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Abstract

Modern astronomical observatories can produce massive amount of data that are beyond
the capability of the researchers to even take a glance. These scientific observations present
both great opportunities and challenges for astronomers and machine learning researchers.
In this project we address the problem of detecting anomalies/novelties in these large-scale
astronomical data sets.

Two types of anomalies, the point anomalies and the group anomalies, are considered.
The point anomalies include individual anomalous objects, such as single stars or galaxies
that present unique characteristics. The group anomalies include anomalous groups of
objects, such as unusual clusters of the galaxies that are close together. They both have
great values for astronomical studies, and our goal is to detect them automatically in
un-supervised ways.

For point anomalies, we adopt the subspace-based detection strategy and proposed
a robust low-rank matrix decomposition algorithm for more reliable results. For group
anomalies, we use hierarchical probabilistic models to capture the generative mechanism
of the data, and then score the data groups using various probability measures.

Experimental evaluation on both synthetic and real world data sets shows the effec-
tiveness of the proposed methods. On a real astronomical data sets, we obtained several
interesting anecdotal results. Initial inspections by the astronomers confirm the usefulness
of these machine learning methods in astronomical research.

Keywords: Astronomical data; Anomaly detection; Low-Rank decomposition; Robust
methods; Group/Collective Anomaly; Hierarchal Probabilistic Models.

1. Introduction

Contemporary astronomical observation systems produce massive amount of data out of
their automatic pipelines. Take the Sloan Digital Sky Survey1 (SDSS) for example, over
eight years of effort produced images and spectroscopic measurements covering more than

1. http://www.sdss.org
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a quarter of the sky (over 1.1× 105 square degrees). The resulting data set contains about
230 millions of celestial objects, for 1.6 × 106 of which we have the spectra. Nowadays,
researchers are planning to build the Large Synoptic Survey Telescope2 (LSST), which will
be able to scan half of the sky twice in one week to provide update-to-date and detailed
information about what is happening in the universe. These survey data can open a new
window to the observable universe for us.

However, these rich sets of data also presents challenges besides opportunities. Examin-
ing them by human experts is conventional but clearly not feasible given the large volume
of the data. The solution is to use computational methods to automate some processes so
as to assist subsequent studies. Since the knowledge about the whole data set is generally
missing, our first step is to do unsupervised anomaly/novelty detection on these data. The
hope is to let machine learning algorithms run through the data and pick out the most
“interesting” things on which the experts can do further detailed examinations.

Anomaly/novelty detection is about finding unusual things that do not conform to our
established knowledge about the data. Two goals were implied by the two different names
of this technique: 1) to eliminate the influence of outliers and find a reliable model for the
data; 2) to find outliers themselves that could bring us new insights. In the context of
astronomical data, we are trying to pick out from a vast pool the unusual objects that may
bare interesting scientific values. These objects can then be presented to human expert
for further study. This step is very important because based on it we start to build our
knowledge base for the data.

Two types of anomalies detection problems are addressed in this project. The first
type is the point anomaly. In this project, anomalies of this kind are individual celestial
objects that present unusual characteristics. For example, supernovas, planetary nebulae,
and black holes (although they are not observed in SDSS) themselves are very unique and
possess great scientific values. In the machine learning terms, point anomalies are individual
samples that do not conform to the majority’s behavior in the whole data set. This type
problems have been extensively studied in the anomaly detection literatures, and the main
idea is usually to find points in the low-density region of the data distribution. For a
comprehensive overview we refer readers to the survey by Chandola et al. (2009).

The second problem is the detection of group anomalies. A group anomaly is an unusual
collection of points. This type of anomaly occurs naturally in practical problem such as time
series and spatial data analysis, in which points are grouped according to their temporal or
spatial affinity. A group of points can be considered abnormal either because it is a collection
of anomalous points, or because that the way its member points aggregate is unusual, even
if the points themselves are perfectly normal. While the former case is primary addressed
by scan methods such as Neill and Cooper (2010), here we focus on the latter case. To see
an example, imagine that on a grassland where you see many sheep and wolves. Clearly
there will be no surprise when you see a group of sheep or a group of wolves. But if sheep
and wolves are mixed in a group, something unusual is going on (e.g. a hunt is taking place)
even if sheep and wolves on their own are very common on the grassland. In astronomy, our
target of detection is the spatial clusters of stars and galaxies. Finding special instances of
these groups can help us understand issues such as galaxy evolution and dark matter.

2. http://www.lsst.org/lsst
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For the point anomaly detection problem, since the data set is high-dimensional and
has a large volume, we adopt the subspace-based anomaly detection method. The basic as-
sumption is that the variability of normal data is limited i.e. the feature of a normal sample
point can be reconstructed by the linear combination of a few basis features. Then, samples
that cannot be well-reconstructed by these bases are considered anomalies. We solve this
problem using low-rank decomposition methods like principal component analysis (PCA) or
singular value decomposition (SVD). To improve the reliability of the bases and hence the
detection results, we propose a simple but effective robust low-rank matrix factorization al-
gorithm called Mixed-Error Matrix Factorization (MEMF). MEMF can effectively alleviate
the influence of outliers while maintaining the efficiency of matrix factorization methods,
and its flexibility makes it a suitable framework to support various robust low-rank analysis
of matrices and subspace learning.

For the group anomaly detection problem, we develop a hierarchical probabilistic model
to capture the generative process of the data. By treating each group as a bag of exchange-
able points, we can use a hierarchical mixture model to characterize the data. For anomaly
detection, different probabilities are used as our criterion for scoring the groups according
to their anomalousness. The effectiveness of this model is verified by empirical results. An-
other advantage of this generative method is that in addition to find anomalous data, we
get a compact summary of the data set that can help us interpret the results.

This report consists of two relatively separate parts. Section 3 addresses the point
anomaly detection problem and describe the MEMF algorithm. Section 4 addresses the
group anomaly detection problem. Besides these two parts, we describe the data set in
section 2 and present the experimental results in section 5. Discussion and Conclusions are
made in section 6.

2. Data Description

In this project, we deal with the data from the Sloan Digital Sky Survey3 (SDSS) data release
7, which can be downloaded from site http://cas.sdss.org/dr7/en/tools/search/sql.
asp. This data set contains 230 millions of celestial objects through eight years of effort.
Specifically, SDSS provides us with the spectra of 3.8 × 105 stars, 9.3 × 105 galaxies, and
1.1 × 105 quasars. The subset of data we are interested in now includes 85564 stars and
807118 galaxies, which are basically the portion with adequate quality.

For each of the object, SDSS provides a rich set of features, as described below. Some
sample data from SDSS are shown in Figure 1.

• Astrometric feature: The location of the object in the sky. Note that the objects’
depths/distances are hard to measure. For stars, we can use the parallax method to
accurately measure their distances. But this process is expensive and only feasible
for close-by stars. For galaxies, the distances are estimated from the their redshifts.
While this is simple, the precision is low.

• Photometric feature: This is the actual photo taken by the telescope. Currently it
is not used in the project.

3. http://www.sdss.org
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• Spectroscopic feature: The spectra of the observed objects. This description gives
us a object’s flux in each frequency bin/pixel, as well as the measured emission lines
and the redshift. This feature is our primary source of information about he physical
characteristics of the objects.

(a) (b) (c)

Figure 1: Summary of the SDSS data set. (a) The coverage map of SDSS. (b) A sample
imaging data. (c) A sample spectroscopic data i.e. the spectrum.

We pre-process the data before apply learning algorithms on them. Basically we throw
out bad observations that are marked bad, too noisy, too bright, or contains too many
bad pixels. Then the bad pixels are repaired by smoothing based on PCA. After the pre-
processing, we have two data sets. The first one contains 49529 stars. And the second one
contains 651473 galaxies. Each object is described by the following two features:

• Spectrum: This is the raw spectroscopic observation from the telescope. We re-bin
the spectrum to form a 500-dimensional vectors. We call the spectrum the S feature.

• Continuum: This is the smoothed spectrum with emission lines removed. We call
the continuum the C feature.

Having these two feature, we can normalize them so that the total flux of each object is 1.
This normalization takes out the effect of the brightness/distance of the an object, and we
call the resulting features Ss1 and Cs1 respectively.

3. Point Anomaly Detection

In this section we address the problem of detecting point anomalies.
Our astronomical data set is characterized by large sample size and high dimensionality,

which impose specific constraints on the anomaly detection algorithms we use. Because
of the high dimensionality, most of the density based methods (e.g. Local Outlier Factor
by Breunig et al. (2000)) might not work properly. Also, the scale of the data set urges
us to develop highly efficient algorithm. Therefore, we resort to subspace-based methods
for anomaly detection. The basic idea is that, we assume the normal data lie in a low-
dimensional subspace, and the anomalies lie outside of that subspace. The implication of
this assumption is that a normal star’s feature (e.g. the spectrum) can be represented as a
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linear combination of a few bases. This idea is very similar to the case where we approximate
signals using limited-bandwidth Fourier transform (FT). Having the bases, we can identify
anomalies if they cannot be well reconstructed i.e. is far away from the normal subspace.

To do this, we can use various subspace modeling methods such as principal component
analysis (PCA) and non-negative matrix factorization (NMF) by Lee and Seung (1999);
Ding et al. (2010). Most of these methods are essentially finding low-rank decomposition of
the data matrix, which is formed by stacking the feature vectors together. These algorithms
are usually quite efficient since they are reducing the dimensionality of the data. Besides
the anomaly scores, their outputs are also very useful for further analysis such as learning
and visualization.

However, before we can confidently use a model, which in our case consists of the few
linear bases, to define what data are anomalous, we need to make sure that our model is
itself reliable. This could be a problem when we are doing un-supervised detection without
knowing which points are anomalous, and the anomalies are used to train model together
with the normal data. To alleviate the influence of these outliers, we need robust model
estimation techniques.

We usually estimate models by minimizing the errors between the model and the data.
For many tasks, the The L2 or the sum of squared errors measurement is used for errors,
however it is also unfortunately well-known for its sensitivity to outliers. A common way
to deal with outliers is to use “robust” measurements of errors. In machine learning and
statistics, the L1 of the sum of absolute errors is used in robust algorithms such as least
absolute deviations regression (Bloomfield and Steiger (1983)) and robust principal compo-
nent analysis (Wright et al. (2009)). Hinge loss has been proved very effective in promoting
the performance of classifiers such as the support vector machine (SVM). Other measures
like the Huber loss (Huber and J. (1964)) and the Geman-McClure function have also be
employed in robust procedures in la Torre and Black (2003); Nguyen and la Torre (2009).

