norm(Gm) =

1
J

∑
j=1...J

Fmj

Fj
, as a measure of the quality of graph Gm. Our key result is a proof that the expected

value E
[
Fmj

Fj

]
= 1 if and only if graph Gm contains the true graph GT , assuming a sufficiently

strong and homogeneous signal. More precisely, let us assume the following:

(A1) Each training example Dj has an affected subset STj that is a connected subgraph of GT .

Each Dj is an independent random draw from some distribution D, where each connected sub-

graph STj is assumed to have some non-zero probability Pj of being affected.

(A2) The score function F (S) is an expectation-based scan statistic in the separable exponential

family. Many distributions, such as the Poisson, Gaussian, and exponential, satisfy this property.

Now, for a given training example Dj, we define the observed excess risk gij = xi
µi
− 1 for each

node vi. Let raff,j
max = maxvi∈ST

j
gij and raff,j

min = minvi∈ST
j
gij denote the maximum and minimum of

the observed excess risk over affected nodes, and runaff,j
max = maxvi 6∈ST

j
gij denote the maximum of

the observed excess risk over unaffected nodes, respectively. We say that the signal for training

example Dj is α-strong if and only if raff,j
min > αrunaff,j

max , and we say that the signal for training

example Dj is α-homogeneous if and only if raff,j
max < αraff,j

min . We also define the signal size for

training example Dj, ηj =

∑
vi∈ST

j
µi∑

vi
µi
≤ 1. Given assumptions (A1)-(A2) above, we can show:

Lemma 1. For each training example Dj, there exists a constant αj > 1 such that, if the signal

is αj-homogeneous and 1-strong, then the highest scoring unconstrained subset S∗j ⊇ STj . We note

that αj is a function of raff,j
max, and αj ≥ 2 for the Poisson, Gaussian, and exponential distributions.

Lemma 2. For each training example Dj, there exists a constant βj > 1 such that, if the signal is
βj
ηj

-strong, then the highest scoring unconstrained subset S∗j ⊆ STj . We note that βj is a function

of runaff,j
max , and βj ≤ 2 for the Gaussian distribution.

Proofs of Lemma 1 and Lemma 2 are provided in the Appendix.
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Theorem 1. If the signal is αj-homogeneous and
βj
ηj

-strong for all training examples Dj ∼ D,

then the following properties hold for the assumed graph Gm and true graph GT :

a) If GT \Gm = ∅ then E
[
Fmj

Fj

]
= 1.

b) If GT \Gm 6= ∅ then E
[
Fmj

Fj

]
< 1.

Proof. Lemmas 1 and 2 imply that S∗j = STj for all Dj ∼ D. For part a), GT \ Gm = ∅ implies

that the affected subgraph STj (which is assumed to be connected in GT ) is connected in Gm as

well. Thus S∗mj = STj , and
Fmj

Fj
= 1 for all Dj ∼ D. For part b), GT \ Gm 6= ∅ implies that there

exists some pair of nodes (v1, v2) such that v1 and v2 are connected in GT but not in Gm. By

assumption (A1), the subset STj = {v1, v2} has non-zero probability Pj of being generated, and

we know S∗j = {v1, v2}, but S∗mj 6= {v1, v2} since the subset is not connected in Gm. Since the

signal is αj-homogeneous and
βj
ηj

-strong, we observe that S∗j is the unique optimum. Thus we have

Fmj < Fj for that training example, and E
[
Fmj

Fj

]
≤ 1− Pj

(
1− Fmj

Fj

)
< 1.

4 Learning Graph Structure

We can now consider the mean normalized score F̄norm(Gm) = 1
J

∑
j=1...J

Fmj

Fj
as a measure of

graph quality, and for each number of edges m, we can search for the graph Gm with highest mean

normalized score. However, it is computationally infeasible to search exhaustively over all 2
|V |(|V |−1)

2

graphs. Even computing the mean normalized score of a single graph Gm may require a substantial

amount of computation time, since it requires calling a graph-based event detection method such

as Upper Level Sets (ULS) or GraphScan to find the highest-scoring connected subgraph for each

training example Dj. In our general framework for graph structure learning, we refer to this call

as BestSubgraph(Gm, Dj), for a given graph structure Gm and training example Dj. Either ULS

or GraphScan can be used to implement BestSubgraph, where ULS is faster but approximate,

and GraphScan is slower but guaranteed to find the highest-scoring connected subgraph. In either

case, to make graph learning computationally tractable, we must minimize the number of calls

to BestSubgraph, both by limiting the number of graph structures under consideration, and by

reducing the average number of calls needed to evaluate a given graph.

Thus we propose a greedy framework for efficient graph structure learning that starts with the

complete graph on N nodes and sequentially removes edges until no edges remain (Algorithm 1).
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This procedure produces a sequence of graphs Gm, for each m from M = N(N−1)
2

down to 0. For

each graph Gm, we produce graph Gm−1 by considering all m possible edge removals and choosing

the one that maximizes the mean normalized score. We refer to this as BestEdge(Gm, D), and

consider three possible implementations of BestEdge in §4.1 below. Once we have obtained the

sequence of graphs G0 . . . GM , we can then use randomization testing to choose the most significant

graph Gm, as described in §4.2. The idea of this approach is to remove unnecessary edges, while

preserving essential connections which keep the maximum connected subgraph score close to the

maximum unconstrained subset score for many training examples.

However, a naive implementation of greedy search would require O(N4) calls to BestSubgraph,

since O(N2) graph structures Gm−1 would be evaluated for each graph Gm to choose the next edge

for removal. Even a sequence of random edge removals would require O(N2) calls to BestSubgraph,

to evaluate each graph G0 . . . GM . Our efficient graph learning framework improves on both of

these bounds, performing exact or approximate greedy search with O(N3) or O(N logN) calls to

BestSubgraph respectively. The key insight is that removal of an edge only requires us to call

BestSubgraph for those examples Dj where removing that edge disconnects the highest scoring

connected subgraph. See §4.3 for further analysis and discussion.

4.1 Edge Selection Methods

Given a graph Gm with m edges, we consider three methods BestEdge(Gm, D) for choosing the

next edge eik to remove, resulting in the next graph Gm−1. First, we consider an exact greedy

search. We compute the mean normalized score F̄norm(Gm−1) resulting from each possible edge

removal eik, and choose the edge which maximizes F̄norm(Gm−1). As noted above, computation of

the mean normalized score for each edge removal is made efficient by evaluating the score Fm−1,j

only for training examples Dj where removing edge eik disconnects the highest scoring subgraph.

