
Learning Stable Linear Dynamical Systems

Learning Stable Linear Dynamical Systems

Byron Boots beb@cs.cmu.edu

Machine Learning Department
Carnegie Mellon University
Pittsburgh, PA 15217, USA

Abstract

Stability is a desirable characteristic for linear dynamical systems, but it is often ignored
by algorithms that learn these systems from data. We propose a novel method for learning
stable linear dynamical systems: we formulate an approximation of the problem as a convex
program, start with a solution to a relaxed version of the program, and incrementally add
constraints to improve stability. Rather than continuing to generate constraints until we
reach a feasible solution, we test stability at each step; because the convex program is only
an approximation of the desired problem, this early stopping rule can yield a higher-quality
solution. We employ both maximum likelihood and subspace ID methods to the problem of
learning dynamical systems with exogenous inputs directly from data. Our algorithm is ap-
plied to a variety of problems including the tasks of learning dynamic textures from image
sequences, learning a model of laser and vision sensor data from a mobile robot, learning
stable baseline models for drug-sales data in the biosurveillance domain, and learning a
model to predict sunspot data over time. We compare the constraint generation approach
to learning stable dynamical systems to the best previous stable algorithms (Lacy and Bern-
stein, 2002, 2003), with positive results in terms of prediction accuracy, quality of simulated
sequences, and computational efficiency. Source code and video results of stable dynamic
textures are available online at http://www.select.cs.cmu.edu/projects/stableLDS.

Keywords: Linear Dynamical Systems, Stability, Constraint Generation

1. Introduction

Many problems in machine learning involve sequences of real-valued multivariate observa-
tions. To model the statistical properties of such data, it is often sensible to assume each
observation to be correlated to the value of an underlying latent variable, or state, that is
evolving over the course of the sequence. In the case where the state is real-valued and the
noise terms are assumed to be Gaussian, the resulting model is called a linear dynamical
system (LDS), also known as a Kalman Filter (Kalman, 1960). LDSs are an important tool
for modeling time series in engineering, controls and economics as well as the physical and
social sciences.

Let {λi(M)}ni=1 denote the eigenvalues of an n × n matrix M in decreasing order of
magnitude, {νi(M)}ni=1 the corresponding unit-length eigenvectors, and define its spectral
radius ρ(M) ≡ |λ1(M)|. An LDS with dynamics matrix A is internally stable if all of A’s
eigenvalues have magnitude at most 1, i.e., ρ(A) ≤ 1. Standard algorithms for learning LDS
parameters do not enforce this stability criterion, learning locally optimal values for LDS
parameters by gradient descent (Ljung, 1999), Expectation Maximization (EM) (Ghahra-

1



Learning Stable Linear Dynamical Systems

mani and Hinton, 1996) or least squares on a state sequence estimate obtained by subspace
identification methods. However, when learning from finite data samples, all of these solu-
tions may be unstable even if the system being modeled is stable (Chui and Maciejowski,
1996). The drawback of ignoring stability is most apparent when simulating or predicting
long sequences from the system in order to generate representative data or infer stretches
of missing values.

We propose a convex optimization algorithm for learning the dynamics matrix while
guaranteeing stability when the estimate of the dynamical system is first obtained using
either EM or subspace identification. We then formulate the least-squares problem for the
dynamics matrix as a quadratic program (QP) (Boyd and Vandenberghe, 2004), initially
without constraints. When this QP is solved, the estimate Â obtained may be unstable.
However, any unstable solution allows us to derive a linear constraint which we then add
to our original QP and re-solve. The above two steps are iterated until we reach a stable
solution, which is then refined by a simple interpolation to obtain the best possible stable
estimate.

Our method can be viewed as constraint generation (Horst and Pardalos, 1995) for an
underlying convex program with a feasible set of all matrices with singular values at most
1, similar to work in control systems (Lacy and Bernstein, 2002). However, we terminate
before reaching feasibility in the convex program, by checking for matrix stability after
each new constraint. This makes our algorithm less conservative than previous methods for
enforcing stability since it chooses the best of a larger set of stable dynamics matrices. The
difference in the resulting stable systems is apparent when simulating and predicting data.
The constraint generation approach also achieves much greater efficiency than previous
methods in our experiments.

One application of LDSs in computer vision is learning dynamic textures from video
data (Soatto et al., 2001). An advantage of learning dynamic textures is the ability to
play back a realistic-looking generated sequence of any desired duration. In practice, how-
ever, videos synthesized from dynamic texture models can quickly degenerate because of
instability in the underlying LDS. In contrast, sequences generated from dynamic textures
learned by our method remain “sane” even after arbitrarily long durations. We also apply
our algorithm to learning models of robot sense data conditioned on odometry informa-
tion, baseline dynamic models of over-the-counter (OTC) drug sales for biosurveillance,
and sunspot data from the UCR archive (Keogh and Folias, 2002). Comparison to the best
alternative methods (Lacy and Bernstein, 2002, 2003) on these problems consistently yields
positive results.

2. Linear Dynamical Systems

The evolution of a stochastic linear time-invariant dynamical system (LDS) can be described
by the following two equations:

xt+1 = Axt + wt wt ∼ N (0, Q) (1a)
yt = Cxt + vt vt ∼ N (0, R) (1b)

2



Learning Stable Linear Dynamical Systems

ut-1 ut ut+1

.   .   . .   .   .

y t

x t xt+1

yt+1

xt-1

yt-1

forward backward

Figure 1: Graphical representation of the deterministic-stochastic linear dynamical system.
The larger grey arrows indicate the forward and backward messages passed during
inference. See text for details.

Time is indexed by the discrete1 variable t. Here xt denotes the hidden states in Rn, yt the
observations in Rm, and the parameters of the system: the dynamics matrix A ∈ Rn×n and
the observation model C ∈ Rm×n. The variables wt and vt describe zero-mean normally
distributed process and observation noise respectively, with covariance and cross-covariance
matrices

E
{[

wt
vt

] [
wT
s vT

s

]}
=
[
Q S
ST R

]
δts (2)

where δts is the Kronecker delta, Q ∈ Rn×n is non-negative definite, and R ∈ Rm×m is
positive definite, and S ∈ Rn×m is the cross-covariance. Inputs can be incorporated into
the LDS model via a modification of Equations 1 resulting in a deterministic-stochastic
LDS

xt+1 = Axt +But + wt wt ∼ N (0, Q) (3a)
yt = Cxt +Dut + vt vt ∼ N (0, R) (3b)

where ut denotes an exogenous input in Rl at time t and B ∈ Rn×l and D ∈ Rm×l are pa-
rameters that govern the effect of the inputs on the dynamical system. Thus, a stochastic
LDS (Equations 1a-b) models the distribution of outputs P (y1:T ), while the deterministic-
stochastic LDS (Equations 3a-b and Figure 1) models the conditional distribution of outputs
given deterministic inputs P (y1:T |u1:T ). For the remainder of this paper we will consider
LDSs with exogenous inputs (also called deterministic-stochastic LDSs), a model that in-
cludes stochastic LDSs as a special case (when the inputs are constant over time).

1. In continuous-time dynamical systems, the derivatives are specified as functions of the current state.
They can be converted to discrete-time systems. If we could be guaranteed that the system we’re trying
to recover is positive real, we could use an exact method due to (Hoagg et al., 2004), but there’s no
reason to expect positive realness in many cases of interest.

