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Abstract

We study the problem of learning high dimensional regression models regularized by
a structured-sparsity-inducing penalty that encodes prior structural information on either
input or output sides. We consider two widely adopted types of such penalties as our
motivating examples: 1) overlapping-group-lasso penalty, based on ¢ /¢ mixed-norm, and
2) graph-guided fusion penalty. For both types of penalties, due to their non-separability,
developing an efficient optimization method has remained a challenging problem. In this
paper, we propose a general optimization framework, called proximal gradient method,
which can solve the structured sparse learning problems with a smooth convex loss and
a wide spectrum of non-smooth and non-separable structured-sparsity-inducing penalties,
including the overlapping-group-lasso and graph-guided fusion penalties. Our method ex-
ploits the structure of such penalties, decouples the non-separable penalty function via the
dual norm, introduces its smooth approximation, and solves this approximation function.
It achieves a convergence rate significantly faster than the standard first-order method, sub-
gradient method, and is much more scalable than the most widely used method, namely
interior-point method for second-order cone programming and quadratic programming for-
mulations. The efficiency and scalability of our method are demonstrated on both simulated
and real genetic datasets.

Keywords: Proximal Gradient Descent, Structured Sparsity, Overlapping Group Lasso,
Graph-guided Fused Lasso

1. Introduction

The problem of high-dimensional sparse feature learning arises in many areas in science
and engineering. In a typical setting, the input lies in a high-dimensional space, and one
is interested in selecting a small number of input variables that influence the output. A
popular approach to achieve this goal is to jointly optimize the fitness loss function with
a non-smooth ¢;-norm penalty (e.g., lasso (Tibshirani, 1996)) that shrinks the coefficients
of the irrelevant input variables to zero. However, this approach is limited in that it treats
each input as independent of each other and hence is incapable of capturing any structural

©2010 .



CHEN AND LIN AND KIM AND CARBONELL AND XING

information among input variables. Recently, various extensions of the lasso penalty have
been introduced to take advantage of the prior knowledge of the structure among inputs to
encourage closely related inputs to be selected jointly (Yuan and Lin, 2006; Tibshirani and
Saunders, 2005; Jenatton et al., 2009). Similar ideas have also been explored to leverage the
output structures in multi-task learning, where one is interested in learning multiple related
functional mappings from a common input space to multiple different outputs (Argyriou
et al., 2008; Obozinski et al., 2009). In this case, the structure over the outputs is available as
prior knowledge, and the closely related outputs according to this structure are encouraged
to share a similar set of relevant inputs (Kim and Xing, 2010). Despite these progress,
developing an efficient optimization method for solving the convex optimization problems
resulting from the structured-sparsity-inducing penalty functions has remained a challenge.
In particular, existing methods as reviewed below are limited to specialized forms of sparsity
for relatively simple structures. In this paper, we focus on the problem of developing efficient
optimization methods that can handle a broad set of structured-sparsity-inducing penalties
with complex structures.

For structured-sparsity-inducing penalties with a relatively simple form of structures,
such as in group lasso (Yuan and Lin, 2006) and fused lasso with a chain structure (Tibshi-
rani and Saunders, 2005), efficient optimization methods have been available. For example,
given the prior knowledge of non-overlapping group structure among input variables, group
lasso uses a non-smooth mixed-norm penalty (e.g., £1/¢2) to select groups of inputs as rel-
evant to the output. Due to the separability of the group-lasso penalty (e.g., separability
of the ¢3 norms, each corresponding to a group), a certain projection step, which involves a
square Euclidean distance function and the penalty, can be computed in closed form. Based
on this observation, a number of optimization approaches that use the projection as the key
step have been applied to solve non-overlapping group lasso. Examples of such approaches
include the first-order Nesterov’s method (Liu et al., 2009) and forward-backward splitting
scheme (FOBOS) (Duchi and Singer, 2009). Fused lasso is another widely used extension
of lasso which assumes that the inputs are ordered in a chain structure. By introducing a
fusion penalty penalizing the difference between the coefficients for every two neighboring
inputs, fused lasso encourages the coefficients for adjacent inputs to have the same values.
Although the fused lasso penalty is not separable, the simple chain structure guarantees
that the parameter for each input appears in only two terms of the penalty. Based on this
fact, a simple and efficient pathwise coordinate descent approach for solving fused lasso has
been proposed by Friedman et al. (2007).!

Recently, in order to handle a more general class of structures such as trees or graphs over
the inputs or outputs, various models that further extend group lasso and fused lasso have
been proposed. For instance, generalizing the non-overlapping group structure assumed in
the standard group lasso, Jenatton et al. (2009) proposed overlapping group lasso, which
introduces overlaps among the groups so that each input can belong to multiple groups
to allow capturing more complex and realistic prior knowledge on the structure. Another
example of more general structured-sparsity-inducing penalties extends the chain-structured
fused lasso to graph-guided fused lasso, where a fusion penalty is induced by every edge
in a graph over inputs to enable closely related inputs as encoded in the graph to be

1. The author noted that there exists certain cases that the pathwise coordinate descent cannot converge
to the exact solution.
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selected jointly (Kim et al., 2009). In general, the existing fast optimization techniques for
simpler structures cannot be applied to many of the non-trivial structured-sparsity-inducing
penalties because of the non-separability of these penalties. Although in principle, generic
optimization solvers such as the interior-point methods (IPM) could be used to solve either
a second-order cone programming (SOCP) or a quadratic programming (QP) formulation of
the problem, such approaches are computationally prohibitive even for problems of moderate
size.

In this paper, we address the problem of efficient and scalable convex optimization
for a very general class of structured-sparse-learning problems. We assume that the form
of the penalty function includes (1) the standard lasso penalty (¢1-norm) for the individ-
ual feature level sparsity and (2) structured-sparsity-inducing penalty for incorporating
prior knowledge on non-trivial structure over inputs or outputs. We propose a generic
optimization framework called a prozimal gradient method for dealing with a variety of
structured-sparsity-inducing penalties that are both non-smooth and non-separable, using
overlapping-group-lasso (Jenatton et al., 2009) and graph-guided fused lasso (Kim et al.,
2009) as motivating examples. Although the overlapping-group-lasso penalty and graph-
guided fusion penalty are seemingly very different, we show that it is possible to decouple
the non-separable terms in both penalties via dual norm and reformulate them into a com-
mon form to which our optimization framework can be applied. Our approach is called a
“proximal” gradient method because instead of optimizing the original problem directly, we
introduce a smooth approximation of the structured-sparsity-inducing penalty and then ap-
ply the fast iterative shrinkage-thresholding algorithm (FISTA)(Beck and Teboulle, 2009).
Our method can achieve O(%) convergence rate for a desired accuracy e. In other words,
it can find a solution @' for minimizing f function after ¢ = O(%) iterations such that
F(BY) — f(B*) < €, where B* is the optimal solution. There are several advantages in using
our proximal gradient method:

(a) Our method is a first-order method, as it uses only the gradient information. Thus,
it is significantly more scalable than IPM for SOCP or QP formulations. In addition,
since our method is gradient-based, it allows warm restarts, which makes it possible
to efficiently solve the problem along the entire regularization path (Friedman et al.,
2007).