Following this direction, here we propose a method that does robust modeling and
anomaly detection in the context of low-rank matrix factorization. Here the notion of
normality, as mentioned before, is that the rows and columns of the target matrix X can
be well approximated by the linear combinations of a few bases, which in matrix terms
means that X is of low-rank. The goal of the proposed model, named mixed-error matrix
factorization (MEMF), is to identify outlier entries in X and fit a robust low-rank model
simultaneously.

The intuition behind the MEMF model is as follows. We assume that the approximation
error of the low-rank factorization is an additive mixture of both the regular Gaussian noise
and the outliers. Then we design two separate parts in the MEMF model that account for
these two types of errors respectively. In the estimation process, MEMF tries to fit the
whole matrix using the low-rank model under the Gaussian noise assumption. But it is also
allowed to throw out entries that is unacceptable under the Gaussian model and put them
into the outlier part, so that they will not interfere with the low-rank structure. Moreover,
due the properties of the outlier measures, sparsity is often induced in the model so we can
easily identify the outliers.

We developed an efficient algorithm to estimate the MEMF model based on block coor-
dinate descent. This algorithm is very flexible and allows for the user to plug-in their own
favorite factorization modules and outlier detection components. For factorization, various

5



Xiong, Poczos, Connolly and Schneider

off-the-shelf methods such as SVD and NMF can be used in MEMF without adaptation.
MEMF is able to fully enjoy the advantages such as efficiency and interpretability of the
factorization components.

For the outlier part, we show that in addition to finding outlier entries in a matrix, we
can also design structured outlier measures similar to group lasso by Yuan and Lin (2006);
Wang and Leng (2008) to detect anomalous patterns such as rows, columns, or any groups
of entries in the matrix. These structured measurements are able to aggregates partial
evidences into a whole to get a better indication of anomalies. Empirically we show that if
a proper structure was designed for the outliers not only can they be better detected but
also the fitting of the normal data can be more accurate.

Having these flexibilities, we consider the MEMF model as a general framework to
convert (constrained) L2 error based matrix factorization methods into their robust versions.
Several concrete realizations of MEMF using different components are demonstrated in
various applications.

We test the performance of MEMF on both synthetic and real-world data sets. In
simulated experiments, we illustrate the key differences and advantages of MEMF over
its state-of-the-art peers in both efficiency and accuracy. We then test the performance of
MEMF on real-world problems including video modeling, text clustering. Results show that
MEMF is a simple, versatile, and powerful tool in handling these tasks. On our astronomical
data set, MEMF is able to produce very interesting and promising results.

The rest of this section is structured as follows. We give some background and notation
in section 3.1. In section 3.2 we formally describe the proposed mixed-error matrix factor-
ization algorithm. Related work are discussed in section 3.3. And we summarize this the
MEMF method in 3.4. Empirical results are presented in section 5.1.

3.1 Background and Notation

Matrices are extremely useful in representing data in various problems. For example, in
regression and classification analysis, the samples are often organized into a design matrix in
which each row corresponds to a sample and each column corresponds to a feature/attribute.
A similar representation called document-term matrix is used for text data. Connectivity
matrices are widely used to express network and graph data. Here we denote the data
matrix of size m × n as X ∈ Rm×n. Having X, one of the first analysis we could do is
matrix factorization. For design matrices, PCA/SVD can be applied to X so that we see
the linear structure and intrinsic dimensionality of the data. Given text data, PLSI can be
applied. For network data, the notion of low-rank matrices is extremely useful in matrix
completion (Candès and Tao (2009); Mazumder et al. (2009)) and collaborative filtering
(Rennie and Srebro (2005); Salakhutdinov and Minh (2007)).

3.1.1 Matrix Factorization

In this paper, we assume that the data matrix has a low rank and can be factorized as

X ≈ UTV,U ∈ Rk×m,V ∈ Rk×n, (1)

where k is the rank of the factorization and usually k ≪ min (m,n). The intuition be-
hind this factorization models is that the rows/columns of X can be approximated by the
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Norm Value Comment

∥E∥F
√∑

i,j
E2

ij =
√

trace (ETE) The L2-norm or the Frobenius-norm. Sum
of squares.

∥E∥0
∑
i,j

I (Eij ̸= 0) The L0-norm (not strictly a “norm”).
Number of non-zero entries.

∥E∥1
∑
i,j

|Eij | The L1-norm. Sum of absolute values.

∥E∥0-1
m∑
i=1

I (Ei: ̸= 0) L0-1-norm. Number of non-zero rows.

∥E∥2-1
m∑
i=1

∥Ei:∥2 L2-1-norm. Sum of the “length” of rows.

Table 1: Norms for error measurement.

combination of a few bases (rows of V/U). Note that sometimes the tri-factorization form

X ≈ USVT ,U ∈ Rm×k,S ∈ Rk×k,V ∈ Rn×k (2)

is used, as in SVD. Our MEMF model admits both forms, but for simplicity we will only
use (1) in this paper.

In many cases constraints are imposed on the factor matrices U,V for purposes like
interpretability. For instance, in SVD we require the columns to be orthonormal. In the
NMF family (Ding et al. (2010)) various settings are applied to accommodate specific data
and applications. In PLSI the factor matrices have probabilistic interpretations. In the
MEMF model, we generalize and denote them in the form

X ≈ UTV,U ∈ DU,V ∈ DV, (3)

where DU/DV are the feasible domains of U/V. This extension is very important as it
supports better interpretability and domain-specific applications.

3.1.2 Robust Error Measurement

Another important part of MEMF is robust error measurement. As mentioned in the
introduction, there exist many choices for the purpose of robust modeling. Here we mainly
consider measures that can be formalized as the norm of the error matrix. Suppose we have
an error matrix E, the norms we used to measure E are listed in Table 1. Note that many of
these norms are generalized vector norms and not strictly the matrix norms that we usually
see. We use the Matlab notation to denote sub-matrices. For example Xi: means the i-th
row of X and X:j is the j-th column.

A very attractive property of these robust measures is that they often induce sparsity.
That is, when we minimize a error measurement defined by these norms, many components
of the error matrix will be exactly zero and let the outliers stand out. Recently in machine
learning, statistics, and signal processing, these norms have been used as regularizations
to get compact model representations. Particularly, measurements proposed for structured
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sparsity (Jenatton et al. (2009)) can enable us to incorporate prior knowledge on the struc-
tures of outliers. Using these structures, we can collect evidences of anomalousness from
each entry and aggregate them to get better performance.

3.2 Mixed-Error Matrix Factorization

In this section we describe the mixed-error matrix factorization (MEMF) algorithm. As in
other matrix factorization models, we are seeking a decomposition X ≈ UTV. However, the
factorization errors are treated differently. We consider the additive error decomposition
X = UTV + E + O, where E is the “small” Gaussian noise and O is the outlier matrix
whose distribution is unknown and magnitude can be very large.

The factorization model is fitted by minimizing the errors. If the errors E and O
are together measured using the Frobenius norm, then the factorization is a least squares
problem and solved by SVD. However it has been shown that this method is not robust
according to Hampel et al. (1986). So instead, we choose to measure the errors and outliers
differently. Specifically, the Gaussian noise E is measured by the Frobenius norm and the
outlier O is measured by a robust Lr-norm, so that we can accommodate outliers in the
model without much impact on the true low-rank model.

We adopt the common assumption that the amount of outliers in the whole data matrix
is very small. Therefore to optimize the model parameters, we try to minimize the Gaussian
error while allowing the model to exclude a small part of the matrix as outliers. Meanwhile,
the constraints on factor matrices U,V are still retained. The above motivations can be
summarized by the following optimization problem called mixed-error matrix factorization
(MEMF):

minU,V,E,O ∥E∥2F

s.t.

∥O∥r ≤ η

X = UTV +E+O

U ∈ DU,V ∈ DV

(4)

where ∥·∥r is the robust Lr-norm of the user’s choice, and η is the maximal amount of
outliers that can be excluded. The intuition of the above problem is obvious: the model
tries to fit the best factorization model given that it is allowed to throw out some outliers.
For example, if we choose the r = 0 and use the L0-norm, then we are allowing the model
to pick out η outliers, and fit the best factorization model for the rest of data in the matrix.
In the end small errors will be in E, and the large sparse outliers will be in O so that they
are separated from the low-rank model and easy to identify.

Note that this way of mixing the errors are quite different from what is commonly done
in probabilistic methods. While we are assume additive mixture of noise, in probabilistic
modeling it is often assumed that the errors are from a probabilistic mixture of different
noise distributions (e.g. Kuss et al. (2005)). In this case we need latent variables in the
model which are later integrated out. The resulting algorithm is usually an Expectation-
Maximization procedure. Unfortunately, the M-step involves optimizing a objective con-
taining weighted sum of ∥·∥r, which is often hard and slow. On the other hand, as we will
show later, our additive mixture leads to much simpler and more efficient algorithms.
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In this report we deal with the Lagrangian version of problem (4) below

minU,V,O
1
2

∥∥(X−O)−UTV
∥∥2
F
+ λ∥O∥r

s.t. U ∈ DU,V ∈ DV,
(5)

which is easier to handle. To optimize this problem, we adopt the block coordinate descent
scheme. We first fix O to its current value and solve for U,V, and then we fix U,V and
solve for O. This procedure is described in algorithm 1.

Algorithm 1 Mixed-Error Matrix Factorization (MEMF)

1. Specify the robust norm ∥·∥r for outliers, and the parameter λ.

2. While not converged:

(a) Solve the decomposition problem

U,V = argmin
U,V

1

2

∥∥A−UTV
∥∥2
F
,A = X−O,

s.t. U ∈ DU,V ∈ DV

(6)

(b) Solve the outlier problem

O = argmin
O

1

2
∥B−O∥2F + λ∥O∥r,B = X−UTV, (7)

The advantage of the MEMF algorithm is that the decomposition problem and outlier
problem are now optimized separately. This allows us to plug-in existing factorization
procedures based on the L2-norm to solve (6), and then efficiently solve (7) for O with
∥·∥r. Although theoretically more sound and efficient algorithms such as proximal gradient
(Nesterov (2007)) can easily be developed for the MEMF problem (5), we observe that
algorithm 1 works very efficiently, and we prefer its simplicity and flexibility.