3



Learning Stable Linear Dynamical Systems

2.1 Inference

In this section we describe the forwards and backwards inference algorithms for LDS. More
details can be found in several sources (Ljung, 1999; Van Overschee and De Moor, 1996;
Katayama, 2005).

The distribution over state at time t, P (Xt|y1:T , u1:T ), can be exactly computed in two
parts: a forward and a backward recursive pass. The forward pass which is dependent
on the initial state x0 and the observations y1:t, is known as the Kalman filter, and the
backward pass which uses the observations from yT to yt+1 is known as the Rauch-Tung-
Striebel (RTS) equations. The combined forward and backward passes are together called
the Kalman smoother. It is worth noting that the standard LDS filtering and smoothing
inference algorithms (Kalman, 1960; Rauch, 1963) are instantiations of the junction tree
algorithm for Bayesian Networks on the dynamic Baysian network described in Figure 1
(see, for example, Murphy (2002)).

2.1.1 The Forward Pass (Kalman Filter)

Let the mean and covariance of the belief state estimate P (Xt|y1:t, u1:t) at time t be denoted
by x̂t and P̂t respectively. The estimates x̂t and P̂t can be predicted from the previous time
step, the exogenous input, and the previous observation. Let x̂t1|t2 denote an estimate of
variable x at time t1 given data y1, . . . , yt2 . We then have the following recursive equations:

xt|t−1 = Axt−1|t−1 +But (4a)

Pt|t−1 = APt−1|t−1A
T +Q (4b)

Equation 4a can be thought of as applying the system matrices A and B and exogenous
input ut−1 to the mean to form an initial prediction of x̂t. Similarly, Equation 4b can
be interpreted as using the dynamics matrix A and error covariance Q to form an initial
estimate of the belief covariance P̂t. The estimates are then adjusted:

xt|t = xt|t−1 +Ktet (4c)

Pt|t = Pt|t−1 −KtCPt|t−1 (4d)

where the error in prediction at the previous time step (the innovation) et−1 and the Kalman
gain matrix Kt−1 are computed as follows:

et−1 = yt−1 − (Cx̂t−1|t−1 +Dut−1) (4e)

Kt−1 = Pt−1|t−1C
T(CP̂t−1|t−1C

T +R)−1 (4f)

The weighted error in Equation 4c corrects the predicted mean given an observation, and
Equation 4d reduces the variance of the belief by an amount proportional to the observation
covariance. Taken together, Equations 4a-f define a specific form of the Kalman filter known
as the forward innovation model.

2.1.2 The Backward Pass (RTS Equations)

The forward pass finds the mean and variance of the states xt, conditioned on past observa-
tions. The backward pass corrects the results of the forward pass by evaluating the influence

4



Learning Stable Linear Dynamical Systems

of future observations on these estimates. Once the forward recursion has completed and
the final values of the mean and variance xT |T and PT |T have been calculated, the backward
pass proceeds in reverse by evaluating the influence of future observations on the states in
the past:

xt|T = xt|t +Gt(xt+1|T − xt+1|t) (5a)

Pt|T = Pt|t +Gt(Pt+1|T − Pt+1|t)G
T
t (5b)

where xt+1|t and Pt+1|t are 1-step predictions

xt+1|t = Axt|t +But+1 (5c)

Pt+1|t = APt|tA
T +Q (5d)

and the smoother gain matrix G is computed as:

Gt = Pt|tA
TP−1

t+1|t (5e)

The cross variance Pt,t−1|T = Cov[Xt−1, Xt|y1:T ], a useful quantity for parameter estimation
(section 3.1), may also be computed at this point:

Pt−1,t|T = Gt−1Pt|T (5f)

3. Learning Linear Dynamical Systems

Learning a dynamical system from data (system identification) involves finding the param-
eters θ = {A,B,C,D,Q,R} and the distribution over hidden variables Q = P (X|Y, θ) that
maximize the likelihood of the observed data. The maximum likelihood solution for these
parameters can be found through iterative techniques such as expectation maximization
(EM). An alternative approach is to use subspace identification methods to compute an
asymptotically unbiased solution in closed form. In practice, a good approach is to use sub-
space identification to find an initial solution and then refine the solution with EM. The EM
algorithm for system identification is presented in section 3.1 and subspace identification is
presented in section 3.2.

3.1 Expectation Maximization

The EM algorithm is an iterative procedure for finding parameters that maximize the
likelihood of observed data P (Y |θ) in the presence of latent variables x. In practice, instead
of maximizing the likelihood directly, a lower bound on the log-likelihood

L(θ) = logP (Y |θ) = log
∫
X
P (X,Y |θ)dX (6)

is maximized by coordinate ascent 2. Using any distribution over the hidden variables Q,
a lower bound on the log-likelihood F(Q, θ) ≤ L(θ) can be obtained by utilizing Jensen’s

2. For LDSs, this lower bound is tight and EM maximizes the likelihood. See Section 3.1.1

5



Learning Stable Linear Dynamical Systems

inequality (at Equation 7b, below):

L(θ) = logP (Y |θ) = log
∫
X
P (X,Y |θ)dX (7a)

= log
∫
X
Q(X)

P (X,Y |θ)
Q(X)

dX ≥
∫
X
Q(X) log

P (X,Y |θ)
Q(X)

dx (7b)

=
∫
X
Q(X) logP (X,Y |θ)dX −

∫
X
Q(X) logQ(X)dx (7c)

= F(Q, θ) (7d)

The EM algorithm alternates between maximizing the lower-bound on the log-likelihood F
with respect to the parameters θ and with respect to the distribution Q, holding the other
quantity fixed. Thus, starting from an initial estimate of the parameters θ0, we alternately
apply:

Expectation-step (E-step): Qk+1 ← arg max
Q
F(Q, θk) (8a)

Maximization-step (M-step): θk+1 ← arg max
θ
F(Qk+1, θ) (8b)

where k indexes an iteration, until the parameter estimate θk converges to a local maximum.

3.1.1 The E-Step

The E-step (Equation 8a) is maximized when Q is exactly the conditional distribution
of X, that is Qk+1(X) = P (X|Y, θk), at which point the bound becomes an equality:
F(Qk+1, θk) = L(θ). Fortunately, we have already seen how the maximum value of P (X|Y, θk)
can be computed exactly by solving the LDS inference (Kalman smoothing) problem: esti-
mating the hidden state trajectory given the inputs, the outputs, and the parameter values.
This algorithm is outlined in section 2.1.