(b) Our optimization framework is ubiquitously applicable to any structured sparse learning
problems with a smooth convex loss and a complex structured-sparsity-inducing penalty
that is non-smooth and non-separable. The mixed-norm penalties as in overlapping
group lasso and graph-guided fusion penalties are only examples of such penalties that
we use to demonstrate our method.

(c) Theoretically, our optimization method has a convergence rate of O( %), which is faster
than the subgradient method with a convergence rate of O(e%) In fact, for the opti-
mization problems that we consider in this paper, there are no implementations of the
subgradient method available in the literature.

(d) Our method can be applied to both single-task (univariate-response) learning with a
structure defined over inputs and multi-task learning with a structure defined over
outputs.
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(e) Our method is easy to implement with only a few lines of MATLAB code.

The proposed method draws insights from two lines of earlier work in the literature that
addresses optimization problems with a non-smooth penalty. The first approach (Nesterov,
2005) smoothes out the entire non-smooth term and then applies a gradient-based method
to solve a completely smooth problem. However, it is precisely the non-smoothness of the
penalty that leads to a sparse solution with the coefficients for irrelevant inputs set exactly
to zeros. Therefore, although widely adopted in optimization field, this approach loses the
merit of the non-smoothness of the penalty and hence cannot yield sparse solutions. The
second approach (Beck and Teboulle, 2009; Nesterov, 2007) is widely applied in machine
learning, generates sparse solutions via a so-called projection step (also called generalized
gradient update step). However, this method requires that the non-smooth term is simple
enough so that the projection step involving it can be solved in closed form. This type
of approach simply cannot be applied to our problems due to the complicated and non-
separable structured-sparsity-inducing penalty. The idea of our proximal gradient method
combines these two different approaches: it smoothes out the complex structured-sparsity-
inducing penalty while leaving the simple £1-norm penalty as it is. Then we apply the second
approach with projection step only involving the simple ¢;-norm penalty. Therefore, our
method will provide sparse solutions with the regression coefficients for irrelevant variables
set exactly to zero.

The rest of this paper is organized as follows. In Section 2, we present the methods
of overlapping group lasso and graph-guided fused lasso with group and graph structures
encoded in the structured-sparsity-inducing penalties. In Section 3, we show how different
structured-sparsity-inducing penalties can be reformulated into a common form. In Section
4, we present our proximal gradient method along with complexity results and discuss how
this method can be applied to a logistic-regression loss. In Section 5, we present the gen-
eralization of our algorithm to the setting of the multi-task learning. Recent related works
are discussed in Section 6. In Section 7, we present numerical results on both simulated and
real datasets, followed by conclusions in Section 8. Throughout the paper, we will discuss
overlapping-group-lasso and graph-guided fusion penalties in parallel to illustrate how our
proximal gradient method can be used to solve the corresponding optimization problems.

2. Background: Linear Regression with Structured-sparsity-inducing
Penalties

In this section, we provide a brief review of the high-dimensional linear regression model
with structured-sparsity-inducing penalties, and discuss the overlapping-group-lasso penalty
and graph-guided fusion penalty. We emphasize that our method can be applied to any
smooth convex loss function (e.g., logistic loss) with a class of non-smooth and non-separable
penalties. We focus on a single-task (univariate-response) learning problem, and return to
the multi-task setting in Section 5.

Let X € RY*/ denote the input data for N samples, where each sample lies in .J
dimensional space, and y € RV¥*! be the output data. We assume a linear regression
model, y = X3+ €, where 3 is the vector of length J for regression coefficients and e is the
vector of length N for noise distributed as N (0,0%Iyxy). The standard lasso (Tibshirani,



AN EFFICIENT PROXIMAL GRADIENT METHOD FOR GENERAL STRUCTURED SPARSE LEARNING

1996) obtains a sparse estimate of the coefficients by solving the following optimization
problem:

éreliﬂgljg(ﬁ) + AlBll1, (1)

where g(8) = 3|y — XB|3 is the squared-error loss, ||B]l; = Z}'le |B;| is the ¢1-norm
penalty that encourages the solutions to be sparse, and A is the regularization parameter
that controls the sparsity level.

While the standard lasso penalty does not assume any structure among the input vari-
ables, recently various extensions of the lasso penalty have been proposed that incorporate
the prior knowledge on the structure over the input variables to learn a joint sparsity pat-
tern among related inputs. We broadly call the structured-sparsity-inducing penalty Q(3)
without assuming a specific form, and define the problem of learning a structured-sparsity
pattern in the coefficients as follows:

min f(8) = g(8) + Q(B) + A8l (2)

BeRJ

In general, the structure over the input variables is assumed to be available in the form
of groups or graphs, and the penalty €2(83) is constructed based on this prior information.
Then, the (3) plays the role of encouraging the closely related inputs as described by
the structure over the inputs to be selected jointly as relevant to the output by setting
the corresponding regression coefficients to non-zero values. In other words, we encode the
available structural information in (3) to guide the learning process of sparse regression
coefficients 3.

As examples of such penalties, in this paper, we consider two broad categories of penal-
ties Q(3) based on two different types of functional forms, namely overlapping-group-lasso
penalty based on ¢; /¢ mixed-norm and graph-guided fusion penalty. As we discuss below,
these two types of penalties cover a broad set of structured-sparsity-inducing penalties that
have been introduced in the literature (Yuan and Lin, 2006; Jenatton et al., 2009; Kim and
Xing, 2010; Zhao et al., 2009; Kim et al., 2009).

1. Overlapping-group-lasso Penalty: Let us assume that the set of groups of in-
puts G = {g1,...,9|g|} is defined as a subset of the power set of {1,...,J}, and is
available as prior knowledge. We note that the members (groups) of G are allowed to
overlap. Then the general overlapping group structures can be naturally encoded in
the following structured-sparsity-inducing penalty:

QB) =7 Y wyllByll2, 3)

geg

where 3, € RI9! is the subvector of 3 for the inputs in group g¢; v is the regularization
parameter for structured sparsity; wy is the predefined weight for group g; and || - ||2 is
the vector fo-norm. The ¢; /¢ mixed-norm penalty ©2(3) plays the role of setting all
of the coefficients within each group to zero or non-zero values. One simple strategy
for choosing the weight w, is to set wy = \/m (Yuan and Lin, 2006) so that the
amount of penalization is adjusted by the size of each group.
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We note that many of the structured-sparsity-inducing penalties in the current litera-
ture are a special case of (3). Examples include separated group structure (Yuan and
Lin, 2006), tree structure (Zhao et al., 2009; Kim and Xing, 2010), where groups are
defined for subtrees at each internal node, and graph structure, where each group is
defined as two nodes of an edge.