The resulting graph Gm−1 will have F̄norm(Gm−1) as close as possible to F̄norm(Gm). We show in

§4.3 that only O(N) of the O(N2) candidate edge removals will disconnect the highest scoring

subgraphs, reducing the number of calls to BestSubgraph from quartic to cubic in N . However,

this still may result in overly long run times, necessitating the development of the alternative

approaches below.

In the early stages of the greedy edge removal process, when the number of remaining edges

m is large, many different edge removals eik might not disconnect any of the subgraphs S∗mj,
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Algorithm 1 Graph structure learning framework

1: Compute correlation ρik between each pair of nodes vi and vk, i 6= k. These will be used in

step 5.

2: Compute highest-scoring unconstrained subset S∗j and its score Fj for each example Dj using

the fast subset scan (Neill, 2012).

3: For m = N(N−1)
2

, let Gm be the complete graph on N nodes. Set S∗mj = S∗j and Fmj = Fj for

all training examples Dj, and set F̄norm(Gm) = 1.

4: while number of remaining edges m > 0 do

5: Choose edge eik = BestEdge(Gm, D), and set Gm−1 = Gm with eik removed.

6: for each training example Dj do

7: If removing edge eik disconnects subgraph S∗mj, then set S∗m−1,j =

BestSubgraph(Gm−1, Dj) and Fm−1,j = F (S∗m−1,j). Otherwise set S∗m−1,j = S∗mj

and Fm−1,j = Fmj.

8: end for

9: Compute F̄norm(Gm−1) = 1
J

∑
j=1...J

Fm−1,j

Fj
.

10: m← m− 1

11: end while

12: Repeat steps 3-11 for R randomly generated sequences of edge removals to find the most

significant graph Gm.

and all such graphs would have the same mean normalized score F̄norm(Gm−1) = F̄norm(Gm). To

avoid removing potentially important edges, we must carefully consider how to break ties in mean

normalized score. In this case, we choose the edge eik with lowest correlation between the counts

at nodes vi and vk. If two nodes are connected to each other in the latent graph structure over

which an event spreads, we expect both nodes to often be either simultaneously affected by an

event in that part of the network, or simultaneously unaffected by an event in some other part

of the network, and hence we expect the observed counts in these nodes to be correlated. Hence,

if the Pearson correlation ρik between two nodes vi and vk is very low, the probability that the

two nodes are connected is small, and thus edge eik can be removed. We refer to the resulting

algorithm, removing the edge eik which reduces the mean normalized score the least, and using

correlation to break ties, as the Greedy Correlation (GrCorr) method.
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Our second approach is based on the observation that GrCorr would require O(m) calls to

BestSubgraph for each graph Gm, m = 1 . . .M , which may be computationally infeasible de-

pending on the graph size and the implementation of BestSubgraph. Instead, we use the fact that

Fm−1,j = Fmj if removing edge eik does not disconnect subgraph S∗mj, and Fm−1,j < Fmj otherwise.

To do so, we count the number of subgraphs S∗mj, for j = 1 . . . J , which would be disconnected by

removing each possible edge eik from graph Gm, and choose the eik which disconnects the fewest

subgraphs. The resulting graph Gm−1 is expected to have a mean normalized score F̄norm(Gm−1)

which is close to F̄norm(Gm), since Fm−1,j = Fmj for many subgraphs, but this approach does not

guarantee that the graph Gm−1 with highest mean normalized score will be found. However, be-

cause we choose the edge eik for which the fewest subgraphs S∗mj are disconnected, and only need

to call BestSubgraph for those examples Dj where removing eik disconnects S∗mj, we are choosing

the edge eik which requires the fewest calls to BestSubgraph for each graph Gm. Again, correlation

is used to break ties: if two edge removals eik disconnect the same number of subgraphs, the edge

with lower correlation is removed. We refer to this as Pseudo-Greedy Correlation (PsCorr), and

we show in §4.3 that this approach reduces the number of calls to BestSubgraph from O(N3) to

O(N logN) as compared to exact greedy search.

In our empirical results below, we compare GrCorr and PsCorr to a simple implementation of

BestEdge(Gm, D), which we refer to as Correlation (Corr). Corr chooses the next edge removal eik

to be the edge with the lowest value of ρik, and hence the greedy edge removal approach corresponds

to keeping all edges with correlation above some threshold ρ. Our empirical results, presented

below, demonstrate that GrCorr and PsCorr significantly improve timeliness and accuracy of

event detection as compared to Corr.

4.2 Finding the Most Significant Graph

Our proposed graph structure learning approach considers a set of nested graphs {G1 . . . GM},

M = N(N−1)
2

, where graph Gm has m edges and is formed by removing an edge from graph Gm+1.

We note that, for this set of graphs, F̄norm(Gm) is monotonically increasing with m, since the

highest scoring connected subgraph S∗mj for graph Gm will also be connected for graph Gm+1, and

thus Fm+1,j ≥ Fmj for each training example Dj. Our goal is to identify the graph Gm with the

best tradeoff between a high mean normalized score F̄norm(Gm) and a small number of edges m,
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Figure 1: Example of finding the most significant graph. Blue line: mean normalized score

F̄norm(Gm) for each graph G1 . . . GM . Red line and grey shadow: mean and standard deviation of

F̄norm(Gm,r) for randomized graphs with m edges. Dashed line: most significant graph G∗m.

as shown in Figure 1. Our solution is to generate a large number R of random permutations of the

M = N(N−1)
2

edges of the complete graph on N nodes. For each permutation r = 1 . . . R, we form

the sequence of graphs G1,r . . . GM,r by removing edges in the given random order, and compute

the mean normalized score of each graph. For a given number of edges m, we compute the mean

µm and standard deviation σm of the mean normalized scores of the R random graphs with m

edges. Finally we choose the graph G∗m = arg maxm
F̄norm(Gm)−µm

σm
. This “most significant graph”

has the most anomalously high value of F̄norm(Gm) given its number of edges m. Ideally, in order

to compute the most significant graph structure, we want to compare our mean normalized score

to the mean normalized score of any random graph with the same number of edges. However, due

to the computational infeasibility of scoring all the random graph structures with varying number

of edges, we instead choose random permutations of edges to be removed.