3.1.2 The M-step

As noted in Equation 8b, the M-step is maximized by finding the maximum of F(Qk+1, θ) =∫
X Qk+1(X) logP (X,Y |θ)dX −

∫
X Qk+1(X) logQk+1(X)dx with respect to θ. The param-

eters of the system θk+1 = {Â, B̂, Ĉ, D̂, Q̂, R̂} are estimated by taking the corresponding
partial derivative of the expected log-likelihood, setting to zero and solving, resulting in the

6



Learning Stable Linear Dynamical Systems

following update equations:

[ Ĉ D̂ ] =

(
T∑
t=1

ytE{wT
t |y1:T }

)(
T∑
t=1

E{wtwT
t |y1:T }

)−1

(9a)

R̂ =
1
T

(
T∑
t=1

yty
T
t − [ Ĉ D̂ ]

T∑
t=1

E{wt|y1:T }yT
t

)
(9b)

[ Â B̂ ] =

(
T∑
t=2

E{xtwT
t−1|y1:T }

)(
T∑
t=2

E{wt−1w
T
t−1|y1:T }

)−1

(9c)

Q̂ =
1

T − 1

(
T∑
t=2

E{xtxT
t |y1:T } − [ Â B̂ ]

T∑
t=2

E{wt−1x
T
t |y1:T }

)
(9d)

where wt =
[
xt
ut

]
.

3.2 Subspace Identification

Subspace methods calculate the parameters of an LDS by using tools from linear algebra
including the oblique projection (explained below) and the singular value decomposition
(SVD) (Horn and Johnson, 1985) to find Kalman filter estimates of the underlying state
sequence in closed form. See Van Overschee and De Moor (1996) for variations. This ap-
proach is often advantageous with respect to EM in practice when the state space is high
dimensional.

Let U0|i−1 and Y0|i−1 be defined as:

U0|i−1 =


u0 u1 · · · uj−1

u1 u2 · · · uj
...

...
. . .

...
ui−1 ui · · · ui+j−2


li×j

Y0|i−1 =


y0 y1 · · · yj−1

y1 y2 · · · yj
...

...
. . .

...
yi−1 yi · · · yi+j−2


mi×j

(10)

We will use Up and Yp to denote certain matrices of “past” inputs and observations respec-
tively, U+

p , Y
+
p to denote one-timestep extensions of these matrices, and i to denote the

“present.” Specifically, we define

Up ≡ U0|i−1 U+
p ≡ U0|i

Yp ≡ Y0|i−1 Y +
p ≡ Y0|i

These will be useful in the subsequent discussion. Similarly, let Uf , Yf , U−f , Y
−
f denote

matrices of “future” inputs and observations and their one-step contractions. These are
defined as

Uf ≡ Ui|2i−1 U−f ≡ Ui+1|2i−1

Yf ≡ Yi|2i−1 Y −f ≡ Yi+1|2i−1

7



Learning Stable Linear Dynamical Systems

Column t of Yf or Uf represents the future observation or exogenous input at time t+ i−1,
and the corresponding column of Yp or Up represents the past observation or exogenous
input at time t + i − 1. Matrices of the above form, with each block of rows equal to
the previous block but shifted by a constant number of columns, are called block Hankel
matrices (Ljung, 1999). Finally, let

X̂i = [x̂i x̂i+1 . . . x̂i+j ] ∈ Rn×j (11)

be a set of Kalman filter state estimates at time i derived from the same set of observations.
From Equations 10 and 11 and the equation for the Kalman filter (Equation 4a-f), the
equations for updating the predictive state estimate for a set of Kalman filters in parallel
are:

X̂i+1 = AX̂i +BUi|i +KiEi (12a)

Yi|i = CX̂i +DUi|i + Ei (12b)

Ei = Yi|i − CX̂i −DUi|i (12c)

where Ei ∈ Rn×j contains the Kalman filter innovations. The subspace identification algo-
rithm assumes that the innovations are uncorrelated with the predictive state estimates X̂i,
the past inputs Up and past outputs Yp. Thus, if the observations truly arise from an LDS,
then E{Ei|Yp, Up, Uf , X̂i} = 0 and

E{Yf |X̂i, Uf} =


Cx̂i +Dui Cx̂i+1 +Dui+1 · · · Cx̂j−1 +Duj−1

Cx̂i+1 +Dui+1 Cx̂i+2 +Dui+2 · · · Cx̂j +Duj
Cx̂i+2 +Dui+2 Cx̂i+3 +Dui+3 · · · Cx̂j+1 +Duj+1

...
...

. . .
...

Cx̂2i−1 +Du2i−1 Cx̂2i +Du2i . . . Cx̂2i+j−2 +Du2i+j−2


mi×j

=


Cx̂i +Dui · · ·

CAx̂i + CBui +Dui+1 · · ·
CA2x̂i + CABui + CBui+1 +Dui+2 · · ·

CA3x̂i + CA2Bui + CABui+1 + CBui+2 +Dui+3 · · ·
...

. . .


mi×j

(13)

Let Γi (the extended observability matrix) and the lower block triangular Toeplitz matrix
Hi be defined as:

Γi =


C
CA
CA2

...
CAi−1


mi×n

Hi =


D 0 · · · 0
CB D · · · 0
CAB CB · · · 0

...
...

...
CAi−2B CAi−3B · · · D


mi×li

(14)

Note that Γi and Γi−1 are related by the expression

Γi =
[

Γi−1

CAi−1

]
(15)

8



Learning Stable Linear Dynamical Systems

1000 200

Sunspot time seriesA. B.

0

300row span {Uf } Yf

Ŷf

i = 12i = 1

Γi X̂ i

H i Uf
= Γi X̂ i + H iUf

(projection of     )

data features data features 1500120
−0.2

0

0.2

0

0.2

Yf Uf

{Wp }row span

Yf

/ Wp =

Yf Wp
/ Uf =

Figure 2: (A): Oblique projection. Yf is the Hankel matrix of future observations, Uf is the
Hankel matrix of future exogenous inputs, Wp is the matrix of past observations
and inputs, and Ŷf is the projection of Yf ontoWp and Uf . The oblique projection
of Yf along Uf and onto Wp is the vector along the row span of Wp. (B): Sunspot
data, sampled monthly for 200 years. Each curve is a month, the x-axis is over
years. Below the graph are the first two principal components of Oi where Yf
and Yp each consist of 1-observation Hankel matrices and 12-observation Hankel
matrices. The 1-observation Hankel matrices do not contain enough observations
to recover a state which accurately reflects the temporal patterns in the data,
while the 12-observation Hankel matrices do.

By substituting Γi andHi from Equation 14 and Uf into Equation 13, we see that E{Yf |X̂i, Uf}
is decomposed into a sum of two products of low-rank matrices:

E{Yf |X̂i, Uf} = ΓiX̂i +HiUf (16)

where HiUf is a linear function of future inputs that lies in the row span of Uf and ΓiX̂i is

a rank n linear function of state that lies in the row span of Wp, where Wp =
[
Yp
Up

]
3.