2. Graph-guided Fusion Penalty: Let us assume the structure of J input variables
is available as a graph G with a set of nodes V' = {1,...,J} and a set of edges E. Let
rmi € R denote the weight of the edge e = (m, 1) € E, corresponding to the correlation
between the two inputs for nodes m and [. Then, the graph-guided fusion penalty as
defined below generalizes chain-structured fused-lasso penalty proposed by Tibshirani
and Saunders (2005):

Qp) =~ Z T(Tmi) | B — sign(rm) B, (4)

e=(m,l)eE,m<I

where 7(r) weights the fusion penalty for each edge e = (m, 1) such that (3, and g, for
highly correlated inputs with larger |r,,| receive a greater fusion effect. In this paper,
we consider 7(r) = |r|, but any monotonically increasing function of the absolute
values of correlations can be used. The sign(r,,) indicates that for two positively
correlated nodes, the corresponding coeflicients tend to be influence the output in the
same direction, while for two negatively correlated nodes, the effects (3, and ;) take
the opposite direction. Since this fusion effect is calibrated by the edge weight, the
graph-guided fusion penalty in (4) encourages highly correlated inputs corresponding
to a densely connected subnetwork in G to be jointly selected as relevant. We notice
that if r,,; = 1 for all e = (m, 1), the penalty function in (4) reduces to:

QB =y Y. B0 (5)

e=(m,l)eE,m<I

The standard fused lasso penalty 7237;11 |Bj+1 — Bj| is special case of (5), where
the graph structure is confined to be a chain (Tibshirani and Saunders, 2005) and
the widely used fused signal approximator refers to the simple case where the design
matrix X is orthogonal.

If the graph G is not available as prior knowledge, we can learn the graph from the
input data by computing pairwise correlations based on x;’s and connecting two nodes
with an edge if their correlation is above a given threshold p.

Although the optimization problem in (2) is convex, the main difficulty in optimizing
(2) arises from the non-separability of 3 in the non-smooth penalty function Q(3). As we
show in the next section, although the two types of penalties are seemingly very different,
we can reformulate both of them into the common form to which our proximal gradient
method can be applied. The key idea in our approach is to decouple the non-separable
structured-sparsity-inducing penalties into a simple linear transformation of 3 via the dual
norm. Then, we introduce a smooth approximation of £(3) such that its gradient with
respect to 3 can be easily calculated.
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3. Reformulation of the Structured-sparsity-inducing Penalty

In this section, we show that despite the non-separability, by using the dual norm, both
types of the structured-sparsity-inducing penalties in (3) and (4) can be decoupled once
we reformulate them into the common form of a maximization problem over the auxiliary
variables.

3.1 Overlapping-group-lasso Penalty

Since the dual norm of fy-norm is also an f3-norm, we can write [|B,ll2 as [|B,]2 =

MAaX | |,<1 agﬁg, where a, € RI9! is the vector of auxiliary variables associated with
T
T T . . .
By Let a0 = [agv"'?amg& . Then, a is a vector of length deG lg| with domain
Q={a]||agl2 <1, Vg € G}, where Q is the Cartesian product of unit balls in Euclidean
space and thus, a closed and convex set. We can rewrite the overlapping-group-lasso penalty

in (3) as:

O =7 2 v i, 0P = s e By = gt 0s O

where C' € R>sc9 197 is a matrix defined as follows. The rows of C are indexed by all
pairs of (i,9) € {(i,9)|i € g,7 € {1,...,J}}, the columns are indexed by j € {1,...,J}, and
each element of C' is given as:

o wy if i = 7,
Clig)g = { 0 otherwise. @

Th have C3 = B Br '

en, we have YWy By, -+ YWy Bg g | -
Example. We give a concrete example of C. Assume 3 € R? (i.e., J = 3) with groups
G ={g1 ={1,2},92 = {2,3}}. Then, the matrix C' is defined as follows:

J=175=2 j5=3
t=1€g1 [ ywy, 0 0
1=2€q 0 YWy, 0
1=2¢€ g 0 YWgy 0
1=3€ g 0 0 YWgy

Note that C is a highly sparse matrix with only a single non-zero element in each row
and ) |g| non-zero elements in the entire matrix, and hence, can be stored with only a
small amount of memory during the optimization procedure.

3.2 Graph-guided Fusion Penalty
First, we rewrite the graph-guided fusion penalty in (4) as follows:

v Y 7)) |Bm — sign(rm) Bl = 1CB]1,

e=(m,l)eE,m<I
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where C' € RIZI%/ is the edge-vertex incident matrix:

v 7(rm) if j=m
0 otherwise.

Again, we note that C is a highly sparse matrix with 2 - | E| non-zero elements.
Since the dual norm of the ¢,.-norm is the £;-norm, we can further rewrite the graph-
guided fusion penalty as:

|1CB|l1 = max alCpB, 9)
lledloo<1
where a € Q = {a|lalles < 1,a € RIFI} is a vector of auxiliary variables associated with
ICB|l1, and || - ||oc is the foo-norm defined as the maximum absolute value of all entries in
the vector.

Remark 1 We notice that the reformulation in (9) can be applied to not only the graph-
guided fusion penalty but also any penalties in the form of Q(B) = ||CPB||1, where C is any
matriz with J columns and ||CB||1 is the 1-norm of a linear mapping of B. Thus, our
optimization method can be applied to a more general form of penalties than simply the
graph-guide fusion penalty.

4. Proximal Gradient Method
4.1 Smooth Approximation of Structured-sparsity-inducing Penalty

In the previous section, we showed that the structured-sparsity-inducing penalty Q(3) for
both overlapping-group-lasso and graph-guided fusion penalty can be reformulated as:

Q(B) = maxal CB. (10)
acQ
The formulation in (10) is still a non-smooth function of B, and this makes the opti-
mization challenging. To tackle this problem, in this section, we introduce an auxiliary
quadratic function to construct a smooth approximation of (10) using the idea in Nesterov
(2005). Our smooth approximation function is given as follows:

fu(B) = max (@ CB — pd(a)) (11)
acQ

where p is the positive smoothness parameter and d(a) is defined as %Ha”% The original
penalty term can be viewed as f,(3) with u = 0 (i.e., fo(8) = maxacoa?CB). It is
easy to see that f,(8) is a lower bound of fy(B3). In order to bound the gap between
fu(B) and fo(B), let D = maxqcod(ax). Then, it is easy to verify that this gap is given
by fo(B) — fu(B) < puD, where D = |G|/2 for the overlapping-group-lasso penalty and
D = |E|/2 for the graph-guided fusion penalty. From Theorem 1 as presented below, we
know that f,(3) is a smooth function for any p > 0. Therefore, f,(3) can be viewed as a
smooth approximation of fo(83) with the maximum gap of uD, and the p controls the gap
between f,(8) and fo(3). Given the desired accuracy e, the convergence result in the next
section suggests p = 575 to achieve the best convergence rate.
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Figure 1: A geometric illustration of the smoothness of f,(5). (a) The 3-D plot of z(«, 3), (b) the
projection of (a) onto the (-z space, (c¢) the 3-D plot of z;(c, 3), and (d) the projection
of (¢) onto the -z space.

Now, we present the key theorem that f,(83) is smooth in 8 with a simple form of
gradient. This theorem is also stated by Nesterov (2005) but without a proof of smoothness
property and a derivation of the gradient. In this paper, we provide a simple proof based
on Fenchel Conjugate and properties of subdifferential. Intuitively, the strong convexity of
d(a) leads to the smoothness of f,(3).