4.3 Computational Complexity Analysis

We now consider the computational complexity of each step of our graph structure learning frame-

work (Alg. 1), in terms of the number of nodes N , number of training examples J , and number

of randomly generated sequences R. Step 1 (computing correlations) requires O(J) time for each

of the O(N2) pairs of nodes. Step 2 (computing the highest-scoring unconstrained subsets) re-

quires O(N logN) time for each of the J training examples, using the linear-time subset scanning

method (Neill, 2012) for efficient computation. Steps 5-10 are repeated O(N2) times for the orig-
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inal sequence of edges and O(N2) times for each of the R randomly generated sequences of edges.

Within the loop, the computation time is dominated by steps 5 and 7, and depends on our choice

of BestSubgraph(G,D) and BestEdge(G,D).

For each call to BestSubgraph, GraphScan requires worst-case exponential time, approximately

O(1.2N) based on empirical results by Speakman et al. (2015b), while the faster, heuristic ULS

method requires only O(N2) time. In step 7, BestSubgraph could be called up to J times for each

graph structure, for each of the R randomly generated sequences of edge removals, resulting in a

total of O(JRN2) calls. However, BestSubgraph is only called when the removal of an edge eik

disconnects the highest scoring connected subgraph S∗mj for that graph Gm and training example

Dj. We now consider the sequence of edge removals for graphs G1 . . . GM , where M = N(N−1)
2

,

and compute the expected number of calls to BestSubgraph for these O(N2) edge removals. We

focus on the case of random edge removals, since these dominate the overall runtime for large R.

For a given training example Dj, let xm denote the number of nodes in the highest-scoring

connected subgraph S∗mj for graph Gm, and let Tm denote any spanning tree of S∗mj. We note

that the number of edges in Tm is xm − 1, which is O(min(N,m)). Moreover, any edge that is

not in Tm will not disconnect S∗mj, and thus the probability of disconnecting S∗mj for a random

edge removal is upper bounded by the ratio of the number of disconnecting edges O(min(N,m))

to the total number of edges m. Thus the expected number of calls to BestSubgraph for graphs

G1 . . . GM for the given training example is
∑

m=1...M
O(min(N,m))

m
= O(N) +

∑
m=N...M

O(N)
m

=

O(N) + O(N)
∑

m=N...M
1
m

= O(N logN). Hence the expected number of calls to BestSubgraph

needed for all J training examples is O(JN logN) for the given sequence of graphs G1 . . . GM , and

O(JRN logN) for the R random sequences of edge removals.

Finally, we consider the complexity of choosing the next edge to remove (step 5 of our graph

structure learning framework). The BestEdge function is called O(N2) times for the given sequence

of graphs G1 . . . GM , but is not called for the R random sequences of edge removals. For the GrCorr

and PsCorr methods, for each graph Gm and each training example Dj, we must evaluate all O(m)

candidate edge removals. This requires a total of O(JN4) checks to determine whether removal

of each edge eik disconnects the highest scoring connected subgraph S∗mj for each graph Gm and

training example Dj. The GrCorr method must also call BestSubgraph whenever the highest

scoring subgraph is disconnected. However, for a given graph Gm and training example Dj, we
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show that only O(N) of the O(m) candidate edge removals can disconnect the highest scoring

subset, thus requiring only O(JN3) calls to BestSubgraph rather than O(JN4). To see this, let

xm be the number of nodes in the highest-scoring connected subgraph S∗mj, and let Tm be any

spanning tree of S∗mj. Then any edge that is not in Tm will not disconnect S∗mj, and Tm only has

xm − 1 = O(N) edges.

4.4 Consistency of Greedy Search

The greedy algorithm described above is not guaranteed to recover the true graph structure GT .

However, we can show that, given a sufficiently strong and homogeneous signal, and sufficiently

many training examples, the true graph will be part of the sequence of graphs G0 . . . GM identified

by the greedy search procedure. More precisely, let us make assumptions (A1) and (A2) given in §3

above. We also assume that GraphScan (GS) or Upper Level Sets (ULS) is used for BestSubgraph,

and that Greedy Correlation (GrCorr) or Pseudo-Greedy Correlation (PsCorr) is used for selecting

the next edge to remove (BestEdge). Given these assumptions, we can show:

Theorem 2. If the signal is αj-homogeneous and
βj
ηj

-strong for all training examples Dj ∼ D,

and if the set of training examples D1 . . . DJ is sufficiently large, then the true graph GT will be

part of the sequence of graphs G0 . . . GM identified by Algorithm 1.

Proof. Given an αj-homogeneous and
βj
ηj

-strong signal, both GS and ULS will correctly identify

the highest-scoring connected subgraph S∗mj. This is true for GS in general, since an exact search

is performed, and also true for ULS since S∗mj will be one of the upper level sets considered. Now

let mT denote the number of edges in the true graph GT , and consider the sequence of graphs

GM , GM−1, . . . , GmT +1 identified by the greedy search procedure. For each of these graphs Gm,

the next edge to be removed (producing graph Gm−1) will be either an edge in GT or an edge

in GM \ GT . We will show that an edge in GM \ GT is chosen for removal at each step. Given

assumptions (A1)-(A2) and an αj-homogeneous and
βj
ηj

-strong signal, Theorem 1 implies:

a) For any graph that contains all edges of the true graph (GT \ Gm = ∅), we will have

S∗mj = S∗j = STj for all Dj ∼ D, and thus F̄norm(Gm) = 1.

b) For any graph that does not contain all edges of the true graph, and for any training example

Dj drawn from D, there is a non-zero probability that we will have S∗mj 6= S∗j , Fmj < Fj, and thus

F̄norm(Gm) < 1.
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We further assume that the set of training examples is sufficiently large so that every pair

of nodes {v1, v2} in GT is the affected subgraph for at least one training example Dj; note that

assumption (A1) ensures that each such pair will be drawn from D with non-zero probability. This

means that removal of any edge in GT will disconnect S∗mj for at least one training example Dj,

leading to S∗(m−1)j 6= S∗mj and F̄norm(Gm−1) < F̄norm(Gm), while removal of any edge in GM \ GT

will not disconnect S∗mj for any training examples, maintaining F̄norm(Gm−1) = F̄norm(Gm). Hence

for both GrCorr, which removes the edge that maximizes F̄norm(Gm−1), and PsCorr, which removes

the edge that disconnects S∗mj for the fewest training examples, the greedy search procedure will

remove all edges in GM \GT before removing any edges in GT , leading to GmT
= GT .