Given the model in Equation 16, the oblique projection (Van Overschee and De Moor,
1996) of Yf along Uf and onto Wp, denoted Yf/Uf

Wp, may be used to find ΓiX̂ directly
from data matrices Yf , Uf and Wp (Figure 2). Here, X̂i is the true Kaman filter state
estimate starting from state X̂0 = 0, incorporating inputs Up, and filtering on observations
Yp

4. The oblique projection is calculated

Yf/Uf
Wp = Yf

[
Wp

Uf

]† [
Wp

0li×j

]
(17)

3. The Kalman filter state estimates X̂i can be computed exactly in closed form as a linear function of Yp

and Up. The proof can be found in Van Overschee and De Moor (1996)
4. The proof of this fact can be found in Van Overschee and De Moor (1996)

9



Learning Stable Linear Dynamical Systems

where † denotes the Moore-Penrose pseudo-inverse and 0li×j is a matrix of zeros ∈ Rli×j .
When there are no exogenous inputs, the oblique projection reduces to a regular orthogonal
projection. Let

Oi = Yf/Uf
Wp = ΓiX̂i (18a)

Oi+1 = Y −f /U−f
W+
p = Γi−1X̂i+1 (18b)

where W+
p =

[
Y +
p

U+
p

]
. The rank of Oi is the dimensionality of the state space, the row

space of Oi is equal to the row space of Γi and the column space of Oi is equal to the column
space of X̂i (Van Overschee and De Moor, 1996). These properties can be exploited to find
estimates of X̂i and X̂i+1. Let

Oi = UΣVT (19)

be the singular value decomposition of the oblique projection. The order of the system can
be determined by inspecting the singular values in Σ. Near-zero singular values are deleted
from Σ, as are the corresponding singular vectors in U and VT. The SVD will choose
the columns of U to be an optimal basis for compressing and reconstructing sequences of
expected future observations. Thus, Γi and Γi−1 and the Kalman filter state sequences are
estimated, up to a linear transform, as:

Γi = UΣ1/2 (20)

which allows us to estimate Γi−1 using Eq (15), and

X̃i = Γ†iOi (21a)

X̃i+1 = Γ†i−1Oi+1 (21b)

An important result is that, if the number of observations, i, in Yf is large enough, as the
number of columns in our Hankel matrices j → ∞ the state estimates recovered by SVD
converge to the true Kalman filter state estimates X̃i → X̂i and X̃i+1 → X̂i+1 up to a linear
transform (Van Overschee and De Moor, 1996).

Having multiple observations per column in Yf is particularly important when the un-
derlying dynamical system is not completely observable. For example, Figure 2(B) shows
200 years of sunspot numbers, with each month modeled as a separate variable. Sunspots
are known to have two periods, the longer of which is 11 years. When subspace ID is per-
formed using Hankel matrices with i = 12, the first two principal components of Oi resemble
the sine and cosine bases, and the corresponding state variables are the coefficients needed
to combine these bases so as to predict 12 years of data. This is in contrast to the bases
obtained by SVD on a 1-observation Yf and Yp, which reconstruct just the variation within
a single year. Thus, with i = 1 the state estimate will not converge to the true Kalman
filter state estimate even if j →∞.

10



Learning Stable Linear Dynamical Systems

Once X̃i and X̃i+1 have been determined, the parameters can be found by solving the
following set of linear equations for A,B,C and D:[

X̂i+1

Yi|i

]
=
[
A B
C D

] [
X̂i

Ui|i

]
+
[
ρw
ρv

]
(22a)

The covariance matrices Q̂ and R̂ can be estimated directly from residuals:[
Q̂ Ŝ

ŜT R̂

]
=

1
T − 1

([
ρw
ρv

] [
ρT
wρ

T
v

])
(22b)

Due to the fact that X̃i → X̂i and X̃i+1 → X̂i+1, the parameter estimates θ = {Â, B̂, Ĉ, D̂, Q̂, R̂}
are consistent as j →∞ (Van Overschee and De Moor, 1996).

The maximum likelihood solution found by EM might provide more sensible parameter
estimates than subspace ID, especially when the amount of training data is small, but is
subject to local optima. One reasonable approach to parameter estimation is to first esti-
mate the parameters with subspace ID and then refine the solution by using the parameter
estimates as a starting point for the EM algorithm. This approach is explored in Section 6.

4. Stability

Stability is a property of dynamical systems defined in terms of equilibrium points. If all
solutions of a dynamical system that start out near an equilibrium state xe stay near or
converge to xe, then the state xe is stable or asymptotically stable respectively (see Figure
4). A linear system xt = Axt + But is internally stable if the internal states are stable,
i.e. if the matrix A obeys the Lyapunov stability criterion (see below). Internal stability
is sufficient, though not strictly necessary, for the stability of a dynamical system with ex-
ogenous inputs (Halanay and Rasvan, 2000). The standard algorithms for learning linear
Gaussian systems described in Section 3 do not enforce stability ; when learning from finite
data samples, the maximum likelihood or subspace ID solution may be unstable even if the
true system is stable due to the sampling constraints, modeling errors, and measurement
noise.

A dynamics matrix A is said to be asymptotically stable in the sense of Lyapunov
if, for any given positive semi-definite symmetric matrix Q (interpreted as an observation
covariance), there exists a positive-definite symmetric matrix P (interpreted as a steady-
state belief covariance) that satises the following Lyapunov criterion:

P −APAT = Q (23)

An LDS is said to be asymptotically stable in the sense of Lyapunov if its dynamics matrix
A is. Thus, the Lyapunov criterion can be interpreted as holding for an LDS if, for a given
covariance matrix, there exists a belief distribution where the predicted belief over state is
equivalent to the previous belief over state, that is, if there exists an equilibrium point.

11



Learning Stable Linear Dynamical Systems

A. B. C.

time time time

st
at

e

st
at

e

st
at

e

Figure 3: System equilibria. (A) Unstable equilibrium. The state vector will rapidly move
away from the equilibrium point when perturbed. (B) Asymptotically stable
equilibrium. The state vector will return to the original equilibrium point when
perturbed. (C.) Stable equilibrium. No “resistance;” a perturbed state vector will
oscillate forever around the equilibrium point. Note that the notion of asymptotic
stability is stronger than stability.

It is interesting to note that the Lyapunov criterion holds iff the spectral radius ρ(A) ≤
1. Recall that a matrix M is positive semi-definite iff zMzT ≥ 0 for all non-zero vectors z.
Let λ be an left eigenvalue of A and ν be a corresponding eigenvector, giving us νA = νλ,
then

νQνT = ν(P −ATPA)νT = νPνT − νλPλνT = νPνT(1− |λ|2) (24)

since νPνT ≥ 0, it follows that |λ| ≤ 1 is equivalent to νQνT ≥ 0, and therefore to Equation
24. When ρ(A) < 1, the system is asymptotically stable. To see this, suppose DΛD−1 is
the eigen-decomposition of A, where Λ has the eigenvalues of A along the diagonal and D
contains the eigenvectors. Then,

lim
k→∞

Ak = lim
k→∞

DΛkD−1 = D

(
lim
k→∞

Λk
)
D−1 = 0 (25)

since it is clear that limk→∞ Λk = 0. If Λ = I, then A is stable but not asymptotically
stable and the state oscillates around xe indefinitely.

5. Learning Stable Linear Dynamical Systems

The estimation procedures in Section 3 does not enforce stability in Â which can cause
problems when predicting and simulating from an LDS learned from data. To account for
stability, we first formulate the dynamics matrix learning problem as a quadratic program
with a feasible set that includes the set of stable dynamics matrices. Then we demonstrate
how instability in its solutions can be used to generate constraints that restrict this feasible
set appropriately. As a final step, the solution is refined to be as close as possible to
the least-squares estimate while remaining stable. The overall algorithm is illustrated in
Figure 4(A). We now explain the algorithm in more detail.

12



Learning Stable Linear Dynamical Systems

5.1 Formulating the Objective

In subspace ID as well as in the M-step of an iteration of EM, it is possible to write the
objective function for Â as a quadratic function. For subspace ID we define a quadratic
objective function using the residuals: XR = X̃i+1 − B̂Ũi|i.