Theorem 2 For any > 0, fu.(B) is a conver and continuously-differentiable function in
B, and the gradient of f,.(B) takes the following form.:

Viu(B)=CTa, (12)

where o is the optimal solution to (11). Moreover, the gradient V f,(B) is Lipschitz con-
tinuous with the Lipschitz constant L, = 1||C||2, where ||C|| is a special norm of C defined

Ton
as ||CH = maX”\,Hzgl ||CVH2

Proof The proof of this theorem is presented in Appendix. |

To provide insights on why f,(3) is a smooth function as Theorem 1 suggests, in Figure
1, we show a geometric illustration for the case of one-dimensional parameter (i.e., § € R).
For the sake of simplicity, we assume that p and C are set to 1. First, we show geometrically
that fo(08) = max,ec(—1,1) 2(a, 8), where z(a, 3) = a3, is a non-smooth function. The three-
dimensional plot for z(a, 3) with « restricted to [—1, 1] is shown in Figure 1(a). We project
the surface in Figure 1(a) onto the 83—z space as shown in Figure 1(b). For each (3, the value
of fo(5) is the highest point along the z-axis since we maximize over « in [—1,1]. We can
see that fo(/3) is composed of two segments with a sharp point at § = 0. Now, we introduce
the auxiliary function, and let zs(cr, 3) = a8 — a2 and f,(8) = maX,e[—1,1) 2s(, 3). The
three-dimensional plot for zs(«, ) with « restricted to [—1,1] is shown in Figure 1(c).
Similarly, we project the surface in Figure 1(c) onto the [ — z, space as shown in Figure
1(d). For fixed 3, the value of f,(f) is the highest point along the z-axis. In Figure 1(d),
we can see that f,(5) is composed of three parts: (i) a line with slope —1 when § < 1,
(ii) a line with slope 1 when 8 > 1, and (iii) a quadratic function when —1 < g < 1. By
introducing an auxiliary quadratic function, we remove the sharp point at 5 = 0 and f,(5)
becomes a smooth function.
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To compute the Vf,(8) and L, we need to know a* and ||C||. We present the closed-
form equations for a* and ||C|| for the overlapping-group-lasso penalty and graph-guided
fusion penalty in the following propositions.

1. Overlapping-group-lasso Penalty

Proposition 3 Let a*, which is composed of {}}4eg, be the optimal solution to (11)
for group-lasso penalty with overlapping groups in (3). For any g € G,

ngﬁg

af=S9
( [

g

);

where S is the shrinkage operator defined for any vector u as follows:

S(u) = {n fufls > 1,

u Jule<t

Proof Taking the derivative of (11) with respect to o and setting it to zero, we ob-
tain oy = % We project the solution onto the Q to obtain the optimal solution. B

Proposition 4

_ 2
ICll = _max \/ > o ) (13)

Proof See the proof in Appendix. |

2. Graph-guided Fusion Penalty

Proposition 5 Let a* be the optimal solution of (11) for graph-guided fusion penalty
in (4). Then, we have:

e,
ILL )

where S is the shrinkage operator defined as follows:

o =5(

x, if —-1<z<1
Sx)=41, if xz>1
1, if z< -1

For any vector a, S(a) is defined as applying S on each and every entry of c.

10
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Proof The proof for this proposition is similar to the one for Proposition 3. |

Proposition 6 ||C| is upper-bounded by /27 max;jcy d;, where

dj = > ((re)? (14)

e€FE s.t. e incident on j

for j € V in graph G, and this bound is tight.

Proof See the proof in Appendix. |
Note that when 7(r.) =1 for all e € E, d; is simply the degree of the node j.

4.2 Proximal Gradient Descent

Given the smooth approximation of the non-smooth structured-sparsity-inducing penalties
as presented in the previous section, now, we apply the fast iterative shrinkage-thresholding
algorithm (FISTA) (Beck and Teboulle, 2009), using the gradient information in Theorem
2. We substitute the penalty term €2(3) in (2) with its smooth approximation f,(8) to
obtain the following optimization problem:

mgnf(ﬁ) =9(8) + fu(B) + Bl (15)

Let
A(B) = 9(8) + fu(B) = 3 lly — XBIR + fu(8).

According to Theorem 2, the gradient of h(3) is given as:
Vh(B) =XT(XB -y)+ CTa*. (16)
Moreover, Vh(3) is Lipschitz-continuous with the Lipschitz constant:

Icl®

L = Mnax(XTX) + L, = Apax(XTX) + (17)

where Amax (X7 X) is the largest eigenvalue of (X7X).
Since f(,@) only involves a very simple non-smooth part (i.e., the {;-norm penalty), we
can adopt FISTA (Beck and Teboulle, 2009) to minimize f(3) as shown in Algorithm 1.
We briefly discuss the reason why the step in (18) is called “generalized gradient update
step”. For any smooth convex function h, it is well-known that the traditional gradient
descent step with 1/L as the step-size is equivalent to solving a quadratic approximation
(upper bound) of h:

,Bt+1 — Wt _

%Vh(wt) «— B! = argmin h(wt) + (B —wt, Vh(wt)) + %H,@—wtﬂg, (19)
B

11
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Algorithm 1 Proximal Gradient Method for Learning Structured Sparsity

Input: X, y, C, B°, desired accuracy e.
Initialization: set u = 55, 6 = 1, w? =Y.
Iterate For ¢t = 0,1,2,. .., until convergence of 3':

1. Compute Vh(w') according to (16).

2. Perform the generalized gradient update step:

B = argminh(w') + (8w, Vh(w) + NGl + 18- w3 (18)
B

3. Set 9t+1 == H%
4. Set wit!l = Bt—i—l + %ewrl(ﬂ“_l _ ﬂt)

Output: B = gttt

where h(w') + (B — w!, Vh(w')) is a linear approximation of h at 3. Based on (19), the
generalized gradient update step adds A||3||1 to enforce the solution to be sparse and it can
be computed in closed form: rewriting (18), we obtain:

1 1 A
IBt‘H = argmin §||B - (Wt — ZVh(Wt))H% + ZH/BHl
B

Let v = (w! — $Vh(w?)), the closed-form solution for "' is given as in the next proposi-
tion.

Proposition 7 The closed-form solution of
1 A
min 718 = VI3 + 21181l

can be obtained by the soft-thresholding operation:

A

ﬂ] = Sign(’l)j)max(oa ‘UJ‘ - Z)7

j=1,...,J (20)
Proof The problem can be decomposed into J independent subproblems, each of which is
given as ming, 11185 —v;||3+ 2 |vj|. For each subproblem, taking the subgradient with respect
to v; and requiring that 0 belongs to the subgradient yield the closed-form solution in (20). H

A notable advantage of utilizing the generalized gradient update step with the simple
f1-norm penalty is that it can provide us with the sparse solutions, where the coefficients
for irrelevant inputs are set exactly to zero, due to the soft-thresholding operation in (20).
At convergence, the values of B for the irrelevant groups in the group-lasso penalty and
edges in the graph-guided fusion penalty will become sufficiently close to zeros, and the
soft-thresholding operation will truncate them exactly to zeros, leading to sparse solutions.

12
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Table 1: Comparison of Time Complexity

Overlapping Group Lasso Graph-guided Fused Lasso
Proximal Gradient O(J? + >geg l9l) O(J? +|E))
IPM for SOCP | O ((J + [G)2(N + g o)) | O (7 + |E)(N + 7 + |E)))

Remark 8 If we directly apply FISTA to the original problem (2), the generalized gradient
update step will involve Q(B) and hence does not have a closed-form solution. This is the
challenge that we circumvent via smoothing.

Remark 9 Our proximal gradient algorithm is a general approach that can be applied to
problems with any kind of smooth convex loss functions and structured-sparse-inducing
penalties that can be rewritten in the form of maxq ol C3.