5 Related Work

We now briefly discuss several streams of related work. As noted above, various spatial scan

methods have been proposed for detecting the most anomalous subset in data with an underlying,

known graph structure, including Upper Level Sets (Patil and Taillie, 2004), FlexScan (Tango and

Takahashi, 2005), and GraphScan (Speakman et al., 2015b), but none of these methods attempt

to learn an unknown graph structure from data. Link prediction algorithms such as (Taskar et al.,

2004; Vert and Yamanishi, 2005) start with an existing network of edges and attempt to infer

additional edges which might also be present, unlike our scenario which requires inferring the

complete edge structure. Much work has been done on learning the edge structure of graphical

models such as Bayesian networks and probabilistic relational models (Getoor et al., 2003), but

these methods focus on understanding the dependencies between multiple attributes rather than

learning a graph structure for event detection. Finally, the recently proposed NetInf (Gomez-

Rodriguez et al., 2010), ConNIe (Myers and Leskovec, 2010), and MultiTree (Gomez-Rodriguez

and Schölkopf, 2012) methods share our goal of efficiently learning graph structure. NetInf is

a submodular approximation algorithm for predicting the latent network structure and assumes

that all connected nodes influence their neighbors with equal probability. ConNIe relaxes this

assumption and uses convex programming to rapidly infer the optimal latent network, and Multi-

Tree is an extension of NetInf which considers all possible tree structures instead of only the most

probable ones. The primary difference of the present work from NetInf, ConNIe, and MultiTree is

that we learn the underlying graph structure from unlabeled data: while these methods are given
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the affected subset of nodes for each time step of an event, thus allowing them to learn the network

edges along which the event spreads, we consider the more difficult case where we are given only

the observed and expected counts at each node, and the affected subset of nodes is not labeled.

Further, these methods are not targeted towards learning a graph structure for event detection,

and we demonstrate below that our approach achieves more timely and accurate event detection

than MultiTree, even when MultiTree has access to the labels.

6 Experimental Setup

In our general framework, we implemented two methods for BestSubgraph(G,D): GraphScan (GS)

and Upper Level Sets (ULS). We also implemented three methods for BestEdge(G,D): GrCorr,

PsCorr, and Corr. However, using GraphScan with the true greedy method (GS-GrCorr) was

computationally infeasible for our data, requiring 3 hours of run time for a single 50-node graph,

and failing to complete for larger graphs. Hence our evaluation compares five combinations of

BestSubgraph and BestEdge: GS-PsCorr, GS-Corr, ULS-GrCorr, ULS-PsCorr, and ULS-Corr.

We compare the performance of our learned graphs with the learned graphs from MultiTree,

which was shown to outperform previously proposed graph structure learning algorithms such

as NetInf and ConNIe (Gomez-Rodriguez and Schölkopf, 2012). We used the publicly available

implementation of the algorithm, and considered both the case in which MultiTree is given the

true labels of the affected subset of nodes for each training example (MultiTree-Labels), and the

case in which these labels are not provided (MultiTree-NoLabels). In the latter case, we perform

a subset scan for each training example Dj, and use the highest-scoring unconstrained subset S∗j

as an approximation of the true affected subset.

6.1 Description of Data

Our experiments focus on detection of simulated disease outbreaks injected into real-world Emer-

gency Department (ED) data from ten hospitals in Allegheny County, Pennsylvania. The dataset

consists of the number of ED admissions with respiratory symptoms for each of the N = 97 zip

codes for each day from January 1, 2004 to December 31, 2005. The data were cleaned by remov-

ing all records where the admission date was missing or the home zip code was outside the county.
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The resulting dataset had a daily mean of 44.0 cases, with a standard deviation of 12.1.

6.2 Graph-Based Outbreak Simulations

Our first set of simulations assume that the disease outbreak starts at a randomly chosen location

and spreads over some underlying graph structure, increasing in size and severity over time. We

assume that an affected node remains affected through the outbreak duration, as in the Susceptible-

Infected contagion model (Bailey, 1975). For each simulated outbreak, we first choose a center zip

code uniformly at random, then order the other zip codes by graph distance (number of hops away

from the center for the given graph structure), with ties broken at random. Each outbreak was

assumed to be 14 days in duration. On each day d of the outbreak (d = 1 . . . 14), we inject counts

into the k nearest zip codes, where k = SpreadRate × d, and SpreadRate is a parameter which

determines how quickly the inject spreads. For each affected node vi, we increment the observed

count cti by Poisson(λti), where λti = SpreadFactor×d
SpreadFactor+log(disti+1)

, and SpreadFactor is a parameter which

determines how quickly the inject severity decreases with distance. The assumption of Poisson

counts is common in epidemiological models of disease spread; the expected number of injected

cases λti is an increasing function of the inject day d, and a decreasing function of the graph

distance between the affected node and the center of the outbreak. We considered 4 different

inject types, as described below; for each type, we generated J = 200 training injects (for learning

graph structure) and an additional 200 test injects to evaluate the timeliness and accuracy of event

detection given the learned graph.

6.2.1 Zip code adjacency graph based injects

We first considered simulated outbreaks which spread from a given zip code to spatially adjacent

zip codes, as is commonly assumed in the literature. Thus we formed the adjacency graph for the

97 Allegheny County zip codes, where two nodes are connected by an edge if the corresponding

zip codes share a boundary. We performed two sets of experiments: for the first set, we generated

simulated injects using the adjacency graph, while for the second set, we added additional edges

between randomly chosen nodes to simulate travel patterns. As noted above, a contagious disease

outbreak might be likely to propagate from one location to another location which is not spatially

adjacent, based on individuals’ daily travel, such as commuting to work or school. We hypothesize
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that inferring these additional edges will lead to improved detection performance.

6.2.2 Random graph based injects

Further, in order to show that we can learn a diverse set of graph structures over which an

event spreads, we performed experiments assuming two types of random graphs, Erdos-Renyi and

preferential attachment. For each experiment, we used the same set of nodes V consisting of the

97 Allegheny County zip codes, but created a random set of edges E connecting these nodes; the

graph G = (V,E) was then used to simulate 200 training and 200 test outbreaks, with results

averaged over multiple such randomly chosen graphs.