Â = arg min
A

∥∥AX̃i −XR

∥∥2

F

= arg min
A

{
tr
[(
AX̃i −XR

)T (
AX̃i −XR

)]}
= arg min

A

{
tr
(
AX̃iX̃

T
i A

T
)
− 2tr

(
X̃iX

T
RA
)

+ tr
(
XT
RXR

)}
= arg min

a

{
aTPa− 2 qTa+ r

}
(26a)

where a ∈ Rn2×1, q ∈ Rn2×1, P ∈ Rn2×n2
and r ∈ R are defined as:

a = vec(A) = [A11 A21 A31 · · · Ann]T (26b)

P = In ⊗
(
X̃iX̃

T
i

)
(26c)

q = vec(XiX
T
R) (26d)

r = tr
(
XT
RXR

)
(26e)

In is the n× n identity matrix and ⊗ denotes the Kronecker product. Note that P (which
is defined differently from the P in Section 4) is a symmetric positive semi-definite matrix
and the objective function in Equation 27a is a quadratic function of a.

For EM, we use the same function form (Equation 27a), but with:

Â = arg min
a

{
aTPa− 2 qTa

}
(27a)

where a ∈ Rn2×1, q ∈ Rn2×1 and P ∈ Rn2×n2
are defined as:

a = vec(A) = [A11 A21 A31 · · · Ann]T (27b)

P = In ⊗

(
T∑
t=2

Pt

)
(27c)

q = vec

(
T∑
t=2

Pt−1,t

)
(27d)

r = 0 (27e)

Here, Pt and Pt−1,t are taken directly from the E-step of EM.

5.2 Generating Constraints

The feasible set of the quadratic objective function is the space of all n × n matrices,
regardless of their stability. When its solution yields an unstable matrix, the spectral

13



Learning Stable Linear Dynamical Systems

Afinal

LB-1A

generated
constraint

A

S   
A^

S  
unstable
matrices

stable
matrices Rn 2

*

*

λ

σ

α
−10 0  10 

10

0 

10 

unstable
matrices

(stable 
matrices)

-

S  

S  

λ

σ
β

.B.A
E0,10

E10,0

E5,5

Figure 4: (A): Conceptual depiction of the space of n× n matrices. The region of stability
(Sλ) is non-convex while the smaller region of matrices with σ1 ≤ 1 (Sσ) is convex.
The elliptical contours indicate level sets of the quadratic objective function of
the QP. Â is the unconstrained least-squares solution to this objective. ALB-1

is the solution found by LB-1 (Lacy and Bernstein, 2002). One iteration of
constraint generation yields the constraint indicated by the line labeled ‘generated
constraint’, and (in this case) leads to a stable solution A∗. The final step of our
algorithm improves on this solution by interpolating A∗ with the previous solution
(in this case, Â) to obtain A∗final. (B): The actual stable and unstable regions
for the space of 2 × 2 matrices Eα,β = [ 0.3 α ;β 0.3 ], with α, β ∈ [−10, 10].
Constraint generation is able to learn a nearly optimal model from a noisy state
sequence of length 7 simulated from E0,10, with better state reconstruction error
than either LB-1 or LB-2. The matrices E10,0 and E0,10 are stable, but their
convex combination E5,5 = 0.5E10,0 + (1− 0.5)E0,10 is unstable.

radius of Â (i.e. |λ1(Â)|) is greater than 1. Ideally we would like to use Â to calculate a
convex constraint on the spectral radius. However, consider the class of 2 × 2 matrices:
Eα,β = [ 0.3 α ;β 0.3 ] (Ng and Kim, 2004). The matrices E10,0 and E0,10 are stable with
λ1 = 0.3, but their convex combination γE10,0 + (1− γ)E0,10 is unstable for (e.g.) γ = 0.5
(Figure 4(B)). This shows that the set of stable matrices is non-convex for n = 2, and in
fact this is true for all n > 1. We turn instead to the largest singular value, which is a
closely related quantity since

σmin(Â) ≤ |λi(Â)| ≤ σmax(Â) ∀i = 1, . . . , n (Horn and Johnson, 1985)

Therefore every unstable matrix has a singular value greater than one, but the converse is
not necessarily true. Moreover, the set of matrices with σ1 ≤ 1 is convex5. Figure 4(A)
conceptually depicts the non-convex region of stability Sλ and the convex region Sσ with
σ1 ≤ 1 in the space of all n× n matrices for some fixed n. The difference between Sσ and
Sλ can be significant. Figure 4(B) depicts these regions for Eα,β with α, β ∈ [−10, 10]. The

5. Since σ1(M) ≡ maxu,v:‖u‖2=1,‖v‖2=1 u
TMv, so if σ1(M1) ≤ 1 and σ1(M2) ≤ 1, then for all convex

combinations, σ1(γM1 + (1− γ)M2) = maxu,v:‖u‖2=1,‖v‖2=1 γu
TM1v + (1− γ)uTM2v ≤ 1.

14



Learning Stable Linear Dynamical Systems

stable matrices E10,0 and E0,10 reside at the edges of the figure. While results for this class
of matrices vary based on the instance used, the constraint generation algorithm described
below is able to learn a nearly optimal model from a noisy state sequence of τ = 7 simulated
from E0,10, with better state reconstruction error than LB-1 and LB-2.

Let Â = Ũ Σ̃Ṽ T by SVD, where Ũ = [ũi]ni=1 and Ṽ = [ṽi]ni=1 and Σ̃ = diag{σ̃1, . . . , σ̃n}.
Then:

Â = Ũ Σ̃Ṽ T ⇒ Σ̃ = ŨTÂṼ ⇒ σ̃1(Â) = ũT
1 Âṽ1 = tr(ũT

1 Âṽ1) (28)

Therefore, instability of Â implies that:

σ̃1 > 1⇒ tr
(
ũT

1 Âṽ1

)
> 1⇒ tr

(
ṽ1ũ

T
1 Â
)
> 1⇒ gTâ > 1 (29)

Here g = vec(ũ1ṽ
T
1 ). Since Eq. (29) arose from an unstable solution of Eq. (27a), g is a

hyperplane separating â from the space of matrices with σ1 ≤ 1. We use the negation of
Eq. (29) as a constraint:

gTâ ≤ 1 (30)

5.3 Computing the Solution

The overall quadratic program can be stated as:

minimize aTPa− 2 qTa+ r
subject to Ga ≤ h (31)

with a, P , q and r as defined in Eqs. (26e). {G, h} define the set of constraints, and are
initially empty. The QP is invoked repeatedly until the stable region, i.e. Sλ, is reached. At
each iteration, we calculate a linear constraint of the form in Eq. (30), add the corresponding
gT as a row inG, and augment h with 1. Note that we will almost always stop before reaching
the feasible region Sσ.

5.4 Refinement

Once a stable matrix is obtained, it is possible to refine this solution. We know that the
last constraint caused our solution to cross the boundary of Sλ, so we interpolate between
the last solution and the previous iteration’s solution using binary search to look for a
boundary of the stable region, in order to obtain a better objective value while remaining
stable. This results in a stable matrix with top eigenvalue slightly less than 1. In principle,
such an interpolation could be attempted between the least squares solution and any stable
solution. However, the stable region can be highly complex, and there may be several
folds and boundaries of the stable region in the interpolated area. In our experiments (not
shown), interpolating from the Lacy-Bernstein solution yielded worse results.