4.3 Convergence Rate and Time Complexity

Although we optimize the approximation function f(,@) rather than optimizing f(3) di-
rectly, it can be proven that the 3 obtained from Algorithm 1 is sufficiently close to the
optimal solution 8* to the original optimization problem in (2). We present the convergence
rate of Algorithm 1 in the next theorem.

Theorem 10 Let 3* be the optimal solution to (2) and B' be the approzimate solution at
the t-th iteration in Algorithm 1. If we require f(B') — f(B8*) < € and set p = 555, then, the
number of iterations t is upper-bounded by

\/ 6" - B (A7) + 2200, (21)

€ €

The key idea behind the proof of this theorem is to decompose f (B') — f(B*) into three

parts: (i) £(8") — F(8"), (i) F(8") — J(B), and (iii) f(8%) — £(8"). (i) and (iil) can be
bounded by the gap of the approximation puD. (ii) only involves the function f and can
be upper bounded by O(t%) as shown in Beck and Teboulle (2009). We obtain (21) by
balancing these three terms. The details of the proof are presented in Appendix. According
to Theorem 10, Algorithm 1 converges in O(@) iterations, which is much faster than the
subgradient method with the convergence rate of 0(6%) Note that the convergence rate
depends on D through the term /2D, and the D depends on the problem size.

As for the time complexity, assuming that we can pre-compute and store XX and X'y
with the time complexity of O(J?N), the main computational cost in each iteration comes
from calculating the gradient Vh(w;). The per-iteration time complexity of Algorithm 1 as
compared to IPM for SOCP according to Lobo et al. (1998) is presented in Table 1.

Remark 11 According to Table 1, although IPM converges in fewer iterations (i.e., log(%)),

its per-iteration complexity is higher by orders of magnitude than that of our method. For
example, for the overlapping-group-lasso penalty, the per-iteration complexity of our method
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is O(J? + >_gec |9), which depends on the sum of J? and >gec |91, while that of IPM for
SOCP is at least the product of J*> and >_geg |9|. For the graph-guided fusion penalty, the
per-iteration complezity of our method is linear in |E|, while that of IPM for SOCP is cubic
in |E|. Therefore, our method is much more scalable for large-scale problems. In addition to
the higher time complexity, each IPM iteration of SOCP requires significantly more memory
to store the Newton linear system.

Remark 12 If we can pre-compute and store X' X, the per-iteration time complexity of
our method is independent of sample size N as shown in Table 1. If J is very large, XTX
may not fit into memory. If this is the case, instead of pre-computing and storing XTX,
we can compute XTI (Xw?) in each iteration. Then, the per-iteration time complexity will
increase by a factor of N, but this is still less than that of IPM for SOCP.

4.4 Logistic Loss for Classification Problems

As we stated in Remark 9, our method is a general approach that can be applied to any
convex smooth loss. For classification problems with each output data y; € {0, 1}, it is more
natural to adopt the logistic loss:

N N
9(8) = =Y logP(yilx;) = Y _[log(1 + exp(87x;)) — yiB x4, (22)
i=1 i=1
with the gradient
v (ﬁ)—ZN:x- <eXp(5TX)_ > (23)
T i=1 1+ exp(87x) A

We can directly apply Algorithm 1 to solve the logistic regression with the structured-
sparsity-inducing penalty, where the gradient of h(8) = g(8) + f.(8) is Vg(B) + CTa*.
According to the next proposition, the Lipschitz constant of Vg(3) is simply Zf;l [l )%

Proposition 13 The Lipschitz constant for Vg(3) as defined in (23) is sz\il [l 1%

Proof See the proof in Appendix. |

5. Extensions for Multi-task Learning

The structured-sparsity-inducing penalties as discussed in the previous section can be sim-
ilarly used in the multi-task regression setting. Depending on the types of structures over
the outputs that are available as prior information, different types of penalties includ-
ing overlapping-group-lasso penalty and graph-guided fusion penalty have been applied to
learn the shared sparsity pattern across multiple tasks (Kim and Xing, 2010; Kim et al.,
2009). For example, in genetic association analysis, where the goal is to discover few ge-
netic variants or single neucleotide polymorphisms (SNPs) out of millions of SNPs (inputs)
that influence phenotypes (outputs) such as gene expression measurements, the correlation
structure of phenotypes can be naturally represented as a graph, which can be used to guide
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Figure 2: Tlustration of the multi-task regression with graph structure on outputs.

the selection of SNPs as shown in Figure 2. Then, the graph-guided fusion penalty can be
used to identify SNPs that are relevant jointly to multiple related phenotypes.

While in the multi-task regression problem, we encounter the same difficulties of opti-
mizing with non-smooth and non-separable penalties as in the previous section, our prox-
imal gradient method can be extended to this problem in a straightforward manner. For
completeness, in this section, we briefly discuss how our method can be applied to the multi-
task regression with structured-sparsity-inducing penalties. For the ease of illustration, we
discuss cases where different tasks (outputs) share the same input matrix.

5.1 Multi-task Linear Regression and Structured-sparsity-inducing Penalty

Let X € RV*/ denote the matrix of input data for J inputs and Y € RV*K denote the
matrix of output data for K outputs over /N samples. We assume a linear regression model
for each of the k-th task: y, = XB; + e, Vk = 1,...K, where B = [Bix,---, 071"
is the regression coefficient vector for the k-th task and € is Gaussian noise. Let B =
[B1,...,8k] € R7*K be the matrix of regression coefficients for all of the K tasks. Then,
the multi-task structured sparse regression problem can be naturally formulated as the
following optimization problem:

1
i B)=_|Y - XB|%+Q(B)+\|B 24
_min [(B)= 3| 2+ Q(B) + AIB||. 1)
where || - || denotes the matrix Frobenius norm, || - ||; denotes the matrix entry-wise ¢;

norm, and Q(B) is a structured-sparsity-inducing penalty with the structure over tasks.

1. Multi-task Overlapping-group-lasso Penalty: We define the overlapping-group-
lasso penalty for the multi-task regression as follows:

J
QB) =7 > wyllBjgle (25)

j=1geg

where G = {g1,...,9|g|} is a subset of the power set of {1,..., K} and 3,, is the vector
of regression coefficients {3, k € g}. Both ¢ /¢y mixed-norm penalty for multi-task
regression (Obozinski et al., 2009) and tree-guided group-lasso penalty (Kim and Xing,
2010) are special cases of (25).

2. Multi-task Graph-guided Fusion Penalty:Assuming the graph structure over the
K outputs is given as G with a set of nodes V' ={1,..., K} and a set of edges F, the
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Table 2: Comparison of Time Complexity for Multi-task Regression

Overlapping Group Lasso Graph-guided Fused Lasso

Proximal Gradient O(J?’K + I geq l9l) O(J?K + J|E))

IPM for SOCP o(J?(K+|g\)2(KN+J(|Q\+Zg€g|g\>)) O (JX(K + |E|)*(KN + JK + J|E|))

graph-guided fusion penalty for multi-task regression is given as:

J
QB) =7 D m(rm) Y |Bjm — sign(rm)Byl- (26)

e=(m,l)eFE Jj=1

5.2 Proximal Gradient Descent

Using the similar techniques in Section 3, 2(B) can be reformulated as:

Q(B) = max(CB”, A), 27
(B) = pax(CBT, A) 1)
where (U, V) = Tar(UTV) denotes a matrix inner product. C'is constructed in the similar
way as in (7) or (8) just by replacing the index of the input variables with the output
variables, and A is the matrix of auxiliary variables.