First, we considered Erdos-Renyi graphs (assuming that each pair of nodes is connected with

a constant probability p), with edge probabilities p ranging from 0.08 to 0.20. The relative perfor-

mance of methods was very similar across different p values, and thus only the averaged results are

reported. Second, we considered preferential attachment graphs, scale-free network graphs which

are constructed by adding nodes sequentially, assuming that each new node forms an edge to each

existing node with probability proportional to that node’s degree. We generated the preferential

attachment graph by first connecting three randomly chosen nodes, then adding the remaining

nodes in a random order. Each new node that arrives attaches itself to each existing node vj with

probability
deg(vj)∑
i deg(vi)

, where each node’s maximum degree was restricted to 0.2× |V |.

6.3 Simulated Anthrax Bio-Attacks

We present additional evaluation results for one potentially realistic outbreak scenario, an increase

in respiratory Emergency Department cases resulting from an airborne release of anthrax spores

(e.g. from a bio-terrorist attack). The anthrax attacks are based on a state-of-the-art, highly real-

istic simulation of an aerosolized anthrax release, the Bayesian Aerosol Release Detector (BARD)

simulator (Hogan et al., 2007). BARD uses a combination of a dispersion model (to determine

which areas will be affected and how many spores people in these areas will be exposed to), an

infection model (to determine who will become ill with anthrax and visit their local Emergency

Department),and a visit delay model to calculate the probability of the observed Emergency De-

partment visit counts over a spatial region. These complex simulations take into account weather

data when creating the affected zip codes and demographic information when calculating the
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Table 1: Average run time in minutes for each learned graph structure, for N = 97 nodes.
Experiment GraphScan (GS) ULS MultiTree

PsCorr Corr GrCorr PsCorr Corr Labels NoLabels

Adjacency 41 38 13 2 1 <1 <1

Adjacency+Travel 53 47 15 3 1 <1 <1

Erdos-Renyi (avg) 93 89 22 6 3 <1 <1

Pref. Attachment 49 44 17 3 1 <1 <1

Table 2: Average run time in minutes for each learned graph structure, for Erdos-Renyi graphs

with varying numbers of nodes N .
Size GraphScan (GS) ULS MultiTree

PsCorr Corr GrCorr PsCorr Corr Labels NoLabels

N=50 2 2 1 <1 <1 <1 <1

N=75 37 32 3 1 <1 <1 <1

N=100 58 53 13 3 <1 <1 <1

N=200 - - 91 33 1 1 1

N=500 - - 2958 871 27 2 2

number of additional Emergency Department cases within each affected zip code. The weather

patterns are modeled with Gaussian plumes resulting in elongated, non-circular regions of affected

zip codes. Wind direction, wind speed, and atmospheric stability all influence the shape and size

of the affected area. A total of 82 simulated anthrax attacks were generated and injected into the

Allegheny County Emergency Department data, using the BARD model. Each simulation gener-

ated between 33 and 1324 cases in total (mean = 429.2, median = 430) over a ten-day outbreak

period; half of the attacks were used for training and half for testing.

7 Experimental Results

7.1 Computation Time

For each of the experiments described above (adjacency, adjacency plus travel patterns, Erdos-

Renyi random graphs, and preferential attachment graphs), we report the average computation

time required for each of our methods (Table 1). Randomization testing is not included in these

results, since it is not dependent on the choice of BestEdge. Each sequence of randomized edge

removals G1,r, . . . , GM,r required 1 to 2 hours for the GraphScan-based methods and 1 to 3 minutes

for the ULS-based methods.

For each of the J = 200 training examples, all methods except for ULS-GrCorr required

fewer than 80 calls to BestSubgraph on average to search over the space of M = 4, 656 graph
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structures, a reduction of nearly two orders of magnitude as compared to the naive approach of

calling BestSubgraph for each combination of graph structure and training example. Similarly, a

naive implementation of the true greedy search would require approximately 11 million calls to

BestSubgraph for each training example, while our ULS-GrCorr approach required only ∼5000

calls per training example, a three order of magnitude speedup. As expected, ULS-Corr and ULS-

PsCorr had substantially faster run times than GS-Corr and GS-PsCorr, though the GraphScan-

based approaches were still able to learn each graph structure in less than two hours.

Next, in order to evaluate how each method scales with the number of nodes N , we generated

Erdos-Renyi random graphs with edge probability p = 0.1 and N ranging from 50 to 500. For

each graph, we generated simulated counts and baselines, as well as simulating injects to produce

J = 200 training examples for learning the graph structure. Table 2 shows the average time in

minutes required by each method to learn the graph structure. We observe that the ULS-based

methods were substantially faster than the GraphScan-based methods, and were able to scale to

graphs with N = 500 nodes, while GS-Corr and GS-PsCorr were not computationally feasible for

N ≥ 200. We note that MultiTree has much lower computation time as compared to our graph

learning methods, since it is not dependent on calls to a graph-based event detection method

(BestSubgraph); however, its detection performance is lower, as shown below in our experiments.

7.2 Comparison of True and Learned Graphs

For each of the four graph-based injects (adjacency, adjacency plus travel patterns, Erdos-Renyi,

and preferential attachment), we compare the learned graphs to the true underlying graph over

which the simulated injects spread. Table 3 compares the number of edges in the true underlying

graph to the number of edges in the learned graph structure for each of the methods, and Table

4 shows the precision and recall of the learned graph as compared to the true graph. Given the

true set of edges ET and the learned set of edges E∗, the edge precision and recall are defined to

be |E
∗∩ET |
|E∗| and |E∗∩ET |

|ET | respectively. High recall means that the learned graph structure identifies

a high proportion of the true edges, while high precision means that the learned graph does not

contain too many irrelevant edges. We observe that GS-PsCorr had the highest recall, with nearly

identical precision to GS-Corr and ULS-GrCorr. MultiTree had higher precision and comparable

recall to GS-PsCorr when it was given the true labels, but 3-5% lower precision and recall when
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Table 3: Comparison of true and learned number of edges m.
Experiment Edges Learned Edges

(true) GraphScan (GS) ULS MultiTree

PsCorr Corr GrCorr PsCorr Corr Labels NoLabels

Adjacency 216 319 297 305 332 351 280 308

Adjacency+Travel 280 342 324 329 362 381 316 342

Erdos-Renyi (p = 0.08) 316 388 369 359 398 412 356 382

Pref. Attachment 374 394 415 401 428 461 399 416

the labels were not provided.