6. Experiments

For learning the dynamics matrix, we implemented EM, subspace identification, constraint
generation (using quadprog), LB-1 (Lacy and Bernstein, 2002) and LB-2 (Lacy and Bern-
stein, 2003) (using CVX with SeDuMi) in Matlab on a 3.2 GHz Pentium with 2 GB RAM.

15



Learning Stable Linear Dynamical Systems

CG LB-1 LB-1∗ LB-2 CG LB-1 LB-1∗ LB-2
steam (n = 10) fountain (n = 10)

|λ1| 1.000 0.993 0.993 1.000 0.999 0.987 0.987 0.997
σ1 1.036 1.000 1.000 1.034 1.051 1.000 1.000 1.054

ex(%) 45.2 103.3 103.3 546.9 0.1 4.1 4.1 3.0
time 0.45 95.87 3.77 0.50 0.15 15.43 1.09 0.49

steam (n = 20) fountain (n = 20)
|λ1| 0.999 — 0.990 0.999 0.999 — 0.988 0.996
σ1 1.037 — 1.000 1.062 1.054 — 1.000 1.056

ex(%) 58.4 — 154.7 294.8 1.2 — 5.0 22.3
time 2.37 — 1259.6 33.55 1.63 — 159.85 5.13

steam (n = 30) fountain (n = 30)
|λ1| 1.000 — 0.988 1.000 1.000 — 0.993 0.998
σ1 1.054 — 1.000 1.130 1.030 — 1.000 1.179

ex(%) 63.0 — 341.3 631.5 13.3 — 14.9 104.8
time 8.72 — 23978.9 62.44 12.68 — 5038.94 48.55

steam (n = 40) fountain (n = 40)
|λ1| 1.000 — 0.989 1.000 1.000 — 0.991 1.000
σ1 1.120 — 1.000 1.128 1.034 — 1.000 1.172

ex(%) 20.24 — 282.7 768.5 3.3 — 4.8 21.5
time 5.85 — 79516.98 289.79 61.9 — 43457.77 239.53

Table 1: Quantitative results on the dynamic textures data for different numbers of states
n. CG is our algorithm, LB-1and LB-2 are competing algorithms, and LB-1∗ is a
simulation of LB-1 using our algorithm by generating constraints until we reach
Sσ, since LB-1 failed for n > 10 due to memory limits. ex is percent difference in
squared reconstruction error. Constraint generation, in all cases, has lower error
and faster runtime.

Note that the algorithms that constrain the solution to be stable give a different result from
the basic EM and and subspace ID algorithms only in situations when the learned Â is un-
stable. However, LDSs learned in scarce-data scenarios are unstable for almost any domain,
and some domains lead to unstable models up to the limit of available data (e.g. the steam
dynamic textures in Section 6.1). The goals of our experiments are to: (1) compare learn-
ing LDSs with EM to learning LDs with subspace ID; (2) examine the state evolution and
simulated observations of models learned using constraint generation, and compare them
to previous work on learning stable dynamical systems; and (3) compare the algorithms in
terms of predictive accuracy and computational efficiency. We apply these algorithms to
learning dynamic textures from the vision domain (Section 6.1), learning models of robot
sensor data (Section 6.2) as well as OTC drug sales counts (Section 6.3) and sunspot
numbers (Section 6.4).

16



Learning Stable Linear Dynamical Systems

Least Squares LB-1 Constraint Generation

A.

B.

C.

−2

0

2
x 104

0 500 1000 0 500 1000

t =100 t =200 t =400 t =800

0 500 1000

t =100 t =200 t =400 t =800

t t t

−1

0

1

sta
te

 e
vo

lu
tio

n

Figure 5: Dynamic textures. A. Samples from the original steam sequence and the
fountain sequence. B. State evolution of synthesized sequences over 1000 frames
(steam top, fountain bottom). The least squares solutions display instability
as time progresses. The solutions obtained using LB-1 remain stable for the
full 1000 frame image sequence. The constraint generation solutions, however,
yield state sequences that are stable over the full 1000 frame image sequence
without significant damping. C. Samples drawn from a least squares synthesized
sequences (top), and samples drawn from a constraint generation synthesized se-
quence (bottom). Images for LB-1 are not shown. The constraint generation
synthesized steam sequence is qualitatively better looking than the steam se-
quence generated by LB-1, although there is little qualitative difference between
the two synthesized fountain sequences.

6.1 Stable Dynamic Textures

Dynamic textures in vision can intuitively be described as models for sequences of images
that exhibit some form of low-dimensional structure and recurrent (though not necessarily
repeating) characteristics, e.g., fixed-background videos of rising smoke or flowing water.
Treating each frame of a video as an observation vector of pixel values yt, we learned dy-
namic texture models of two video sequences by subspace identification: the steam sequence,
composed of 120×170 pixel images, and the fountain sequence, composed of 150×90 pixel
images, both of which originated from the MIT temporal texture database (Figure 5(A)).

17



Learning Stable Linear Dynamical Systems

We use the following parameters: training data size τ = 80, number of latent state dimen-
sions n = 15, and number of past and future observations in the Hankel matrix i = 5. Note
that, while the observations are the raw pixel values, the underlying state sequence we learn
has no a priori interpretation.

An LDS model of a dynamic texture may synthesize an arbitrarily long sequence of
images by driving the model with zero mean Gaussian noise. Each of our two models
uses an 80 frame training sequence to generate 1000 sequential images in this way. To
better visualize the difference between image sequences generated by least-squares, LB-1,
and constraint generation, the evolution of each method’s state is plotted over the course of
the synthesized sequences (Figure 5(B)). Sequences generated by the least squares models
appear to be unstable, and this was in fact the case; both the steam and the fountain
sequences resulted in unstable dynamics matrices. Conversely, the constrained subspace
identification algorithms all produced well-behaved sequences of states and stable dynamics
matrices (Table 1), although constraint generation demonstrates the fastest runtime, best
scalability, and lowest error of any stability-enforcing approach.

A qualitative comparison of images generated by constraint generation and least squares
(Figure 5(C)) indicates the effect of instability in synthesized sequences generated from dy-
namic texture models. While the unstable least-squares model demonstrates a dramatic
increase in image contrast over time, the constraint generation model continues to generate
qualitatively reasonable images. Qualitative comparisons between constraint generation and
LB-1 indicate that constraint generation learns models that generate more natural-looking
video sequences6 than LB-1.

Given the paucity of data available when modeling dynamic textures, it is not possible
to test the long-range predictive power of the learned dynamical systems quantitatively
(such results are illustrated in Section 6.2 on robot sensor data). Instead, the error metric
used for the quantitative experiments when evaluating matrix A∗ is

ex(A∗) = 100%×
(
J2(A∗)− J2(Â)

)
/J2(Â) (32)

i.e. percent increase in squared reconstruction error compared to least squares, with J(·) as
defined in Eq. (27a). Table 1 demonstrates that constraint generation always has the lowest
error as well as the fastest runtime. The running time of constraint generation depends on
the number of constraints needed to reach a stable solution. Note that LB-1 is more efficient
and scalable when simulated using constraint generation (by adding constraints until Sσ is
reached) than it is in its original SDP formulation.