Then we introduce the smooth approximation of (27):

fu(B) = max ((CBY, A) — nd(A)) (28)

where d(A) = }||A||%. Following a proof strategy similar to that in Theorem 2, we can
show that f,(B) is convex and smooth with gradient V£,(B) = (A*)TC, where A* is the
optimal solution to (28). For overlapping-group-lasso penalty, A is composed of ¥, =

39
S (/\w‘;ﬁ), for graph-guided fusion penalty, A = .S (CTBT) In addition, V f,(B) is Lipschitz
continuous with the Lipschitz constant L, = ||C||*/u, where ||C|| = max)v,<1 ICVT|p.

Similar to proposition 4 and 6, we can show that for overlapping-group-lasso penalty ||C|| =

YMaXpe(i,.. K} \/deg i keg(wg)2 and for graph-guided fusion penalty, ||C|| is upper

bounded by \/m, where dj, is defined in (14).
By substituting Q(B) in (24) with f,(B), we can adopt Algorithm 1 to solve (24) with

convergence rate of O(%) iterations. The per-iteration time complexity compared to IPM

for SOCP is shown in Table 2. It can be seen that our method is much more efficient than
IPM for SOCP.

6. Related Work

Recently, first-order approach such as in Nesterov’s method (Nesterov, 2007), FISTA (Beck
and Teboulle, 2009), and forward-backward splitting (FOBOS) (Duchi and Singer, 2009)
has been widely adopted to solve optimization problems with a convex loss and non-
smooth penalty. However, most of the existing works dealt with relatively simple and
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well-separated non-smooth penalties (e.g., ¢1-norm, ¢;/¢3 mixed-norm penalty with non-
overlapping groups, ¢1/¢ mixed-norm in multi-task regression) so that the generalized
gradient update step (or so-called projection step) with the original form of the penalty
can be obtained in a closed form. In this case, the first-order approach can achieve the
optimal convergence rate O(ﬁ) However, the structure of the penalties in our problem is
very complex, and such a projection step does not have a closed-form solution. This is the
challenge that we circumvent via smoothing in our proximal gradient method.

The idea of smoothing the non-smooth function was initiated by Nesterov (2005). Since
the method by Nesterov (2005) works only for smooth problems, it has to smooth out the en-
tire non-smooth penalty including the ¢1-norm. However, it is precisely the non-smoothness
of the penalty that leads to exact zeros in optimal solutions. Therefore, the method in
Nesterov (2005) cannot yield a sparse solution. Moreover, their algorithm requires that
B is bounded, and that the number of iterations is pre-defined, although these conditions
are all impractical for real applications. Instead, our approach leads to the sparse solu-
tions with the coefficients for irrelevant variables exactly set to zero, and has a simple and
novel derivation of the convergence rate. As for the convergence rate, theoretically, the best
convergence rate for optimizing a convex function using the first-order method has been
proven to be O(ﬁ) (Nesterov, 2003b). The gap between O (1) and O(ﬁ) is due to the
approximation of the non-separable and non-smooth structured-sparsity-inducing penalty.
We can show that if X7X is a positive definite (PD) matrix, O(ﬁ) can be achieved by a
variant of excessive gap method (Nesterov, 2003a). However, such a rate can not be easily
obtained for sparse learning problems where J > N (XX is not PD). It remains an open

question whether we can further boost our algorithm to achieve O(\%) convergence rate.

Very recently other works on solving structured sparse learning problems have appeared.
For the overlapping-group-lasso penalty, Jenatton et al. (2009) proposed an active-set al-
gorithm that solves a sequence of subproblems with a smaller set of active variables. How-
ever, this method can only solve the regression problems regularized by the square of the
structured-sparsity-inducing penalty. In addition, this method formulates each subproblem
either as an SOCP, which can be computationally expensive for a large active set, or as
a jointly convex problem with auxiliary variables, which is then solved by an alternating
gradient descent. This latter approach lacks the guarantee in optimization convergence and
may have numerical problems. A variant of proximal gradient method for sparse hierar-
chical dictionary learning appeared in a very recent work (Jenatton et al., 2010). While
their optimization method can be applied only to tree-structured groups, our method can
be applied to any arbitrary overlapping group structures.

For the graph-guided fusion penalty, when the structure of the graph is restricted to
a chain, pathwise coordinate descent method (Friedman et al., 2007) has been applied.
However, this method may not converge to the exact solution when the input matrix X
is not orthogonal. Liu et al. (2010) proposed a first-order method which approximately
solves the projection step. However, in this method, the convergence cannot be guaranteed,
since the error introduced in each projection step will be accumulated over iterations. For
the general graph structure, a different algorithm has been proposed that reformulates
the problem as a maximum flow problem (Hoefling, 2009). This algorithm is much more
complex than our method, and is limited in that it can be applied only to the case where
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the dimension is less than the sample size and that it lacks theoretical guarantees of the
convergence.

In addition, we point out that unlike most of the other previous approaches, our method
is not specific to any particular type of structured-sparsity-inducing penalties, but it pro-
vides a general framework for handling a wide variety of non-separable and non-smooth
penalties.

Outside of the optimization community, there exist other works (e.g., Jacob et al. (2009))
that proposed a different type of norms to incorporate the information on group or graph
structures. Since the focus of the paper is on the optimization, the comparison of the
methods is beyond the scope of this paper.

7. Experiments

In this section, we evaluate the scalability and efficiency of our proximal gradient method
(Prox-Grad) as well as the recovery quality of the structured sparsity pattern in regression
model on both synthetic and real datasets. For overlapping group lasso, we compare the
running time of Prox-Grad with that of SOCP formulation using the standard MATLAB
package SDPT3 (Titiincii et al., 2003). For the graph-guided fused lasso, we compare the
running time of Prox-Grad with that of SOCP and QP. For QP formulation, we tried several
different packages including MOSEK and CPLEX, and report the results from CPLEX
since it performed better than others. All of the experiments are performed on a PC
with Intel Core 2 Quad Q6600 2.4GHz CPU and 4GB RAM. The software is written in
MATLAB, and we terminate our optimization procedure when the relative change in the
objective is below 107%. We present results for both single-task and multi-task regression
problems with various structured-sparsity-inducing penalties. In addition to the comparison
of computation time for different optimization algorithms, we present the results on the
quality of recovered structured-sparsity patterns.

In our simulation experiment, we constrain the regularization parameters such that
A = . We assume that for each group g, wy = \/@ as described by Yuan and Lin (2006)
for the sake of simplicity. We select the regularization parameters using a three-fold cross-
validation, and report the computation time as the CPU time for running the optimization
procedure on the entire dataset with the selected A. As for the smoothness parameter p,
following the results in Theorem 10, we set u = 5%, where D is determined by the problem
scale. It is natural that for a large-scale problem with a larger D, a larger € can be adopted
without affecting the recovery quality significantly. Therefore, instead of fixing the value
of €, we directly set u = 10~*. Our experience showed that this strategy provided us with
reasonably good approximation accuracies for different scales of problems.