Table 4: Comparison of edge precision for learned graphs.
Experiment Precision

GraphScan (GS) ULS MultiTree

PsCorr Corr GrCorr PsCorr Corr Labels NoLabels

Adjacency 0.60 0.62 0.62 0.53 0.50 0.66 0.58

Adjacency+Travel 0.70 0.71 0.69 0.60 0.52 0.75 0.65

Erdos-Renyi (avg) 0.56 0.59 0.61 0.59 0.54 0.62 0.56

Pref. Attachment 0.83 0.79 0.80 0.69 0.59 0.86 0.80

Table 5: Comparison of edge recall for learned graphs.
Experiment Recall

GraphScan (GS) ULS MultiTree

PsCorr Corr GrCorr PsCorr Corr Labels NoLabels

Adjacency 0.89 0.86 0.88 0.81 0.77 0.86 0.83

Adjacency+Travel 0.86 0.83 0.81 0.77 0.71 0.85 0.79

Erdos-Renyi (avg) 0.87 0.81 0.83 0.79 0.70 0.84 0.79

Pref. Attachment 0.88 0.81 0.86 0.79 0.73 0.91 0.89

7.3 Comparison of Detection Performance

We now compare the detection performance of the learned graphs on the test data: a separate set

of 200 simulated injects (or 41 injects for the BARD anthrax simulations), generated from the same

distribution as the training injects which were used to learn that graph. To evaluate a graph, we

use the GraphScan algorithm (assuming the given graph structure) to identify the highest-scoring

connected subgraph S and its likelihood ratio score F (S) for each day of each simulated inject,

and for each day of the original Emergency Department data with no cases injected. We note that

performance was substantially improved by using GraphScan for detection as compared to ULS,

regardless of whether GraphScan or ULS was used to learn the graph, and GraphScan required

less than a few seconds of run time for detection per day of the ED data.

We then evaluate detection performance using two metrics: average time to detection (assum-

ing a false positive rate of 1 fp/month, typically considered acceptable by public health), and
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spatial accuracy (overlap between true and detected clusters). To compute detection time, we

first compute the score threshold Fthresh for detection at 1 fp/month. This corresponds to the

96.7th percentile of the daily scores from the original ED data. Then for each simulated inject, we

compute the first outbreak day d with F (S) > Fthresh; for this computation, undetected outbreaks

are counted as 14 days (maximum number of inject days) to detect. We then average the time to

detection over all 200 test injects. To evaluate spatial accuracy, we compute the average overlap

coefficient between the detected subset of nodes S∗ and the true affected subset ST at the midpoint

(day 7) of the outbreak, where overlap is defined as |S
∗∩ST |
|S∗∪ST | .

As noted above, detection performance is often improved by including a proximity constraint,

where we perform separate searches over the “local neighborhood” of each of the N graph nodes,

consisting of that node and its k − 1 nearest neighbors, and report the highest-scoring connected

subgraph over all neighborhoods. We compare the detection performance of each graph structure

by running GraphScan with varying neighborhood sizes k = 5, 10, . . . , 45 for each outbreak type.

7.3.1 Results on zip code adjacency graphs

We first evaluate the detection time and spatial accuracy of GraphScan, using the learned graphs,

for simulated injects which spread based on the adjacency graph formed from the 97 Allegheny

County zip codes, as shown in Figure 2. This figure also shows the performance of GraphScan

given the true zip code adjacency graph. We observe that the graphs learned by GS-PsCorr and

ULS-GrCorr have similar spatial accuracy to the true zip code adjacency graph, as measured by

the overlap coefficient between the true and detected subsets of nodes, while the graphs learned

by GS-Corr and MultiTree have lower spatial accuracy. Surprisingly, all of the learned graphs

achieve more timely detection than the true graph: for the optimal neighborhood size of k = 30,

ULS-GrCorr and GS-PsCorr detected an average of 1.4 days faster than the true graph. This

may be because the learned graphs, in addition to recovering most of the edges of the adjacency

graph, also include additional edges to nearby but not spatially adjacent nodes (e.g. neighbors

of neighbors). These extra edges provide added flexibility to consider subgraphs which would be

almost but not quite connected given the true graph structure. This can improve detection time

when some nodes are more strongly affected than others, enabling the strongly affected nodes

to be detected earlier in the outbreak before the entire affected subgraph is identified. Finally,
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Figure 2: Comparison of detection performance of the true and learned graphs for injects based

on zip code adjacency.

ULS-GrCorr and GS-PsCorr detected 0.6 days faster than MultiTree for k = 30.

7.3.2 Results on adjacency graphs with simulated travel patterns

Next we compared detection time and spatial accuracy, using the graphs learned by each of

the methods, for simulated injects which spread based on the zip code adjacency graph with

additional random edges added to simulate travel patterns, as shown in Figure 3. This figure also

shows the detection performance given the true (adjacency plus travel) graph and the adjacency

graph without travel patterns. We observe again that GS-PsCorr and ULS-GrCorr achieve similar

spatial accuracy to the true graph, while the original adjacency graph, GS-Corr, and MultiTree

have lower spatial accuracy. Our learned graphs are able to detect outbreaks 0.8 days earlier than

MultiTree, 1.2 days earlier than the true graph, and 1.7 days earlier than the adjacency graph

without travel patterns. This demonstrates that our methods can successfully learn the additional

edges due to travel patterns, substantially improving detection performance.

7.3.3 Results on random graphs

Next we compared detection time and spatial accuracy using the learned graphs for simulated in-

jects which spread based on Erdos-Renyi and preferential attachment graphs, as shown in Figures 4

and 5 respectively. Each figure also shows the performance of the true randomly generated graph.
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Figure 3: Comparison of detection performance of the true, learned, and adjacency graphs for

injects based on adjacency with simulated travel patterns.

Figure 4: Comparison of detection performance of the true and learned graphs averaged over seven

inject types (p = 0.08, . . . , 0.20) based on Erdos-Renyi random graphs.

As in the previous experiments, we observe that our learned graphs achieve substantially faster

detection than the true graph and MultiTree. For preferential attachment, the learned graphs

also achieve higher spatial accuracy than the true graph, with GS-PsCorr and ULS-GrCorr again

outperforming GS-Corr and MultiTree. For Erdos-Renyi, GS-PsCorr and ULS-GrCorr achieve

similar spatial accuracy to the true graph, while GS-Corr and MultiTree have lower accuracy.