In the rest of the section, we describe several realizations of the MEMF model with
different choices of the outlier measure and the decomposition model. The convergence
property and scalability will also be discussed.

3.2.1 The Outlier Problem

In this section we show how to optimize (7) w.r.t. robust measures in table 1 and discuss
their properties. Most of the usual robust measurements are included here, showing the
flexibility of MEMF.

L0-Norm and L1-Norm The L0-norm counts the number of outliers in the data set. In
some sense it is the ideal measurement we should use for detecting outliers and learning
sparse models since it does not assume anything about the distribution or characteristics of
the outliers. However, the L0-norm is usually not used in statistics and machine learning
because it cannot be used as a pure measurement on its own. For a noisy data set where
the model is unable to match the data perfectly, counting the number of errors is senseless:
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you will almost always get the number of data points. However, but decomposing the errors
and allowing for ubiquitous errors like the Gaussian noise, we are able to use the L0-norm.
In experiments, we observe that the L0-norm indeed can be advantageous over others in
some problems.

Although L0-norm is in general difficult to optimize due to its non-convexity, here we
are able get the exact solution thanks to its separability. It is easy to see that the solution
to (7) with the L0-norm is

oij = argmin
oij

1

2
(bij − oij)

2 + λI (oij ̸= 0)

=

{
bij if b2ij > 2λ

0 otherwise
,∀i, j

(8)

where oij is the (i,j)-th entry of O and bij is the (i,j)-th entry of B.
The L1-norm is a classic choice for robust measurement and regularization for sparsity.

It is the tightest convex relaxation of the L0-norm. The optimization of the L1-norm
has been extensively studied in the lasso (Tibshirani (1996)) family algorithms. Here the
problem (7) with L1-norm can also be decomposed into the sub-problems

oij = argmin
oij

1

2
(bij − oij)

2 + λ |oij |

=


bij − λ if bij > λ
bij + λ if bij < −λ

0 otherwise
∀i, j

(9)

in which the solution is obtained by setting the sub-differential of the objective to be zero.
The operator leading to this solution is often called soft-thresholding in literature.

We can see that with both the L0 and L1 norms, the solution to O is obtained by
thresholding the residual of the factorization. This operation can be done very efficiently. It
is also very intuitive: if a residual is too large, we put it in the outlier part. In the L0-norm
case, we just put large residuals into O, while in the L1-norm case we are “conservative”
and only put the “shrinked” residuals into O. These solutions justify the common practice
of truncating large residuals.

By adjusting the value of λ, we can control the threshold for the residuals and how
many outliers to put into O. Furthermore, since the thresholding procedure will leave us a
sparse O, it is very easy to identify the outliers.

L0-1-Norm and L2-1-Norm The L0 and L1 norms are additive combinations of measures
on individual entries. Now we consider norms that are only separable w.r.t. groups of
entries. We call them the structured or composite norms. Here, both the L0-1-norm and the
L2-1-norm group elements by rows. The L0-1-norm measures the number of nonzero rows in
a matrix and L2-1 measures the total “length” of the row vectors. They can be considered
the generalizations of the L0 and L1 norms, since they are equivalent on matrices of size
m × 1. Like the L0 and L1 norms, these composite norms are also robust and can induce
sparsity. The latter has been extensively used in tasks that desires group sparsity when
handling categorical variables (Yuan and Lin (2006)) and multi-task learning problems (Liu
et al. (2009)).
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Similar to the case of L0-norm, we can get the solution to the L0-1-norm as

Oi: = argmin
Oi:

1

2
∥Bi: −Oi:∥22 + λI (Oi: ̸= 0)

=

{
Bi: if ∥Bi:∥22 > 2λ
0 otherwise

,∀i.
(10)

And the solution to the L2-1-norm problem is

Oi: = argmin
Oi:

1

2
∥Bi: −Oi:∥22 + λ∥Oi:∥2

=

{
(1− λ/∥Bi:∥2)Bi: if ∥Bi:∥2 > λ

0 otherwise
,∀i,

(11)

which can be obtained by analyzing the KKT conditions. Again these solutions can still
obtained via efficiently thresholding the rows of the residual matrix B.

The composite norms allow us to specify the structures of outliers so that we can ag-
gregate the residuals by groups to better indicate anomalies. These structures appear a lot
in practical problems. For example, in design matrices each row corresponds to a sample
point. While MEMF with the L0-norm is able to detect entries i.e. one feature value for
one sample point, MEMF with the L0-1-norm can detect the entire sample point as whole.
For graph data, picking out an entry means detecting an anomalous link, while picking out
a row means detecting an anomalous node/entity. These structured detection results are
usually much more intuitive to perceive and interpret. In the experiments we also show
that they can generate better robust models compared to un-structured models when the
underlying problem admits.

It should be noted that although we choose the L0-1 and L2-1 norms to demonstrate
structured outlier detection for their clarity, the structure of outliers that can be specified
for MEMF is not restricted to rows or columns. In fact, it is very easy to design arbitrarily
shaped groups in the outlier measure ∥·∥r to accommodate specific applications, and then
optimize them using procedures similar to (10)(11) as long as the groups do not overlap.

3.2.2 The Factorization Problem

In this section we describe some of the factorization methods that can solve problem (6) in
the MEMF algorithm.

A common choice of constraint on the factor matrices is orthonormality, as in SVD.
In MEMF, if orthonormality is required, then U,V are the left and right singular vectors
of the matrix, and we can use SVD to solve (6) directly, and the solution will be globally
optimal. In practice, since only the leading singular vectors are need, we can use fast partial
SVD software such as PROPACK by Larsen to accelerate the computation. If we relax and
impose no constraints on U,V, then the problem can be solved by alternating least squares,
which optimize U and V in turn. Each sub-problem in this case is convex and done by
solving linear systems

(
VVT

)
U = VAT and

(
UUT

)
V = UAT .

We can introduce domain knowledge into the MEMF factorization component. For
example, the non-negativity constraints in NMF can be directly applied in MEMF. NMF
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results usually have strong interpretability and connection to other methods such as clus-
tering. Recently, NMF gained a lot of interest in the data mining community and many
algorithms have been devised (Ding et al. (2010)). It is easy to incorporate various non-
negativity constraints into MEMF and derive the corresponding robust NMF algorithms.

If the speed of the algorithm is crucial, or we want some pass-efficient algorithms for
disk-based data, then accelerated versions of approximate SVD can be used in MEMF. For
example, we can integrate the algorithm by Nguyen et al. (2009) into MEMF. The result
would be a large-scale robust matrix factorization algorithm, which could be very useful in
large-scale data analysis.

3.2.3 Convergence and Scalability

It is easy to see that each step of Algorithm 1 is guaranteed to improve the objective within
the feasible region, so the algorithm is going to converge. However, it is important to
note that the matrix factorization problem is not convex. Although sometimes the special
structure of the problem allows algorithms like SVD to achieve a global minimum (Srebro
and Jaakkola (2003)), we usually only get local optimums. Recently, the convex relaxations
of the low-rank factorization problems such as in Candès and Tao (2009); Wright et al.
(2009); Mazumder et al. (2009) became popular and can also fit into the MEMF framework if
we convert the explicit factorization form into a low-rank constraint. We might be concerned
if the algorithm is converging to a stationary point of the objective function or will it get
stuck somewhere else. Empirically we observe that it is unlikely that the MEMF algorithm
gets stuck at a non-stationary point, possibly due to the very large block size.

We have shown that the solution to (7) is exact and efficient. Then the complexity of
MEMF is determined by the specific sub-routine use to solve (6). For many choices the
complexity is usually O(kmn), and can be further reduced using basically any improvements
for the base factorization component. This cost can be further reduced if the input is sparse
or has other special structures. Therefore the MEMF algorithm can be scaled up to large
matrices if k the rank of factorization is small. Further, accelerated factorizations like
(Nguyen et al. (2009)) can be used in MEMF easily. The number of iteration required
depends on the specific problem. Empirically we found that if the outliers distinguish
themselves from normal data and the value of λ is proper, the convergence is very fast.

An important issue in MEMF is how to choose the value of parameter λ. λ is important
because it dictates the threshold to determine a residual as an outlier, and controls the
number of outliers. Specifying λ a priori is often difficult, so we compute a path of solutions
for different values of λ. The basic strategy is to use the warm-start technique, in the hope
that the solution for some λ0 is close to the solution for a slightly smaller λ1. In practice
we found that this strategy works well.

3.3 Related Work and Discussion

PCA and in a more general sense subspace learning is one of the most widely used methods
in data mining and machine learning. The robust subspace learning methods are also
of great value in practical situations. One direction of learning robust subspaces is to
directly replace the L2 error measure with some robust alternatives. For example, Hawkins
et al. (2001); Ke and Kanade (2005); Wright et al. (2009) use the L1-norm; la Torre and
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Black (2003); Nguyen and la Torre (2009) use the Geman-McClure loss and exponentially
decaying loss. These algorithms usually need specifically designed optimization algorithms,
which can be quite complicated. MEMF on the other hand can use plug-in components
and takes advantage of the mature optimizers. Besides, by decomposing the errors, MEMF
is able to easily use various outlier measurements, including the L0-norm and structured
norms, as well as the constraints on the factorization.

In recent years, the convex relaxation of low-rank factorizations has become popular in
the fields of machine learning and compressive sensing. It is shown that the constraint on
the rank of a matrix can be relaxed to the constraint on the nuclear norm (sum of singular
values) ∥·∥∗ (Fazel (2002)) of the matrix. The resulting problem becomes convex and certain
optimality were proved in Candès and Tao (2009); Mazumder et al. (2009); Wright et al.
(2009).