7.1 Synthetic Data

7.1.1 OVERLAPPING GROUP LASSO FOR SINGLE-TASK REGRESSION

We generate data from known regression coefficients and sparsity structure for a single-
task regression, and try to recover the true sparsity pattern using overlapping group lasso.
We simulate data using the similar approach as in Jacob et al. (2009), assuming that the
inputs have an overlapping group structure as described below. Assuming that the inputs
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Figure 3: Simulation results for comparing the scalability of Prox-Grad and SOCP with IPM for
overlapping group lasso in a single-task regression. (a) Fix N = 5000 and vary |G| from
100 to 1000 with a step size of 50 (i.e., J varies from 703 to 7003). (b) Fix |G| = 200 and
vary N from 1000 to 10000 with a step size of 500. The y-axis denotes the computation
time in seconds in logarithmic scale.

are ordered, we define a sequence of groups of 10 adjacent inputs with an overlap of three
variables between two successive groups so that G = {{1,...,10},{8,...,17},...,{J —
9,...,J}} with J = 7|G| +3. We set the support of 3 to the first half of the input variables.
We sample each element of X and the non-zero elements of 3 from an i.i.d. Gaussian
distribution, and generate the output data from y = X3 + €, where € ~ N (0, Inxn).

To demonstrate the efficiency and scalability of Prox-Grad as compared to SOCP, we
present the computation time for datasets with varying N and |G| in Figure 3. The computa-
tion time is measured in seconds and plotted in logarithmic scale. We omit the computation
time for the SOCP formulation when it exceeds two hours. Clearly, Prox-Grad is more effi-
cient and scalable by orders of magnitude than IPM for SOCP formulation. Moreover, we
notice that the increase of N almost does not affect the computation time of Prox-Grad,
which is consistent with our complexity analysis in Section 4.3.

7.1.2 OVERLAPPING GROUP LASSO FOR MULTI-TASK REGRESSION

In this section, we consider the problem of learning a multi-task regression with a overlap-
ping group lasso, where the overlapping group structure is defined over the outputs and
related outputs share a similar sparsity pattern in their regression coefficients. We assume
that K tasks are organized as a perfect binary tree of depth [ = logy(K) with leaf nodes
corresponding to tasks and internal nodes representing groups of the tasks for the subtree.
Furthermore, we assume that the groups of the tasks near the bottom of the tree are more
closely related as in a hierarchical clustering tree and more likely to share the sparsity pat-
tern in their regression coefficients. Given this output structure, we set the sparsity pattern
in the true regression-coefficient matrix as shown in Figure 4(a), where the black pixels rep-
resent non-zero elements with the value b = 1.0 and white pixels represent zero elements.
The consecutive black pixels on each column represent a group, and there are many overlaps
among these black vertical bars across columns. Then, we sample the elements of X from
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Figure 4: Simulation results for comparing different regression methods on the recovery of tree-
structured sparsity pattern in multi-task regression. (a) The matrix of true regression co-
efficients B. Estimated regression coefficients are shown for (b) lasso, (c) £ /¢3-regularized
multi-task lasso, (d) tree-structured overlapping group lasso. The rows and columns rep-
resent tasks and inputs, respectively. Black pixels correspond to 1 and white pixels
correspond to 0. Red pixels indicate large values approaching to 1 and yellow pixels
indicate small values approaching to 0.
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Figure 5: Comparisons of scalability of Prox-Grad and IPM for SOCP using overlapping group
lasso in a multi-task regression. (a) Fix N = 1000 and J = 600, and vary log,(K) from
2 to 8 with a step size of 1. (b) Fix N = 1000 and K = 32, and vary J from 100 to 1000
with a step size of 100. (c) Fix J = 100 and K = 32, and vary N from 500 to 5000 with a
step size of 500. The y-axis shows the computation time in seconds in logarithmic scale.

an i.i.d. standard Gaussian and generate the output data using Y = XB + €, where € is
the standard Gaussian noise.

First, we compare the performance of lasso, the ¢1 /¢s-regularized multi-task lasso (Obozin-
ski et al., 2009), and the tree-structured overlapping group lasso in terms of recovery of the
true sparsity pattern. We use a dataset simulated with N = 100, J = 100, and K = 32. For
the structured multi-task regression, each node in the tree over the outputs defines a group
of the tasks. The recovered regression-coefficient matrix is plotted in Figures 4(b)—(d). It is
visually clear that the tree-structured overlapping group lasso recovers the true underlying
sparsity pattern significantly better than the other methods.

We compare the scalability of the proposed Prox-Grad algorithm with that of IPM for
SOCP. We simulate datasets with varying K, J, and N, and present the computational
time on these datasets for our Prox-Grad method and IPM for SOCP formulation in Figure
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5. For those missing points, SOCP simply cannot be applied since it leads to an out-of-
memory error because of the storage for the Newton linear system. As can be seen in Figure
5, our method is significantly faster than the SOCP formulation and can scale up to a very
high-dimensional dataset with many tasks.

7.1.3 GRAPH-GUIDED FUSED LLASSO FOR MULTI-TASK REGRESSION

In this section, we apply our Prox-Grad method to multi-task graph-guided fused lasso. We
simulate data using the following scenario analogous to the problem of genetic association
mapping, where we are interested in identifying a small number of genetic variations (inputs)
that influence the phenotypes (outputs). We use K = 10, J = 30 and N = 100. To simulate
the input data, we use the genotypes of the 60 individuals from the parents of the HapMap
CEU panel (The International HapMap Consortium, 2005), and generate genotypes for
additional 40 individuals by randomly mating the original 60 individuals. We generate
the regression coefficients 3,’s such that the outputs yi’s are correlated with a block-
like structure in the correlation matrix. We first choose input-output pairs with non-zero
regression coefficients as we describe below. We assume three groups of correlated output
variables of sizes 3, 3, and 4. We randomly select inputs that are relevant jointly among
the outputs within each group, and select additional inputs relevant across multiple groups
to model the situation of a higher-level correlation structure across two subgraphs as in
Figure 6(a). Given the sparsity pattern of B, we set all non-zero (3;; to a constant b = 0.8
to construct the true coefficient matrix B. Then, we simulate output data based on the
linear regression model with noise distributed as standard Gaussian, using the simulated
genotypes as inputs. We threshold the output correlation matrix in Figure 6(a) at p = 0.3
to obtain the graph in Figure 6(b), and use this graph as prior structural information for
graph-guided fused lasso.

As an illustrative example, the estimated regression coefficients from different methods
are shown in Figures 6(d)—(f). While the results of lasso and ¢; /¢s-regularized multi-task
regression in Figures 6(d) and (e) contain many false positives, the results from graph-guided
fused lasso in Figure 6(f) show fewer false positives and reveal clear block structures. Thus,
graph-guided fused lasso outperforms the other methods.

To compare the scalability of Prox-Grad with those of SOCP and QP, we vary J, N, K,
and p, and present the computation time in seconds in logarithmic scale in Figures 7(a)-(d),
respectively. The input data, output data, and true regression coefficients B are generated
in the way similar to what is described above. More precisely, we assume that each group
of correlated output variables is of size 10. For each group of the outputs, We randomly
select 10% of the input variables as relevant. In addition, we randomly select 5% of the
input variables as relevant to every two consecutive groups of outputs and 1% of the input
variables as relevant to every three consecutive groups.