6.2 Stable Models of Robot Sensor Data

We investigate the problem of learning a dynamical model of sensory input from a mobile
robot in an indoor environment. Video and associated laser range scans consisting of 2000
frames each, as well as the estimated change in pose (x, y position and orientation θ) de-
rived from odometry, were collected at 6 frames-per-second from a Point Grey Bumblebee2

6. See videos at http://www.select.cs.cmu.edu/projects/stableLDS

18



Learning Stable Linear Dynamical Systems

Environment

Path

Left Image

Right Image

Range Data

Robot

A. B. C.The Robot

Figure 6: (A): The mobile robotic platform used in experiments. The robot is outfitted
with two sensors, a Point Grey stereo camera and a SICK laser rangefinder. (B):
The robot in its environment. The upper figure depicts the hallway environment
with a central obstacle (black) and the path that the robot took through the
environment while collecting data (the red counter-clockwise ellipse). The lower
figure shows an example of the robot’s laser range scan at a single point in time.
The range readings are represented by circles (green) and plotted relative to the
robot position (the red hexagon). The range scan consists of 180 measurements,
one per degree, indicating the distance to the closest surfaces along each degree.
(C):Two graysacle images (left and right) captured by the stereo camera from
the robot in the position indicated in (B). Major features of the environmental
geometry including walls and the central obstacle are visible.

stereo camera and a SICK laser rangefinder mounted on a Botrics O-bot d100 mobile robot
platform (Figure 6(A)) circling an obstacle (Figure 6(B)). The goal was to learn a linear
dynamical system with exogenous inputs that jointly modeled the probability distribution
over video (Figure 6(C)) and range data conditioned on change in pose. Given the high
dimensionality of the sensor data, images and range scans were preprocessed as follows.
The raw sensor data consisting of pixels and range readings were vectorized at each time-
step and concatenated to form high dimensional observation vectors. These vectors were
centered, the total variance between the laser readings and images was normalized, and
reduced to 10 dimensions via a singular value decomposition. Once the sequence of 2000
10-dimensional processed observations were formed, two sets of experiments were conducted.

First we compared the predictive power of models learned by subspace ID, EM, and EM
initialized by subspace ID. From the initial set of 2000 observations, 15 stable models with
10 dimensional state were learned by each of the three approaches from different sequences
of 750 observations. For subspace ID, we used Hankel matrices of 50 stacked observations
in Yp and Yf . The models were evaluated by comparing the log likelihood of observations
while filtering and predicting (Figure 7(A)) on 1500 subsequences of data. The results in-
dicate that, while filtering, EM initialized with the parameters estimated from subspace

19



Learning Stable Linear Dynamical Systems

−85

−80

−75

−70

−65

−60

Lo
g-

Li
ke

lih
oo

d

5004003002001000
time

−85

−80

−75

−70

−65

−60

Lo
g-

Li
ke

lih
oo

d

5004003002001000
time

Unstable

LB-1
LB-2

CG
ID

EM+ID
EM

A. B.

Figure 7: (A): The log-likelihood of observations while filtering (the first 100 frames) and
predicting (the next 400 frames) using stable models learned by subspace ID (ID),
expectation maximization (EM), and EM initialized by subspace ID (EM+ID)
(see text for details). Data points were plotted with error bars every 20 frames.
Note that EM initialized by subspace ID gives the best results in terms of log-
likelihood. All three models quickly converge to the stationary distribution of
the time series when predicting. (B): The log-likelihood of observations while
predicting over 500 frames using the various stabilization approaches (see text for
details): the unstable model (Unstable), constraint generation (CG), and the two
models previous models (LB-1) and (LB-2). Data points were plotted with error
bars every 20 frames. Note that CG provides the best short term predictions
nearly mirroring the unstable model, while all three stabilized models do better
than the unstable model in the long term.

ID provides the best results. While predicting, both EM with random restarts and EM
initialized with subspace ID did slightly better than subspace ID alone.

Next we looked at the problem of instability in learned models of robot sense data. First,
15 sequences of 200 frames were used to learn models of the environment via EM initialized
by subspace ID; of these models 10 were unstable. Next, we compared the original unstable
model against models stabilized by each of the three possible stabilization approaches: our
constraint generation approach, LB-1, and LB-2. The stabilization was performed during
the last M-step of EM. 7 After a model was learned for a given sequence, the predictive power
of the model was tested in the following way: observations were filtered for 20 frames using
the original model, and, starting from the same distribution, 500 frames were predicted
from each of the four models (Figure 7(B)). We repeated the experiment on 1500 separate
subsequences of data. The results indicate that in the short term, constraint generation
very closely approximates the unstable model, while in the long term each of the three
stabilized models outpreform the unstable model.

7. While it is possible to apply CG during each M-step of EM, this computationally intensive alternative
did not yield better results than simply applying CG during the last step of EM.

20



Learning Stable Linear Dynamical Systems

0

300
Multi-drug sales counts

30 600

Multi-zipcode sales counts

30 600

Sunspot numbers

100 2000

0

300

0

300

0

300

0

400

0

400

0

400

0

400

0

1500

0

1500

0

1500

0

1500

A. B. C.
Tr

ai
ni

ng
D

at
a

Co
ns

tra
in

t
G

en
er

at
io

n
Le

as
t

Sq
ua

re
s

LB
-1

Figure 8: (A): 60 days of data for 22 drug categories aggregated over all zipcodes in the city.
(B): 60 days of data for a single drug category (cough/cold) for all 29 zipcodes
in the city. (C): Sunspot numbers for 200 years separately for each of the 12
months. The training data (top), simulated output from constraint generation,
output from the unstable least squares model, and output from the over-damped
LB-1 model (bottom).

6.3 Stable Baseline Models for Biosurveillance

We examine daily counts of OTC drug sales in pharmacies, obtained from the National Data
Retail Monitor (NDRM) collection (Wagner, 2004). The counts are divided into 23 different
categories and are tracked separately for each zipcode in the country. We focus on zipcodes
from a particular American city. The data exhibits 7-day periodicity due to differential
buying patterns during weekdays and weekends. We isolate a 60-day subsequence where
the data dynamics remain relatively stationary, and attempt to learn LDS parameters to
be able to simulate sequences of baseline values for use in detecting anomalies.

We perform two experiments on different aggregations of the OTC data, with parameter
values We use the following parameters: number of latent state dimensions n = 7, number
of past and future observations in the Hankel matrix i = 4, and training data size τ = 14.
Figure 8(A) plots 22 different drug categories aggregated over all zipcodes, and Figure 8(B)
plots a single drug category (cough/cold) in 29 different zipcodes separately. In both cases,
constraint generation is able to use very little training data to learn a stable model that
captures the periodicity in the data, while the least squares model is unstable and its
predictions diverge over time. LB-1 learns a model that is stable but overconstrained, and
the simulated observations quickly drift from the correct magnitudes. Further details be
found in Siddiqi et al. (2007).