Wright et al. (2009) firstly proposed Robust PCA (RPCA) as a way of robust factoriza-
tion using the convex relaxation. A parallel work called stable principal component analysis
(SPCA) was recently proposed by Zhou et al. (2010). In SPCA, the authors measure
Gaussian errors and outliers separately. They solve a convex problem by simultaneously
minimizing the regular Gaussian error, the outliers measured by L1-norm , and the nuclear
norm of reconstruction matrix. To make a clear comparison of the algorithms, we list the
core problem they are solving as below:

• Direct optimization:

min
N

∥X−N∥1, s.t. rank (N) = K

• RPCA:

min
N

∥X−N∥1, s.t. ∥N∥∗ 6 K

• SPCA:

min
N,O

∥X−N−O∥2F + λ∥O∥1, s.t. ∥N∥∗ 6 K

• MEMF:

min
N,O

∥X−N−O∥2F + λ∥O∥r, s.t. rank (N) = K,N ∈ DN

where N is the low-rank approximation to the data, and DN represents the constraints on
this approximation.

By comparison, we can see that MEMF extends SPCA in two ways. First, instead
of just the L1-norm, we propose to use a general class of outlier measurements the Lr-
norm, including the L0-norm and structured norms. Secondly, we adopt the strict rank
constraint instead of the convex relaxation. By doing this, we obtain the freedom to use
various factorization components, which may give us better efficiency and interpretability.
These two extensions enable us to tailor the algorithm to incorporate prior knowledge for
better performance, with the cost of losing convexity. It should be noted that the problems
solved by SPCA and MEMF are very similar, such that we can use the convex relaxation
in MEMF, or use the more general Lr-norm in SPCA. Therefore, we consider MEMF to be
a generalization of SPCA.
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One limitation of MEMF is that the factorization rank k has to be specified by the user.
In fact similar issues virtually exist for many factorization problems. In practice, the value
of k is often determined by knowledge, heuristics, and available computational resources.

3.4 Summary

The proposed mixed-error matrix factorization (MEMF) algorithm provides a flexible and
efficient framework for robust low-rank factorizations and outlier detection. The basic
motivation of MEMF is to consider the low-rank approximation error to be an additive
mixture of the regular Gaussian noise and the outliers, and then measure them differently
in the model. This kind of error mixing is different from what we do in probabilistic models,
but it is much simpler and also effective.

The MEMF model is very flexible and can serve as a general framework for robust
subspace learning. The users of MEMF can plug-in constraints on the low-rank factors, as
well as their own implementations of L2-Norm based factorization to get the corresponding
robust version. This algorithm also justifies that the intuitive action of truncating large
residuals in model fitting is actually optimizing certain robust measures. Further, we can
design structures in the outlier measures to incorporate prior knowledge and capture the
outlier patterns instead of merely individual points.

For our anomaly detection problem, MEMF can be used to enhance the low-rank de-
composition methods we adopted in the subspace-based detection algorithms. MEMF can
be further enhanced in several ways. For example, to inject more domain knowledge and
detect more sophisticatedly structured anomalies, we can use the fused lasso signal approx-
imation technique by Friedman et al. (2007) to specify local smoothness and detect outlier
patterns whose shape are not pre-defined.

The experimental results will be presented in section 5.1.

4. Group Anomaly Detection

In the previous section, we focused on finding unusual data points. Nonetheless, in many
applications we are more interested in finding group anomalies. One concept for group
anomalies is just a group of individually anomalous points. A more interesting, and often
more difficult to discover, case is where the individual data points are relatively normal but
their behavior as a group is unusual. The main contribution of this section is to propose
methods for discovering both kinds of group anomalies.

For astronomical data, unusual groups of objects are valuable targets for scientific re-
search besides the individual objects. For example, spatial clusters of objects have played
a role in each other’s evolution and the distribution of their features gives insight into how
they developed. Another example is the analysis of large particle simulations. In these
systems each particle is normal, and the motion of a single particle is seldom interesting,
but detect interesting phenomena (e.g. whirlwinds) is important. Similar problems exist in
many other domains, such as text and image processing, where aggregated behaviors are
of interest. Note that in all these examples, a cluster may have an unusual and interesting
behavior even if each of its member points is normal.

To solve the group anomaly detection problem, we start from a standard statistical
anomaly detection approach of creating a generative model for the data and then flagging
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data points that are relatively unlikely to have been generated by that model. We propose
a hierarchical probabilistic model for this purpose. We treat each group of points as a
‘bag-of-objects’, and assume that the points in each group are exchangeable. According
to the De Finetti ’s theorem in de Finetti (1931), the joint distribution of every infinitely
exchangeable sequence of random variables can be represented with mixture models, thus
we will apply a hierarchical mixture model to represent the data. Having estimated this
model, posterior probabilities of the data can be used to identify anomalies.

We use a hierarchical mixture model to characterize the generative processes of data,
similar to the work done in Latent Dirichlet Allocation (LDA) by Blei et al. (2003). In this
model, we generate random variables in a top-down fashion, from global parameters, to
group variables, and finally the observations. The basic assumption is that each individual
data point falls into one of the several topics, and each group is a mixture of different
topics. Further, at the group level we introduce the concept genre to capture different
types of groups, where each genre is a distribution of topics. In the astronomical context,
each topic can be interpreted as a certain type of galaxy, and each group consists of several
types of galaxies. And, each genre is characterized by a typical distribution of different types
of galaxies. Having these characterizations of data, we can capture the typical statistics of
the data at multiple levels, and thus can detect anomalies at both the point level and the
group level. In fact, our method is able to identify groups in which some member points
are anomalous, and those in which the members points are normal on their own, but the
topic distribution is unusual.

Efficient learning algorithms base on the variational EM technique are derived for this
model. We demonstrate the performance of the proposed methods on synthetic data sets,
and show that they are able to identify anomalies that cannot be found by other generative
model based anomaly detectors. Empirical results are also shown for the our astronomical
data.

We also note that in addition to detecting group anomalies, the proposed models can
be useful in exploring data, thanks to their pure generative nature. By interpreting the
estimated parameters, we can find out what the topics (i.e. the types of galaxies) are, and
what genres (i.e. distribution of the galaxies types) we have in the data set. This information
can also be useful for scientific study.

The section is structured as follows. In Section 4.1 we summarize some related work.
We formally define the problem set-up in Section 4.2. The proposed models and how we
can learn them are described in Section 4.3. Summary of this problem and discussions are
in Section 4.4. Experimental results both on artificially generated toy problems and on real
astronomical data are shown in Section 5.3.

4.1 Related Work

As mentioned before, group anomalies can be quite different from point anomalies. Group
anomaly detection is not a new problem, but only a few results have been published on it.
One idea is to transform each group into a point, and then apply point anomaly detectors
for these groups. To do this, we need to define a set of features for the groups Chan
and Mahoney (2005); Keogh et al. (2005). A problem with this approach is that it relies
heavily on feature engineering, which can be domain specific and difficult. As shown later,
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estimating an integral model for the generation process is in some sense learning how to
transform the groups, and thus performs better. Besides, we believe that directly modeling
the generative process of the data can give us more insight when exploring the data sets.

Another approach is to first identify the individual anomaly points in the data set, and
then try to find aggregations of these points. Scan and segmentation methods are often
used for this purpose. On image data, Hazel (2000) applied point anomaly detectors to
find anomalous pixels, and then used Markov Random Fields to segment the image and the
anomalous group of pixels together. Das et al. (2008) first used an anomaly detector to find
interesting points, and then found subsets of the data with a high ratio of anomalous points.
Das et al. (2009) proposed a scan statistic-based method to find anomalous subsets of points.
In these approaches the anomalousness of a group is determined by the anomalousness of its
individual member points, and thus they are not able to find the groups that are anomalous
only at the group level.

From the methodology perspective, the proposed model is a natural realization of hier-
archical probabilistic models. A well-know example of kind of models is the Latent Dirichlet
Allocation (LDA) by Blei et al. (2003). In LDA, we also assume that points are organized
by topics, and that the topic distribution of each group is generated from a global Dirichlet
distribution, which is often set to be symmetric and thus not very informative. Interpreting
it in terms of topics and genres, LDA is trying using one global non-informative genre to
govern the topics distribution of all groups in the data set. On the other hand, our model
allows for multiple genres, and put the emphasis on learning these genres as well as learning
the topics. In this sense, the proposed model extends LDA so that the topic distributions
are generated from a mixture of Dirichlet distributions.

Recently, the Pachinko allocation model (PAM) by Li and McCallum (2006) was pro-
posed to model more complex distribution of topics. In PAM, the topic for each word is
select from a multi-level mixture of multinomial distributions instead of a single multino-
mial as in LDA. Using this extra sophistication PAM is able to capture complex correlations
among topics. The PAM model and our proposal are similar in that they allow the model
to use multiple topic distributions. The difference is that in PAM the selection of topic
distribution happens at the word level, while in our model it happens at the documents
level. Intuitively, this means that PAM focuses on the correlation of topics and we care
more about the aggregation behavior at the group level.

4.2 Formal Problem Definition

In this section we define formally our problem. For simplicity we will explain the set-up by
borrowing terms from astronomy, but our solution to this problem can be used anywhere
where the observations can be naturally clustered into groups.

Assume that we have M groups of objects, they are denoted by G1, . . . ,GM . Each
group Gm consists of Nm objects, denoted by xmn ∈ Rd, n = 1, . . . , Nm. These are our
observations, e.g. xmn is the d = 500 dimensional spectra of the n-th galaxy in the m-
th galaxy group, where these galaxy groups were created based on the spatial locations
of the galaxies. Assume further that each object (galaxy) xmn belongs to one of the K
different topics (galaxy types), and if we know its source topic zmn ∈ {1, . . . ,K}, then
xmn ∼ P (·|βzmn), where β = {βk}Kk=1 is a dictionary of the parameters for different topics’
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observation models. For example when K = 3, then we might think of these topics as ‘red’,
‘blue’, and ‘spiky’ galaxies. Each group Gm is a set of Nm objects which are from the K
topics. Introduce the SK = {s ∈ RK |sk ≥ 0,

∑K
k=1 sk = 1} notation for the K-dimensional

probability simplex. Then we use θm ∈ SK to denote the distribution of topics in Gm.

Now we ask the question for group Gm, do the galaxies look normal (from the 3 topics)?
And does the distribution of these 3 topics (red, blue, and spiky galaxies) looks normal?
In the following sections we propose a generative probabilistic model to help answer this
question and detect anomalous groups.