23



Figure 5: Comparison of detection performance of the true and learned graphs for injects based

on a preferential attachment graph.

Figure 6: Comparison of detection performance of the true and learned graphs for injects based

on simulated anthrax bio-attacks.

7.3.4 Results on BARD simulations

We further compared the detection time and spatial accuracy using learned graphs based on

realistic simulations of anthrax bio-attacks, as shown in Figure 6. In these simulations there is no

“true” graph structure as these were generated using spatial information based on environmental

characteristics (wind direction, etc.). Hence, we compare the performance of various graphs learned

or assumed. It can be seen that the learned graphs using GS-PsCorr and ULS-GrCorr achieve

substantially faster detection and higher spatial accuracy, as compared to assuming the adjacency

graph and the graphs learned using GS-Corr and MultiTree.
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Figure 7: Effect of number of training examples on performance of GS-PsCorr and ULS-GrCorr.

7.4 Effect of number of training examples on performance

All of the experiments discussed above (except for the BARD simulations) assume J = 200

unlabeled training examples for learning the graph structure. We now evaluate the graphs learned

by two of our best performing methods, GS-PsCorr and ULS-GrCorr, using smaller numbers of

training examples ranging from J = 20 to J = 200. Simulated outbreaks were generated based

on the preferential attachment graph described in §6.2.2. As shown in Figure 7, GS-PsCorr and

ULS-GrCorr perform very similarly both in terms of average number of days to detect and spatial

accuracy. Performance of both methods improves with increasing training set size, outperforming

the true graph structure for J > 60.

7.5 Effect of percentage of injects in training data on performance

All of the experiments discussed above (except for the BARD simulations) assume that the J

unlabeled training examples are each a “snapshot” of the observed count data cti at each node vi

during a time when an event is assumed to be occurring. However, in practice the training data

may be noisy, in the sense that some fraction of the training examples may be from time periods

where no events are present. Thus we evaluate performance of the graphs learned by GS-PsCorr

and ULS-GrCorr (for simulated outbreaks based on the preferential attachment graph described

in §6.2.2) using a set of J = 200 training examples, where proportion p of the examples are based

on simulated inject data, and proportion 1−p are drawn from the original Emergency Department

data with no outbreaks injected. As shown in Figure 8, the performance of both GS-PsCorr and
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Figure 8: Effect of percentage of injects in training data on performance of GS-PsCorr and ULS-

GrCorr learned graphs.

ULS-GrCorr improves as the proportion of injects p in the training data increases. For p ≥ 0.6,

both methods achieve more timely detection than the true underlying graph, with higher spatial

accuracy. These results demonstrate that our graph structure learning methods, while assuming

that all training examples contain true events, are robust to violations of this assumption.

8 Conclusions and Future Work

In this work, we proposed a novel framework to learn graph structure from unlabeled data, based

on comparing the most anomalous subsets detected with and without the graph constraints. This

approach can accurately and efficiently learn a graph structure which can then be used by graph-

based event detection methods such as GraphScan, enabling more timely and more accurate

detection of events (such as disease outbreaks) which spread based on that latent structure. Within

our general framework for graph structure learning, we compared five approaches which differed

both in the underlying detection method (BestSubgraph) and the method used to choose the

next edge for removal (BestEdge), incorporated into a provably efficient greedy search procedure.

We demonstrated both theoretically and empirically that our framework requires fewer calls to

BestSubgraph than a naive greedy approach, O(N3) as compared to O(N4) for exact greedy search,

and O(N logN) as compared to O(N2) for approximate greedy search, resulting in 2 to 3 orders

of magnitude speedup in practice.

We tested these approaches on various types of simulated disease outbreaks, including out-
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breaks which spread according to spatial adjacency, adjacency plus simulated travel patterns,

random graphs (Erdos-Renyi and preferential attachment), and realistic simulations of an anthrax

bio-attack. Our results demonstrated that two of our approaches, GS-PsCorr and ULS-GrCorr,

consistently outperformed the other three approaches in terms of spatial accuracy, timeliness of

detection, and accuracy of the learned graph structure. Both GS-PsCorr and ULS-GrCorr con-

sistently achieved more timely and more accurate event detection than the recently proposed

MultiTree algorithm (Gomez-Rodriguez and Schölkopf, 2012), even when MultiTree was provided

with labeled data not available to our algorithms. We observed a tradeoff between scalability and

detection: GS-PsCorr had slightly better detection performance than ULS-GrCorr, while ULS-

GrCorr was able to scale to larger graphs (500 nodes vs. 100 nodes). None of our approaches

are designed to scale to massive graphs with millions of nodes (e.g. online social networks); they

are most appropriate for moderate-sized graphs where labeled data is not available and timely,

accurate event detection is paramount.

In general, our results demonstrate that the graph structures learned by our framework are

similar to the true underlying graph structure, capturing nearly all of the true edges but also

adding some additional edges. The resulting graph achieves similar spatial accuracy to the true

graph, as measured by the overlap coefficient between true and detected clusters. Interestingly,

the learned graph often has better detection power than the true underlying graph, enabling more

timely detection of outbreaks or other emerging events. This result can be better understood

when we realize that the learning procedure is designed to capture not only the underlying graph

structure, but the characteristics of the events which spread over that graph. Unlike previously

proposed methods, our framework learns these characteristics from unlabeled training examples,

for which we assume that an event is occurring but are not given the affected subset of nodes.

By finding graphs where the highest connected subgraph score is consistently close to the highest

unconstrained subset score when an event is occurring, we identify a graph structure which is

optimized for event detection. Our ongoing work focuses on extending the graph structure learning

framework in several directions, including learning graph structures with directed rather than

undirected edges, learning graphs with weighted edges, and learning dynamic graphs where the

edge structure can change over time.
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A Proofs of Lemma 1 and Lemma 2

We begin with some preliminaries which will be used in both proofs. Following the notation in Neill

(2012), we write the distributions from the exponential family as logP (x | µ) = T (x)θ(µ) −

ψ(θ(µ)) = T (x)θ(µ) − µθ(µ) + φ(µ), where T (x) is the sufficient statistic, θ(µ) is a function

mapping the mean µ to the natural parameter θ, ψ is the log-partition function, and φ is the

convex conjugate of ψ. By assumption (A2), F (S) is an expectation-based scan statistic in the

separable exponential family, defined by Neill (2012) as follows:

Definition 1. The separable exponential family is a subfamily of the exponential family such that

θ(qµi) = ziθ0(q) + vi, where the function θ0 depends only on q, while zi and vi can depend on µi

and σi but are independent of q.