21



Learning Stable Linear Dynamical Systems

6.4 Modeling Sunspot Numbers

We compared least squares and constraint generation on learning LDS models for the
sunspot data discussed earlier in Section 3.2. We use the following parameters: number
of latent state dimensions n = 7, number of past and future observations in the Hankel
matrix i = 9, and training data size τ = 50. Figure 8(C) represents a data-poor training
scenario where we train a least-squares model on 18 timesteps, yielding an unstable model
whose simulated observations increase in amplitude steadily over time. Again, constraint
generation is able to use very little training data to learn a stable model that seems to
capture the periodicity in the data if not the magnitude, while the least squares model is
unstable. The model learned by LB-1 attenuates more noticeably, capturing the periodicity
to a smaller extent. Quantitative results on both these domains exhibit similar trends as
those in Table 1.

7. Related Work

Linear system identification is a well-studied subject (Ljung, 1999). Within this area, sub-
space identification methods (Van Overschee and De Moor (1996), Section 3.2 above) have
been very successful. These techniques first estimate the model dimensionality and the un-
derlying state sequence, and then derive parameter estimates using least squares. Within
subspace methods, techniques have been developed to enforce stability by augmenting the
extended observability matrix with zeros (Chui and Maciejowski, 1996) or adding a regu-
larization term to the least squares objective (Van Gestel et al., 2001).

All previous methods were outperformed by LB-1 (Lacy and Bernstein, 2002). They
formulate the problem as a semidefinite program (SDP) whose objective minimizes the state
sequence reconstruction error, and whose constraint bounds the largest singular value by 1.
This convex constraint is obtained by rewriting the nonlinear matrix inequality In−AAT � 0
as a linear matrix inequality8, where In is the n×n identity matrix. Here, � 0 (� 0) denotes
positive (semi-) definiteness. The existence of this constraint also proves the convexity of
the σ1 ≤ 1 region. This condition is sufficient but not necessary, since a matrix that violates
this condition may still be stable.

A follow-up to this work by the same authors (Lacy and Bernstein, 2003), which we call
LB-2, attempts to overcome the conservativeness of LB-1 by approximating the Lyapunov
inequalities P −APAT � 0, P � 0 with the inequalities P −APAT− δIn � 0, P − δIn � 0,
δ > 0. These inequalities hold iff the spectral radius is less than 1.9 However, the ap-
proximation is achieved only at the cost of inducing a nonlinear distortion of the objective
function by a problem-dependent reweighting matrix involving P , which is a variable to
be optimized. In our experiments, this causes LB-2 to perform worse than LB-1 (for any
δ) in terms of the state sequence reconstruction error (dynamic textures) and predictive
log-likelihood (robot sensor data), even while obtaining solutions outside the feasible region

8. This bounds the top singular value by 1 since it implies ∀x xT (In−AAT )x ≥ 0⇒ ∀x xTAATx ≤ xTx⇒
for ν = ν1(AAT) and λ = λ1(AAT), νTAAT ν ≤ νT ν ⇒ νTλν ≤ 1 ⇒ σ2

1(A) ≤ 1 since νTν = 1 and
σ2

1(M) = λ1(MMT ) for any square matrix M .
9. For a proof sketch, see Horn and Johnson (1985) pg. 410.

22



Learning Stable Linear Dynamical Systems

of LB-1. Consequently, we focus on LB-1 in our conceptual and qualitative comparisons as
it is the strongest baseline available. However, LB-2 is more scalable than LB-1, so quanti-
tative results are presented for both.

To summarize the distinction between constraint generation, LB-1 and LB-2: it is hard
to have both the right objective function (reconstruction error) and the right feasible region
(the set of stable matrices). LB-1 optimizes the right objective but over the wrong feasible
region (the set of matrices with σ1 ≤ 1). LB-2 has a feasible region close to the right one,
but at the cost of distorting its objective function to an extent that it fares worse than
LB-1 in nearly all cases. In contrast, our method optimizes the right objective over a less
conservative feasible region than that of any previous algorithm with the right objective,
and this combination is shown to work the best in practice.

8. Discussion

We have introduced a novel method for learning stable linear dynamical systems. Our
constraint generation algorithm is more powerful than previous methods in the sense of
optimizing over a larger set of stable matrices with a suitable objective function. In practice,
the benefits of stability guarantees are readily noticeable, especially when the training data
is limited. This connection between stability and amount of training data is important in
practice, since time series data is often expensive to collect in large quantities, especially
for phenomena with long periods in domains like physics or astronomy. The constraint
generation approach also has the benefit of being faster than previous methods in nearly
all of our experiments.

References

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

N. L. C. Chui and J. M. Maciejowski. Realization of stable models with subspace methods.
Automatica, 32(100):1587–1595, 1996.

Zoubin Ghahramani and Geoffrey E. Hinton. Parameter estimation for Linear Dynamical
Systems. Technical Report CRG-TR-96-2, U. of Toronto, Department of Comp. Sci.,
1996.

Aristide Halanay and Vladimir Rasvan. Stability and Stable Oscillations in Discrete Time
Systems. CRC, 2000.

J. B. Hoagg, Seth L. Lacy, , R. S. Erwin, and Dennis S. Bernstein. First-order-hold sampling
of positive real systems and subspace identification of positive real models. In Proceedings
of the American Control Conference, 2004.

Roger Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

R. Horst and P. M. Pardalos, editors. Handbook of Global Optimization. Kluwer, 1995.

23



Learning Stable Linear Dynamical Systems

R.E. Kalman. A new approach to linear filtering and prediction problems. Transactions of
the ASME–Journal of Basic Engineering, 1960.

Tohru Katayama. Subspace Methods for System Identification: A Realization Approach.
Springer, 2005.

E. Keogh and T. Folias. The UCR Time Series Data Mining Archive, 2002. URL
http://www.cs.ucr.edu/ eamonn/TSDMA/index.html.

Seth L. Lacy and Dennis S. Bernstein. Subspace identification with guaranteed stability
using constrained optimization. In Proc. American Control Conference, 2002.

Seth L. Lacy and Dennis S. Bernstein. Subspace identification with guaranteed stability
using constrained optimization. IEEE Transactions on Automatic Control, 48(7):1259–
1263, July 2003.

L. Ljung. System Identification: Theory for the user. Prentice Hall, 2nd edition, 1999.

Kevin Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD
thesis, UC Berkeley, 2002.

Andrew Y. Ng and H. Jin Kim. Stable adaptive control with online learning. In Proc.
NIPS, 2004.

H. Rauch. Solutions to the linear smoothing problem. In IEEE Transactions on Automatic
Control, 1963.

Sajid Siddiqi, Byron Boots, Geoffrey J. Gordon, and Artur W. Dubrawski. Learning stable
multivariate baseline models for outbreak detection. Advances in Disease Surveillance,
4:266, 2007.

S. Soatto, G. Doretto, and Y. Wu. Dynamic Textures. Intl. Conf. on Computer Vision,
2001.

T. Van Gestel, J. A. K. Suykens, P. Van Dooren, and B. De Moor. Identification of stable
models in subspace identification by using regularization. IEEE Transactions on Auto-
matic Control, 2001.

P. Van Overschee and B. De Moor. Subspace Identification for Linear Systems: Theory,
Implementation, Applications. Kluwer, 1996.

M. Wagner. A national retail data monitor for public health surveillance. Morbidity and
Mortality Weekly Report, 53:40–42, 2004.

24