Before proposing the model, we first describe the LDA model as the background. In
the original LDA model the data set is a text corpus, that is a collection of documents
{Gm}m=1,··· ,M , each of which is a set of Nm words. The number of distinct words is d.
LDA assumes that each document is a random mixture over the topics sampled from a
Dirichlet distribution, and each topic is characterized by a multinomial distribution over
words. To be more formal, let Dir(α) denote the Dirichlet distribution with parameter α,
and let M(θ) be the multinomial distribution with parameters θ ∈ SK . In LDA, given
the global hyper-parameters α ∈ RK

+ , for each of the M group we first generate θm ∈ SK
from Dir(α). Having θm, for each of the words in group m we generate zmn ∼ M(θm)
indicating which topic is active. Finally, words are generated from xmn ∼ M(βzmn), where
β = {β1, . . . , βK}(βk ∈ Sd) is a dictionary of parameters for K d-dimensional multinomial
distributions. Having the above set up, we can estimate the model parameters α, β and
latent variables θ, Z given the data.

4.3 The Dirichlet Genre Model

In this section we describe how we extend the LDA model to get a generative model that
describes the normal behavior of the group data, and then we show how we can detect
anomalous groups using this new model.

The first step is to specify the observation model. While LDA has been shown to be
very successful for modeling discrete data like text corpora, it is not suitable for real, vector
valued observations, such as the spectra in our astronomical data. Thus instead of using
the multinomial distribution M(βzmn), we assume that βk = {µk,Σk} is the parameters for
one Gaussian, and the observations are generated from xmn ∼ N (βzmn) = N (µzmn ,Σzmn).
In other words, each topic is a Gaussian distribution of spectra in our model. But we should
note that the proposed model in general works for any observation model.

Another problem with the LDA model is that it has only one global Dirichlet distribution
to generate the topic distributions θm. In other words, in LDA model there is only one
topic distribution (considering the exchangeability of topics) that is most probable under
the model. This is a serious limitation when we are interested in learning the distribution
of topics, especially when the topic distributions in all the groups are diverse and complex
(e.g. multi-modal).

In order to profile the topic distributions in the data set, we need to further introduce
more variables and distributions for the concept genres. Similar to topics which are typical
distributions of points, the genres are typical distributions of the topics. We assume that
there are T genres in the data set, and each genre is represented by a Dirichlet distribution.
In the generative process, we will first sample one genre i.e. Dirichlet distribution for each
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group, and then sample the topic distributions according to the genres. We call this model
the Dirichlet Genre Model (DGM). We will show that the DGM is suitable for modeling
our group data and can answer the questions we asked in section 4.2.

4.3.1 Model Specification

First we summarize the Dirichlet Genre Model (DGM) using the graphical model in Figure
2 and the generative process in Algorithm 2.

xmnzmn

 

NM

ym!

"

m
#

Figure 2: The graphical model for the Dirichlet Genre model.

Algorithm 2 Generative process for the Dirichlet Genre model

for group m = 1 to M do
• Choose a genre {1, . . . , T} ∋ ym ∼ M(π), and get the genre parameter χym .
• Choose a topic distribution SK ∋ θm ∼ Dir(χym).
for points n = 1 to Nm do

• Choose a topic {1, . . . ,K} ∋ zmn ∼ M(θm), and get the topic parameter βzmn

• Generate a point observation xmn ∼ P (·|βzmn).
end for

end for

In DGM, we have three parameters π, χ, β and the {ym}, {θm}, {zmn} are the latent vari-
ables. π ∈ ST is the multinomial parameter for the distribution of genres. χ = {χ1, · · · , χT }
is a dictionary of Dirichlet parameters for the genres, and χt ∈ RK

+ is the parameter for
the t-th genre. β as before the dictionary of parameters for the topics. As for the latent
variables, ym is the genre of group m, θm is the topic distribution, and zmn is the topic of
the n-th point.

Our strategy for group anomaly detection is as follows. Using the training set {Gm}
we first learn the parameters Θ = {π, χ, β} of the model. Assuming that anomalies are
just a small part of the data, this model will capture the normal behavior of the data. If
a group G is not compatible with our model, then it will lead to a small likelihood under
this model. Then we can detect it as an anomalous group.

Unfortunately, learning the parameters of DGM and calculating the likelihood function,
as in many hierarchical models, is intractable, thus we resort to variational EM methods
(Jordan (1999)) for inference and learning.
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4.3.2 Inference and Learning

For the sake of brevity, introduce the shorthands Gm = {xmn}Nm
n=1, and zm = {zmn}Nm

n=1.
Given the observations and latent variables, the complete likelihood of a group Gm under
DGM is as follows:

P (ym, θm, zm,Gm|π, χ, β) = P (ym|π)P (θm|χ, ym)

Nm∏
n=1

P (zmn|θm)P (xmn|zmn, β)

= M (ym|π)Dir (θm|χ, ym)

Nm∏
n=1

M (zmn|θm)P (xmn|zmn, β)

= πym
1

Z(χym)

K∏
k=1

θ
χym,k−1
mk

Nm∏
n=1

θm,zmnP (xmn|zmn, β),

(12)

in which Z(·) is the partition function for the Dirichlet distribution.
The marginal likelihood of the observations Gm can be calculated as

P (Gm|π, χ, β) =
∑
ym

∫
θm

∑
zm

P (ym, θm, zm, Gm)dθm

=
∑
t

πt
1

Z (χt)

∫
θm

K∏
k=1

θχtk−1
mk

Nm∏
n=1

K∑
k=1

θmkP (xmn|βk)dθm

(13)

To learn the parameters {π, χ, β} by using maximum likelihood estimation, our task
would be to calculate

π, χ, β = argmax
π,χ,β

M∏
m=1

P (Gm|π, χ, β) (14)

The conventional way of doing this is to use the EM algorithm in Mclachlan and Kr-
ishnan (1996), in which we first estimate the expectations of the latent variables, and then
maximize expected complete likelihood. However, the interdependence between variables in
DGM makes direct EM methods intractable. Thus we make use of the variational approach.
That is, instead of maximizing the exact likelihood, we will only maximize a lower bound
of it.

Denote the parameters by Θ = {π, χ, β}. According to the Jensen inequality, for any

distribution q(y, θ, z) =
M∏

m=1
qm(ym, θm, zm) we have that

M∑
m=1

logP (Gm|Θ)

≥
M∑

m=1

∫
d(y, θ, z)qm(y, θ, z) log

P (y, θ, z,Gm|Θ)

qm(y, θ, z)

=

M∑
m=1

Eqm [logP (y, θ, z,Gm|Θ)]− Eqm [log qm(y, θ, z)],
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4with equality iff q(y, θ, z) = P (y, θ, z|{Gm},Θ). Since the marginal distribution (13) has
a difficult, intractable form, instead of the direct maximization of

∑M
m=1 logP (Gm|Θ) we

will only seek to maximize this lower bound of the data marginal and solve the problem

Θ, q = argmax
Θ,q

M∑
m=1

Eqm [logP (Y, Z,Gm|Θ)]− Eqm [log qm], (15)

where we use the surrogate distribution q in a special decomposed parametric form as

q (ym, θm, zm|τm, γm, ϕm) = q (ym|τm) q (θm|γm)

Nm∏
n=1

q (zmn|ϕmn)

= M (ym; τm)Dir (θm; γm)

Nm∏
n=1

M (zmn;ϕmn).

(16)

Here τm ∈ ST , γ ∈ RK
+ and ϕmn ∈ SK are the variational parameters. Using Eq. 12 and

Eq. 15, we have that the variational EM problem we need to solve is

argmax
{τm},{γm},{ϕm},Θ

M∑
m=1

Lm (τm, γm, ϕm,Θ) , (17)

where Lm has the following form:

Lm (τm, γm, ϕm;π, χ, β) = Eq log (y, θ, z,G|π, χ, β)− Eq log q (y, θ, z)

= Eq logP (ym|π) + Eq logP (θm|χ, ym) + Eq

Nm∑
n=1

logP (zmn|θm) + Eq

Nm∑
n=1

logP (xmn|zmn, β)

−Eq log q (ym|τm)− Eq log q (θm|γm)− Eq

Nm∑
n=1

log q (zmn|ϕmn)

=

T∑
t=1

τmt log πt −
T∑
t=1

τmt log τmt

+
T∑
t=1

τmt

(
log Γ

(
K∑
k=1

χtk

)
−

K∑
k=1

log Γ (χtk) +
K∑
k=1

(χtk − 1)

(
Ψ(γmk)−Ψ

(
K∑
i=1

γmi

)))

+

N∑
n=1

K∑
k=1

ϕmnk

(
Ψ(γmk)−Ψ

(
K∑
i=1

γmi

))

+

N∑
n=1

K∑
k=1

ϕmnk logP (xmn|βk)−
Nm∑
n=1

K∑
k=1

ϕmnk log ϕmnk

− log Γ

(
K∑
k=1

γmk

)
+

K∑
k=1

log Γ (γmk)−
K∑
k=1

(γmk − 1)

(
Ψ(γmk)−Ψ

(
K∑
i=1

γmi

))
(18)

4. Eq denotes the expected value w.r.t. distribution q.
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where Γ(·) is the gamma function, and Ψ(·) is the digamma function (first derivative of
log Γ).

By solving the problem 17 we can get the model and variational parameters. The way
in which variational EM works is to update one of {τm}, {γm}, {ϕm}, π, χ, β at a time while
keeping others fixed at their current value. This procedure is in fact using block coordinate
descent to optimize the low-bound we constructed for the true likelihood of data. Here we
just show the end results, the details of the calculations are omitted.

The variational parameters can be updated as below (given the observations and all
other parameters)

ϕmnk ∝ exp

(
Ψ(γmi)−Ψ

(
K∑
k=1

γmi

)
+ logP (xn|βk)

)

γmk =

T∑
t=1

τmtχtk +

Nm∑
n=1

ϕmnk

τmt ∝ exp

(
log πt + log Γ

(
K∑
k=1

χtk

)
−

K∑
k=1

log Γ (χtk) +

K∑
k=1

(χtk − 1)

(
Ψ(γmk)−Ψ

(
K∑
i=1

γmi

)))
(19)

Note that the parameters ϕmn and τm need to be normalized so that they are on simplexes
SK and ST respectively.