Such functions can be written in the form F (S) = maxq>1

∑
si∈S λi(q), where:

λi(q) = T (xi)zi(θ0(q)− θ0(1)) + µizi

(
θ0(1)− qθ0(q) +

∫ q

1

θ0(x) dx

)
.

Speakman et al. (2015a) have shown that λi(q) is a concave function with global maximum at

q = qmlei and zeros at q = 1 and q = qmaxi , where qmlei = T (xi)
µi

and qmaxi is an increasing function of

qmlei . Considering the corresponding excess risks rmlei = qmlei − 1 and rmaxi = qmaxi − 1, we know:

rmlei = rmaxi

(
θ0(rmaxi + 1)− θ̄0

θ0(rmaxi + 1)− θ0(1)

)
, (1)

where θ̄0 = 1
rmax
i

∫ rmax
i +1

1
θ0(x)dx is the average value of θ0 between 1 and rmaxi + 1.

From this equation, it is easy to see that rmlei ≤ rmax
i

2
when θ0 is concave, as is the case for the

Poisson, Gaussian, and exponential distributions, with θ0(q) = log(q), q, and −1
q

respectively. For

the Gaussian, rmlei =
rmax
i

2
since θ0 is linear, while rmlei <

rmax
i

2
for the Poisson and exponential.
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Further, the assumption of an expectation-based scan statistic in the separable exponential

family (A2) implies that the score function F (S) satisfies the linear-time subset scanning prop-

erty (Neill, 2012) with priority function G(vi) = T (xi)
µi

. This means that the highest-scoring

unconstrained subset S∗j = arg maxS F (S) can be found by evaluating the score of only |V | of the

2|V | subsets of nodes, that is, S∗j = {v(1), v(2), . . . , v(k)} for some k between 1 and |V |, where v(i)

represents the ith highest-priority node.

Given the set of all nodes {v(1), v(2), . . . , v(|V |)} sorted by priority, we note that the assumption

of a 1-strong signal implies that the true affected subset STj = {v(1), v(2), . . . , v(t)}, where t is the

cardinality of STj . Thus, for Lemma 1 we need only to show that |S∗j | ≥ t, while for Lemma 2 we

must show |S∗j | ≤ t. We can now prove:

Lemma 1. For each training example Dj, there exists a constant αj > 1 such that, if the signal

is αj-homogeneous and 1-strong, then the highest scoring unconstrained subset S∗j ⊇ STj . We note

that αj is a function of raff,j
max, and αj ≥ 2 for the Poisson, Gaussian, and exponential distributions.

Proof. Let αj = raff,j
max

f(raff,j
max)

, where f(rmaxi ) = rmlei is the function defined in Equation (1) above.

For distributions with concave θ0(q), such as the Poisson, Gaussian, and exponential, we know

that f(r) ≤ r
2
, and thus αj ≥ 2. Now, the assumption of αj-homogeneity implies raff,j

max

raff,j
min

< raff,j
max

f(raff,j
max)

,

raff,j
min > f(raff,j

max), and since f(r) is an increasing and therefore invertible function, f−1(raff,j
min ) > raff,j

max.

Now we note that raff,j
min is the observed excess risk T (xi)

µi
−1 for the lowest-priority affected node

v(t), where t is the cardinality of STj , while raff,j
max is the observed excess risk for the highest-priority

affected node v(1). Moreover, the contribution of node v(t) to the log-likelihood ratio statistic, λt(q),

will be positive for all q < 1 + f−1(raff,j
min ), and we know that the maximum likelihood estimate of

q for any subset of nodes {v(1), v(2), . . . , v(k)} will be at most q = 1 + raff,j
max < 1 + f−1(raff,j

min ). Thus

node v(t) will make a positive contribution to the log-likelihood ratio and will be included in S∗j ,

as will nodes v(1) . . . v(t−1). Hence |S∗j | ≥ t, and S∗j ⊇ STj .

Lemma 2. For each training example Dj, there exists a constant βj > 1 such that, if the signal is
βj
ηj

-strong, then the highest scoring unconstrained subset S∗j ⊆ STj . We note that βj is a function

of runaff,j
max , and βj ≤ 2 for the Gaussian distribution.

Proof. Let βj = f−1(runaff,j
max )

runaff,j
max

, where f−1(rmlei ) = rmaxi is the inverse of the function defined in

Equation (1) above. For distributions with convex θ0(q), such as the Gaussian, we know that
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f−1(r) ≤ 2r, and thus βj ≤ 2. Now, the assumption that the signal is
βj
ηj

-strong, where ηj =∑
vi∈ST

j
µi∑

vi
µi

, implies
raff,j
min

runaff,j
max

> f−1(runaff,j
max )

ηjr
unaff,j
max

and thus

(∑
vi∈ST

j
µi∑

vi
µi

)
raff,j

min > f−1(runaff,j
max ).

Now we note that raff,j
min is the observed excess risk gij = T (xi)

µi
−1 for the lowest-priority affected

node v(t), and runaff,j
max is the observed excess risk for the highest-priority unaffected node v(t+1),

where t is the cardinality of STj . Moreover, the contribution of node v(t+1) to the log-likelihood

ratio statistic, λt+1(q), will be negative for all q > 1 + f−1(runaff,j
max ). Finally, we know that the

maximum likelihood estimate of q for any {v(1), v(2), . . . , v(k)} will be at least q =
∑

vi
T (xi)∑
vi
µi

= 1 + r,

where r =
∑

vi
gijµi∑

vi
µi

=

∑
vi∈ST

j
gijµi+

∑
vi 6∈ST

j
gijµi∑

vi
µi

>

∑
vi∈ST

j
raff,j
min µi∑

vi
µi

> f−1(runaff,j
max ), where the key step is

to lower bound each gij by raff,j
min for vi ∈ STj and by 0 for vi 6∈ STj respectively. Thus node v(t+1)

will make a negative contribution to the log-likelihood ratio and will be excluded from S∗j , as will

nodes v(t+2) . . . v(|V |). Hence |S∗j | ≤ t, and S∗j ⊆ STj .
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