The model parameters can be similarly updated as below. The value of π can be directly
calculated as

π =
1

M

M∑
m=1

τm. (20)

To calculate β, we need to solve

argmax
βk

M∑
m=1

Nm∑
n=1

K∑
k=1

ϕmnk logP (xmn|βk) (21)

which is just a maximum likelihood estimation problem given weighted data. This can be
easily done as in EM algorithms such the Gaussian mixture model.

To update the value of χ we can use the constrained Newton-Raphson method. Con-
cretely, we update one χt at time, using the following objective, gradient, and Hessian:

fχt =

(
log Γ

(
K∑
k=1

χtk

)
−

K∑
k=1

log Γ (χtk)

)
M∑

m=1

τmt

+

M∑
m=1

τmt

K∑
k=1

(χtk − 1)

(
Ψ(γmk)−Ψ

(
K∑
i=1

γmi

))
∂fχt

∂χtk
=

(
Ψ

(
K∑
i=1

χti

)
−Ψ(χtk)

)
M∑

m=1

τmt +

M∑
m=1

τmt

(
Ψ(γmk)−Ψ

(
K∑
i=1

γmi

))
∂2fχt

∂χti∂χtj
=

(
δ (i, j)Ψ′ (χti)−Ψ′

(
K∑
k=1

χtk

))
M∑

m=1

τmt

(22)
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By applying the update equations described above, we can estimate both the model
parameters and the variational parameters. It is clear that these updates is guaranteed to
improve our lower bound for the marginal probability of the data, so this algorithm is going
to converge. However, since the problem is not convex, we need to try multiple times using
random initial estimates to get a good result.

Due to the limitation of variational approximations, we cannot know how good is the
solution given by this variational EM procedure. From our current empirical results we
observe the approximation is quite good when the number of topics and genres is not large.

4.3.3 Anomaly Scoring

Having estimated the mode and variational parameters for DGM, we score each group Gm

to rank their anomalousness. Here we propose to use two probabilities as the anomaly
scores.

One choice of anomaly score is

logP (Gm|Θ) = log
∑
t

πt
1

Z (χt)

∫
θm

K∏
k=1

θχtk−1
mk

Nm∏
n=1

K∑
k=1

θmkP (xmn|βk)dθm,

which is just the likelihood that Gm is generated from the model. This probability accounts
for the anomalousness of both the points and the topic distribution for this group. Its value
will be low if either this group contains a point that does not belong to any of the topics,
or the topic distribution in this group is not compatible with the normal behavior specified
by π and χ. Unfortunately, probability P (Gm|Θ) is hard to compute analytically. So we
use Monte Carlo method to compute the integral over θm.

While the score logP (Gm|Θ) is intuitive and is able to detect both group and point
anomalies, it has the disadvantage that the effects of these two anomalies are not separated.
Therefore, it is not able to answer query “which group has the most unusual composition of
topics?”. In fact, we can see that a group whose Nm is large or a group that contains bad
point anomalies, the anomaly score of Gm will be dominated by the point scores P (xmn|βk),
and the group-level scores, which is of our primary interest, becomes invisible. One way
to alleviate the size effect is to use perplexity, which is obtained by normalizing the above
score by the group size. But it is still unable to suppress the effect of point anomalies.

To solve this problem, we use the probability logP (θm|Θ) as the anomaly score. Com-
pared to logP (Gm|Θ), this score only focus on the distribution of topics in the group. The
difficulty left is that θm is a latent variable that we do not observe. The solution is to first
estimate the distribution of P (θm|Gm,Θ), and then use the expectation

Eθm∼P (θm|Gm,Θ) (logP (θm|Θ)) =

∫
θm

P (θm|Gm,Θ) logP (θm|Θ)dθ. (23)

To further simplify the computation, we can use the variational distribution q(θm|γm) as an
approximation to P (θm|Gm,Θ), and use the Monte Carlo method to compute the integral.
We call this quantity the genre score, since it indicates if a group belongs to a normal genre.

Although we have two scoring function targeting at point anomalies and group anomalies
respectively, currently we are not able to specify the balance between these two. In practice,
we recommend detect the point anomalies first, remove them, and then apply the group
anomaly detectors.
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4.3.4 Model Selection

One major limitation of the DGM is that T the number of genres and K the number of
topics need to be assigned by the user. To automatically determine their values, a simple
way is to score different models using methods such as BIC Schwarz (1974) or AIC Akaike
(1974). The definition of BIC score is given by BIC (X,Θ) = lnL (X,Θ) − 1

2 ln (|X|) |Θ|,
where | · | stands for the number of free parameters. We can directly use these two scoring
functions to perform a two dimensional search for the best values for T and K. Since we
usually do not know about the correlations among the parameters, the weight of the second
term in BIC is adjusted so that it achieves best performance on the validation set.

Another way to automatically control the complexity of the model is to use non-
parametric Bayesian methods. Specifically, we can use a Dirichlet Process (DP) by Fer-
guson (1973) to replace the role of π, χ so that the model can potentially use infinitely
many number of genres. This model is still under development. However, we noted that
handling both T and K using DP is difficult because it will need a ‘DP’ whose samples are
DPs.

4.4 Summary

In this section we investigated how to use hierarchical probabilistic models for the group
anomaly detection problem. Following the paradigm of topic modeling, the Dirichlet Genre
Model (DGM) is proposed to capture the generative process of both the individual points
and the groups. Two level of concepts, genres and topics, are proposed and used to char-
acterize both the distribution of points and the composition of groups. In this way, we can
detect various group anomalies.

Two scoring function are proposed as the anomaly score for each group. The first
one is the likelihood of the whole group. This score gives an overall measurement for the
group, but also lacks of the ability to distinguish “aggregation of anomalous points” and
“anomalous aggregation of points”. The second scoring function on the other hand focus
on the topic distribution in the group and is effective finding anomalies of the second type.
In the future, we are hoping to find a trade-off between these two scores, so that the user
can specify which type of group anomalies his/her interest is on.

Plenty of future work can be done for DGM. First, currently the model is not Bayesian
i.e. we get point estimates for all the parameters. We can easily incorporate Bayesian
treatment to make the model fitting more stable. Second, as mentioned in section 4.3.4, we
can further use non-parametric Bayesian methods to eliminate the parameters T or even K.
Thirdly, though efficient, the variational learning method has been shown to be inaccurate
(e.g. Minka and Lafferty (2002)). We can use other methods such as Markov Chain
Monte Carlo (MCMC) or Expectation Propagation (EP) (Minka and Lafferty (2002)) for
learning. The forth interesting problem is how to fit robust Dirichlet distributions in DGM.
In practice we observe that the estimated χ parameter tends to cover all topic distributions
in the data including the anomalies, making the genres overly smooth. For our anomaly
detection purpose, the enhancement on robustness is necessary and expected to improve
performance.

The experimental results of the DGM are shown in section 5.3.
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5. Experiments

5.1 Point Anomaly Detection using MEMF

In this section we show the empirical effectiveness of MEMF on both simulation and real-
world data sets. We compare our method to the following the state-of-the-art competitors:

• L1 Factorization (L1F) by Ke and Kanade (2005) We use the Matlab’s Linear
Programming as the base solver.

• Robust PCA (RPCA) by Wright et al. (2009) We use the code from the original
author5. The faster “inexact” implementation is used for speed.

• Stable PCA (SPCA) by Zhou et al. (2010) We implemented SPCA in Matlab
and use block coordinate descent to optimize.

The partial SVD results are also provided as a baseline. To see more details about these
methods please refer to section 3.3.

The MEMF algorithms are implemented in Matlab. Partial SVD is done using PROPACK
by Larsen. For all algorithms, we terminate the iteration when the change of the objective

function value from (5) f t−1−f t

f t−1 ≤ ε = 10−5.

5.1.1 Simulation Data

First, we compare different robust factorization methods in detail on simulated data sets.
Following the set up in the work of Zhou et al. (2010), the test matrix is constructed as
the sum of the background G0, the noise E0, and the outliers O0. G0 = UT

0 V0 ∈ Rm×m

where U0,V0 ∈ Rr×m have i.i.d. entries from Gaussian N
(
0, σ2

n

)
. Noise E0 ∈ Rm×m has

i.i.d Gaussian entries from N
(
0, σ2

)
where σ =

√
mσn/10. Outlier O0 ∈ Rm×m is sparse

with s i.i.d entries from the uniform distribution on [−cσ, cσ]. Here we use σn = 1, σ =√
m/10, r =

√
m, s = 0.05m2, c = 10.

For MEMF, we use the un-constrained factorization mentioned in section 3.2.2. The
iteration is initialized by partial SVD. The value of λ is set so that residuals larger than
3σ is thresholded. For all the competing algorithms, parameters are set to their suggested
values. For SPCA we use a thresholding parameter that is equivalent to the one used in
MEMF. The true rank r is specified for all the factorization algorithms.

We compare the performances on three different indices. To measure the performance
of robust factorization, we compute the root mean squared error (RMSE) of the low-rank
reconstruction w.r.t. G0. Since the factorization obtained by SPCA is biased due to the
shrinkage of singular values, its performance was measured after “debiasing” as in Ma
et al. (to appear). To measure the outlier detection performance, we compute the average
precision when we retrieve the outlier entries according to their reconstruction residuals.
Finally, the running time is measured for a speed comparison. Mean performances of 20
random runs are reported.

5. http://perception.csl.uiuc.edu/matrix-rank/sample_code.html
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Individual Outliers First we test the performance when handling entry-wise outliers.
In this case, the non-zero entries in O are uniform over all positions. This situation satisfies
the assumption made by RPCA and SPCA. For MEMF, both the L0 and L1 norms are used
to measure outliers, denoted as MEMF-E0 and MEMF-E1 respectively. We simulated for
10 sizes that lie uniformly in the log-space between 50 and 5000. The performance curves
are shown in the first row of Figure 3.

From (a)(b) of Figure 3, we see that MEMF-E1 and MEMF-E0 performs the best in
terms of both robust factorization and anomaly detection. Particularly MEMF-E0 is better
than MEMF-E1 because no shrinkage is applied so the impact of outliers is minimum.
SVD is clearly not robust. RPCA is doing a poor job because it is not designed to handle
the ubiquitous Gaussian noise, which makes the estimated rank wrong. L1F has similar
performance with MEMF-E1 in the beginning, but is too slow when m > 100. SPCA gives
good performance similar to MEMF-E1, confirming their similarity in the L1-norm case as
discussed in section 3.3. From (c) we see that MEMF-E algorithms are much faster than
convex algorithms RPCA and SPCA, and is only slightly worse than the state-of-the-art
partial SVD. The slower speed of convex algorithms is mainly caused by the repeated use
of partial SVD and sometimes the over-estimation of the rank. From these result, we see
that MEMF is better than the competitors in both quality and speed.

Group Outliers We then examine the performance when handling grouped outliers.
Here, the outliers in O concentrate in rows i.e. we first select a few random rows in O and
then fill them with outliers. Note that now the assumption of RPCA and SPCA has been
violated. To accommodate the row patterns, we add the L0-1 and L2-1 norms for MEMF,
denoted as MEMF-R0 and MEMF-R1 respectively. Note that the set up of this simulation
is identical to the previous one except for the positions of the outliers. The performance
curves are shown in the second row of Figure 3.

A similar comparison can be observed as in the individual outlier case, but several
interesting things can be observed. From (d)(e), we see that the performance of SPCA
was severely compromised by the grouped outliers that inflates the estimated rank. The
entry-wise MEMF-E1 and particularly MEMF-E0 are also affected. They still have low
reconstruction error but do not perform well in the anomaly detection task, showing that
the estimations are distorted by structured outliers. On the other hand, the structured
MEMF (MEMF-R0 and MEMF-R1), having a good knowledge of the structure of outliers,
show superior performance in both reconstruction and anomaly detection, especially that
their detection rate almost always achieves the optimum. Structured MEMF also have
speed advantage because they usually converge in fewer iterations.

Based on the results in this simulation, we conclude that MEMF-E1 provides similar
performance to the state-of-the-art SPCA at a faster speed. MEMF-E0 shows better perfor-
mance than the L1-norm based methods, demonstrating the advantage of the not so often
used L0-norm. Moreover, we observe that entry-wise methods suffer from the distortion
caused by grouped outliers. For this situation, MEMF-R algorithms are able to deliver
much better results using outlier measurements that are designed to match the structure of
the outliers. On the other hand, we observe that the convex methods are broken by these
structured outliers which defies the assumption that outliers are uniformly distributed on
the entries.
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Figure 3: Robust factorization performances on simulated data. The columns are: re-
construction RMSE on the normal entries; average precision for retrieving the
outliers; running time in log-scale. In the first row, the outliers are uniform dis-
tributed. In the second row, the outliers concentrate on several rows. See text
for details.

5.1.2 Video Background Modeling and Activity Detection

In this experiment we consider modeling the background of video clips. Estimating the
background accurately is important for activity detection in videos, yet also difficult because
of the variability of the background (e.g. due to lighting conditions) and the presence of
foreground objects such as moving people. Here we assume that the background variations
are of low-rank and the foreground objects are sparse outliers in the video. Then we can
solve this problem using robust low-rank factorization, in which the background is modeled
by the low-rank part and foreground is captured as outliers.

Video sequences “Hall” (size 128 × 160, frames 2100-2400), “Lobby” (size 144 × 176,
frames 1300-1700), “Restaurant” (size 120 × 160, frames 2500-3000), and “ShoppingMall”
(size 128× 160, frames 1500-2000) from Li et al. (2004) are used. The “Hall” data contains
a scene in an airport with relatively static background and many foreground activities.
The “Lobby” data contains a scene in an office lobby with few foreground activities and
large background variations. The “Restaurant” and “ShoppingMall” data are noisier and
contain much more foreground activities. Sample images are shown in Figure 4. We stretch
and stack the frames into a matrix, and compare RPCA, SPCA, MEMF-E1, MEMF-E0
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(a) Results for “Hall” (b) Results for “Lobby”

(c) Results for “Restaurant” (d) Results for “ShoppingMall”

Figure 4: Video activity detection result frames. The columns from left to right are: the
original frame, background and foreground generated by MEMF-E0, background
and foreground generated by RPCA.

on this problem. The performance is measured again on the reconstruction RMSE of the
background, and the average precision of retrieving foreground pixels on given ground truth
frames.

We use the suggested parameters for RPCA and SPCA. The median of pixels’ standard
deviation is used to estimate the background Gaussian noise level σ, and we then set the
thresholding parameters of MEMF and SPCA to get the residuals larger than 3σ. For SVD
and MEMF models, rank-5 models are used for “Hall”, “Lobby” and rank-7 models are
used for “Restaurant”, “ShoppingMall” to capture the background variations.

Detection results of MEMF-E0 and RPCA for some ground-truth frames are shown in
Figure 4. Visually the result from both are quite good and similar. The background are
well reconstructed and the detected foreground objects are correct. A close examination
shows that the foreground detected by RPCA usually have more pixels than MEMF. This is
because that foreground pixels that have small deviations from the background are absorbed
by the Gaussian noise part of MEMF. The benefit we get is that MEMF (also SPCA) usually
generates models whose ranks are much lower than RPCA’s because we do not have to fit
the noise in the background.

The normalized performance diagrams are shown in Figure 5, in which we re-scaled the
performance values so that the largest one is 100%. On the “Hall” and “Lobby” data, we
can see that the algorithms achieve similar RMSE and average precisions. This is probably
because that the data here are relatively simple and the number of ground-truth frames is
small. Yet, we can still see that MEMF methods are slightly better than SPCA and main-
tained the speed advantage. On the other hand, on the more complex “Restaurant” and
“ShoppingMall” data, the MEMF-E methods achieves significant improvement, especially
for the detection rate of foreground pixels. The implication is that MEMF can better re-
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Figure 5: Video background modeling, activity detection, and running time performances.
Shorter bars are better. Performance values are normalized so that the largest
one is 100%.
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construct the background regions that are occluded by foreground objects and not included
in the RMSE measurement.

We also see that in this experiment, RPCA performs the best, which is not surprising
due to its theoretical soundness. Yet the advantage comes at the price of significantly longer
running time (note the time shown is in log-scale) and more complex background models.
For example, the ranks of RPCA models are 150, 231, 276, and 282 for the 4 sequences
respectively.

5.1.3 Text Data Clustering

In this experiment we show how MEMF help improve the NMF-based clustering algorithm
for text data. We demonstrate here the robustness as well as flexibility of MEMF that is
obtained by allowing constrained factorization, which is not supported by RPCA/SPCA.

The data set we adopt is a subset of 20-newsgroup6. We choose the rec topic which
contains autos, motorcycles, baseball, and hockey. The TF-IDF representation is used, and
each document is normalized to have a unit length. The final document-term matrix is of
size 3970× 8014.

Here we use the original NMF as in Lee and Seung (1999), and solve it using the
fast algorithm proposed in Li and jin Zhang (2009). We use the NMF clustering method
proposed by Xu et al. (2003) to partition the documents into 4 clusters. To measure the
clustering performance, we first compute the confusion matrix from the class labels and
cluster labels, then permute the columns to maximize the trace of this matrix, and finally
the portion of documents on the diagonal is counted as the clustering accuracy.

We found that this data set is clean for clustering. The original NMF can achieve an
accuracy of 0.9217, and the MEMF methods can bring it up to around 0.923. To further
demonstrate the impact of outliers and how MEMF can help, we contaminate the data set
with artificial outliers. Denoting the number of non-zero entries and the maximal value in
the document-term matrix X as nz and emax respectively, we randomly pick 0.01nz entries
in X and set their values to random numbers from the uniform distribution on [0, emax]. On
this data set, the clustering accuracies of NMF, MEMF-E1, and MEMF-E0 are compared.

For the MEMF methods, we compute the path of accuracy for different values of pa-
rameter λ using warm start. Letting the λmax be the smallest λ that picks no outliers out,
the values of λ are chosen so that they lie log-uniformly between λmax and 0.01λmax, and
are denoted as {10, 9, · · · , 1}. In each random trial, we re-add the outliers and the best
NMF result from 10 random initializations are used. The mean performance and standard
deviation of 20 random trials are shown in Figure 6.

The impact of outlier on the clustering result is obvious: the accuracy of NMF has
dropped from 0.92 to 0.83. Yet after applying the MEMF methods with certain λs, the
accuracy can be brought back to its original value like the outliers are not there. This shows
the power of robust methods against outliers.

We also show the numbers of entries identified as outliers by the MEMF methods. A
clear “elbow” point can be found in the curve, and that point coincides with the optimum
of MEMF-E1. The interpretation is that once we use a λ that is too small, many normal
data are wrongly regarded as outliers, making the number of outliers grow rapidly. This

6. http://people.csail.mit.edu/jrennie/20Newsgroups
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Figure 6: Accuracy path of MEMF for text clustering. MEMF methods is able to overcome
the outliers and achieve the un-contaminated performance. Also shown is the
number of entries identified as outliers by MEMF (there are about 2.4× 103 true
outliers). See text for details.

phenomenon gives us a useful heuristic for choosing the right λ. It is also interesting to
observe the different behaviors of MEMF-E1 and MEMF-E0. MEMF-E0 can achieve higher
accuracy for large λs but is unreliable when λ is small. MEMF-E1 on the other hand is
more stable, because it shrinks the outliers and pushes the non-outliers back into the normal
part of the model.

5.2 Point Anomaly Detection in Astronomical Data

Now we apply the MEMF algorithm to detect point anomalies on the SDSS data and
compare its performance with the non-robust method. We use SVD as our base factorization
method. The four MEMF algorithms and the original SVD are used. RPCA is not tested
here because it does not scale well enough for the astronomical data, and SPCA in general
performs very similar as MEMF-E1 when the parameters are tuned. To do detection the
anomalies, we stack the objects’ features as rows to form a matrix, then find a rank-k
decomposition of the data matrix, and finally compute the reconstruction error using this
decomposition. The anomaly scores for each object is calculated as the sum of squared
errors on each row.

The stars’ features S (the raw spectrum) are used. The resulting data matrix has a size
49529 × 500, and the labels for anomalies are obtained as follows. For a small subset of
stars, the SIMBAD system7 has a catalog of their categorization. We search for our stars

7. http://simbad.u-strasbg.fr/simbad/
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in the SIMBAD system and label the stars that belong to a special category (not just a
“star”). Then, these labeled stars are treated as anomalies. In this way, among the 49529
stars in our pool 1144 anomalies are labeled. Note that this does not give us a complete
list of anomalies.

We test the performances of algorithm in multiple random runs. In each run, 104 stars
are randomly selected from the pool. To determine k the rank used for factorization, we
first do a PCA on the data and select k to keep 97% of the total variance. The values of
λ the regularization coefficients of outliers are selected so that about 3% of the data are
regarded as outliers. Performances are measured in both average precision (AP) and the
area under the ROC curve (AUC). The results from 30 random runs are shown in Figure 7.
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Figure 7: Point anomaly detection performance on the SDSS star data.

We can see that clear improvements are achieved by the MEMF algorithms, showing the
benefit of robust modeling. Especially, we observe that the MEMF-R0 method produces
the best result. We conclude that by utilizing the intrinsic structure of the data, the MEMF
algorithm can find more reliable decompositions and thus gives better anomaly detection
results.

5.3 Group Anomaly Detection

We show some experimental results to demonstrate the effectiveness of the proposed Dirich-
let Genre Model (DG). We compared it with a simple point anomaly detectors: the Gaussian
mixture model (GMM). In the experiment on astronomical data we also compared it with
a histogram based method.

For the DG model, we score the anomalies using both the perplexity score and the genre
score. The anomaly score of a group using GMM and KNN is just simply the mean of the
anomaly scores of its member points, which can be considered variants of the perplexity.
Note that all these scores are normalized by the group sizes.

5.3.1 Synthetic Problems

First, we test the effectiveness of the algorithms on some synthetic data sets. These ex-
periments are designed particularly to demonstrate the weakness of the existing algorithms
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and how our proposal solves it. Performances of DG using the genre score (DG-Genre), DG
using the perplexity score (DG-Perplexity), and GMM are compared.

We generate the data sets according to the process described in Algorithm 2. The data
points are sampled from three 2-dimensional isometric Gaussian components (i.e. K = 3),
whose means are [−1,−1], [1,−1], [0, 1] and the covariances are all Σ = 0.1 × I2, where
I2 denotes the 2D identity matrix. These components are the ‘topics’. Then we design
two normal genres (T = 2), which are specified by two topic distributions (χ1 ∈ S3, and
χ2 ∈ S3) respectively. We generated M = 40 groups, and Nm ∼ Poisson(50) instances in
each of the groups. Note that the resulting points individually are perfectly normal w.r.t.
other points.

To test the detection performance of these models, we inject two types of anomalies
in the data set. The first kind is a group of point anomalies, which are sampled from
N ([0, 0],Σ) (the anomalous topic). This kind of anomaly should be easy to find for all
methods. We corrupted one group with this anomaly. The second kind of injection is the
group anomalies, where the individual points are normal, but they together as a group look
anomalous. In this anomalous group the individual points were sampled from one of the
K = 3 normal topics, but the distribution of these topics were different from the normal
genres χ1, χ2. The one realization of the simulation is shown in Figure 8.

Figure 8: A simulated data set for group anomaly detection. Green box contains the point
anomaly group. Yellow and magenta boxes contains the group anomaly groups.
Black boxes contains normal groups.

We test the performances of different methods on a data set whose topic distributions
has a clear two-modes structure i.e. there are two well-separated genres. Concretely the
two genres have topic distributions χ1 = (0.33, 0.64, 0.03) and χ2 = (0.33, 0.03, 0.64) respec-
tively, and the distribution of genres is π = (0.48, 0.52). According to these parameters,
there are two types of normal groups. One consists mainly of topics 2&3, and the other
consists mainly of topics 3. We corrupted three groups of normal data using the point
anomaly and the two group anomalies.

The detection results are shown in Figure 9. Here each box contains one group, and we
shown 20 out of the 40 groups. The colors of the boxes are: black for normal group, green
for point anomaly, and yellow/magenta for group anomaly. The instances of the groups are
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DG − Genre Score

DG − Perplexity

GMM

Figure 9: Detection results on a toy data set. Normal groups are in black boxes, and
anomalies are in the colored boxes. Darker color means higher anomaly score.

plotted and colored according to their anomaly scores given by the corresponding algorithms
(the darker colors indicate higher anomaly scores). The anomaly detection is successful,
if the green, yellow/magenta boxes contain points with high anomaly scores (dark points),
and the black boxes contain points with low anomaly scores (light gray points).

We can see that the group of aggregated point anomalies is easily identified by all
methods. But the point-wise detectors GMM are not aware of the group anomalies, since
each individual point is indeed normal. On the other hand, the proposed DG models
examine both the topics and the genres, and discovers the eccentric behaviors at the group
level. We note that one anomaly is not ranked top-3 by the DG model with the perplexity
score. The reason is that the other group at (bottom row, 7-th column) happens to have
some points with higher anomaly scores. In general the DG model with the perplexity score
is not very stable due to this phenomenon. We suggest only use the genre score if interested
in the aggregation behavior, since many mature point anomaly detectors exist already.

The learned genres, which are represented by a mixture of Dirichlet distributions, are
shown in Figure 10(a). The triangle represents the 3-dimensional probability simplex, on
which each topic corresponds to a corner, and each point corresponds to a topic distribution.
We can see that the model clearly captured the two genres. As a comparison, if we directly
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apply LDA, which is equivalent to the 1-genre (T = 1) DG model, the learned distribution
of topic distributions are shown in Figure 10(b). We see it is apparently not faithful to the
behavior of data.

(a) (b)

Figure 10: The genres learned by DG. The genres are actually a mixture of Dirichlet dis-
tributions, and here we show its log-density. (a) Result from a 2-genre (T = 2)
model. (b) Result from a 1-genre (T = 1) model.

Finally, we demonstrate the effect of the group size. We re-use the settings in the previ-
ous experiment, except that now the group sizes are sampled from a exponential distribution
Exponential(100). Figure 11 shows the result of the DG based detectors. Since now there
are many small groups, the genres are not as well-defined as before. We can see that the
DG results are still acceptable. Through multiple runs we further observe that the perfor-
mance of DG using the genre score is more stable than the perplexity score. Indeed, simply
normalizing the scores by group sizes is not the best strategy, and lacks sound probabilistic
interpretation.

DG − Genre Score

DG − Perplexity

Figure 11: Detection results on a toy data set where the group sizes follow a exponential
distribution.
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5.4 Group Anomaly Detection in Astronomical Data

We also use the algorithms on the Sloan Digital Sky Survey data set to find group anomalies.
Again, due to the lack of labeling information on this huge data set, we have to use artificial
injections to evaluate the performances of algorithms.

To find the spatial clusters, we first construct a graph by adding edges between nearby
galaxies, and then treat the connected components in the graph as spatial clusters. After
this preprocessing, 518 spatial groups (7712 galaxies) with sizes between [10, 50] were found.
Then we compressed the 500-dimensional feature Cs1 (normalized continuum) by PCA into
a 2-dimensional space, preserving 95% of the total variance.

We injected artificial group anomalies to test the algorithms. These injections are con-
structed from random points, such that they were required to lie in a low density region of
the ‘topic’ distribution. Concretely, we first quantize the galaxies into three types/topics.
Then a distribution of these topics is computed for each group and plotted on the proba-
bility simplex. Then 5 random points, which represent 5 topic distributions, are selected
from the low-density region on this simplex. These are the anomalous topic distributions.
Finally, 10 injection groups (corresponds to about 2.5% of the normal data) are formed by
selecting random galaxies from the same data set according to the chosen anomalous topic
distributions.

We compared the DG and GMM models together with a histogram based methods in
this experiment. The histogram based methods (H) is repeating the process of the injection:
we first quantize the galaxies into several topics, compute the topic distributions for each
group, and then on the simplex we find points that are in low-density regions. This is a
typical realization of the transformation based methods mentioned in section 4.1. Note
that this H detector should be good since it matches our injection process, except that the
number of topics been used is different.

The algorithms were compared by the retrieval performance on the injected anomalies.
The average precision (AP) was calculated using the anomaly scores produced by the mod-
els. For DG, we use the genre scores. For GMM, the perplexity score is used. Parameters
T = 4,K = 5 were used for all methods. The results from 30 random trials are shown in
figure 12. Note that the performance values have large variances because each time the
injections are very random, and we only added 2.5% anomaly groups.

We see that GMM can hardly do better than a detector that randomly pick out anomalies
since every point in the injected groups is random and normal. On the other hand, both
H and DG is able to pick out these injections. Further, we see that DG achieves better
performance than H. The paired t-test on the results of H and DG shows a p-value of 0.0091.
This demonstrates the detection power of the DG model given that the H method matches
the injection process. We believe the reason is that we are essentially learning the best way
to “transform” the groups in the integral process of learning the generative mechanism,
which is better than doing the transformation as a separate step.

6. Conclusion and Future Work

In this project, we investigated the problem of anomaly detection on astronomical data sets.
Our goal is to design algorithms to assist the astronomers to handle the complex and large
scale survey data.
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Figure 12: Group anomaly detection performance on the SDSS galaxy data. DG achieves
similar performance as H, which repeats the injection process. The dashed line
shows the baseline of a random detector.

We propose two algorithms to handle different types of anomalies. The first algorithm,
called mixed-error matrix factorization (MEMF), is a simple framework for robust low-
rank matrix factorization. Given noisy data sets, it is able to identify the outliers and find
a reliable principal subspace, which is further used for subspace-based anomaly detection.
And its flexibility allows researchers to use it to ‘robustify’ various factorization methods.
More discussion about MEMF is in section 3.4.

The second algorithm we proposed is used to detect group anomalies, even if all of their
member points are normal. In this model we adopt the hierarchical generative modeling
method, and propose a two-level model based on the concepts of topic and genre. It is an
extension of the Latent Dirichlet Allocation (LDA) model so that more complex distribution
of the topic distributions can be captured and used for anomaly detection. An efficient
learning procedure based on variational EM is implemented. More discussion about MEMF
is in section 4.4.

There are many possibilities to explore on astronomical data. Unsupervised anomaly
detection is just the first step to facilitate gathering human knowledge. For this purpose, we
build a web site at http://www.autonlab.org/sdss to present the results to and gather
feedback from the astronomers. When the initial knowledge is gained, we can employ
supervised methods such as active learning to further build our knowledge base. Eventually,
our hope is to use machine learning to help tame the vast-scale astronomical data, so that
we can know the universe better.
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