In Figure 7, we find that Prox-Grad is substantially more efficient and can scale up
to very high-dimensional and large-scale datasets. We point out that when we vary the
threshold p for generating the output graph in Figure 3(d), the decrease of p increases
the number of edges |F| and hence increases the computation time. In Figure 3, for large
values of J, N, K and small values of p, we are unable to collect results for SOCP and QP,
because they lead to out-of-memory errors due to the large storage requirement for solving

21



CHEN AND LIN AND KIM AND CARBONELL AND XING

S0 S T R

(¢)

e

-

()

Figure 6: Tllustration of the graph-guided fusion penalty for multi-task regression. We show the
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regression coefficients recovered by different methods based on a single simulated dataset.
We use b = 0.8 and threshold p = 0.3 for the output correlation graph. Red pixels
indicate large values. (a) The correlation coefficient matrix of outputs, (b) the edges
of the phenotype correlation graph obtained at threshold 0.3 are shown as black pixels,
(¢) the true regression coefficients used in simulation. Absolute values of the estimated
regression coefficients are shown for (d) lasso, (e) ¢1/¢s-regularized multi-task lasso, and
(f) graph-guided fused lasso. Rows correspond to outputs and columns to inputs.
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Figure 7: Simulation results for comparing the scalabilities of Prox-Grad, SCOP and QP in a multi-

task regression with a graph-guided fusion penalty. (a) Vary J from 50 to 500 with a step
size of 50 and then from 1000 to 10,000 with a step size of 1000, fixing N = 1000, K = 50
and p = 0.5, (b) Vary N from 500 to 10000 with a step size of 500, fixing J = 100, K = 50
and p = 0.5, (¢) Vary K from 50 to 500 with a step size of 50 and then from 1000 to
10,000 with a step size of 1000, fixing N = 500, J = 100 and p = 0.5, and (d) Vary p
from 0.1 to 0.9 with a step size of 0.1, fixing N = 500, J = 100 and K = 50. The y-axis
shows the computation time in seconds in logarithmic scale.

the Newton linear system. QP is more efficient than SOCP since it removes the non-smooth
{1 penalty by introducing auxiliary variables for each ¢; term. In addition, we notice that
the increase of N does not increase the computation time significantly. This observation is
consistent with our complexity analysis in Section 4.3.
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7.2 Real Data
7.2.1 BREAST CANCER DATA: PATHWAY ANALYSIS

In this section, we apply our Prox-Grad method with the overlapping-group-lasso penalty
to a real-world dataset collected from breast cancer tumors (van de Vijver et al., 2002;
Jacob et al., 2009) and solve it by proximal gradient method. The data are given as gene
expression measurements for 8,141 genes in 296 breast-cancer tumors (78 metastatic and
217 non-metastatic), and the task is to select a small amount of the most relevant genes
that gives the best prediction performance.

In a biological system, genes are organized into pathways, and because of the heavy
interaction among the genes within a pathway, often the genes in the whole pathway are
involved in the development of a disease such as breast cancer. Thus, a powerful way of
discovering genes involved in a tumor growth is to consider groups of interacting genes in
each pathway rather than individual genes independently (Ma and Kosorok, 2010). The
overlapping-group-lasso penalty provides us with a natural way to incorporate these known
pathway information into the biological analysis, where each group consists of the genes in
each pathway. This approach can allow us to find pathway-level gene groups of significance
that can distinguish the two tumor types. In our analysis of the breast cancer data, we
cluster the genes using the canonical pathways from the Molecular Signatures Database
(Subramanian et al., 2005), and construct the overlapping-group-lasso penalty using the
pathway-based clusters as groups. Many of the groups overlap because genes can partic-
ipate in multiple pathways. Overall, we obtain 637 pathways over 3,510 genes, with each
pathway containing 23.47 genes on average and each gene appearing in four pathways on
average. Then, we set up the optimization problem of minimizing the logistic loss with the
overlapping-group-lasso penalty to classify the tumor types based on the gene expression
levels, and solve it with our Prox-Grad method.

Since the number of positive and negative samples are imbalanced, we adopt the bal-
anced error rate defined as the average error rate of the two classes.?2 We split the data into
the training and testing sets with the ratio of 2:1, and vary the A = y from large to small
to obtain the full regularization path.

In Figure 8, we compare the results from fitting the logistic regression with the overlapping-
group-lasso penalty and the model with the ¢;-norm penalty. Figure 8(a) shows the balanced
error rates for the different numbers of selected genes along the regularization path. As we
can see, the balanced error rate for the model with the overlapping-group-lasso penalty is
lower than the one with £;-norm, especially when the number of selected genes is between
500 to 1000. The model with the overlapping-group-lasso penalty achieves the best error
rate of 29.23% when 696 genes are selected, and these 696 genes belong to 125 different
pathways. In Figure 8(b), for the different numbers of selected genes, we show the number
of pathways to which the selected genes belong. From Figure 8(b), we see that when the
group structure information is incorporated, fewer pathways are selected. This indicates
that learning with the overlapping-group-lasso penalty selects the genes at the pathway level
as a functionally coherent groups, leading to an easy interpretation for functional analysis.
On the other hand, the genes selected via the ¢1-norm penalty are scattered across many
pathways as genes are considered independently for selection. The total computational time

2. See http://www.modelselect.inf.ethz.ch/evaluation.php for more details
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Figure 8: Results from the analysis of breast cancer dataset. (a) Balanced error rate for varying
the number of selected genes, and (b) the number of pathways for varying the number of
selected genes.

for computing the whole regularization path with 20 different values for the regularization
parameters is 331 seconds for the overlapping group lasso.

We perform a functional enrichment analysis on the selected pathways, using the func-
tional annotation tool (Huang et al., 2009), and verify that the selected pathways are sig-
nificant in their relevance to the breast-cancer tumor types. For example, in a highly sparse
model obtained with the group-lasso penalty at the very left end of Figure 8(b), the selected
gene markers belong to only seven pathways, and many of these pathways appear to be rea-
sonable candidates for an involvement in breast cancer. For instance, all proteins in one of
the selected pathways are involved in the activity of proteases whose function is to degrade
unnecessary or damaged proteins through a chemical reaction that breaks peptide bonds.
One of the most important malignant properties of cancer involves the uncontrolled growth
of a group of cells, and protease inhibitors, which degrade misfolded proteins, have been
extensively studied in the treatment of cancer. Another interesting pathway selected by our
method is known for its involvement in nicotinate and nicotinamide metabolism. This path-
way has been confirmed as a marker for breast cancer in previous studies (Ma and Kosorok,
2010). In particular, the gene ENPP1 (ectonucleotide pyrophosphatase/phosphodiesterase
1) in this pathway has been found to be overly expressed in breast tumors (Abate et al.,
2005). Other selected pathways include the one related to ribosomes and another related
to DNA polymerase, which are critical in the process of generating proteins from DNA and
relevant to the property of uncontrolled growth in cancer cells.

We also examine the number of selected pathways that gives the lowest error rate in
Figure 8. At the error rate of 29.23%, 125 pathways (696 genes) are selected. It is interesting
to notice that among these 125 pathways, one is closely related to apotosis, which is the
process of programmed cell death that occurs in multicellular organisms and is widely known
to be involved in un-controlled tumor growth in cancer. Another pathway involves the genes
BRCA1, BRCA2, and ATR, which have all been associated with cancer susceptibility.

For comparison, we examine the genes selected with the ¢1-norm penalty that does not
consider the pathway information. In this case, we do not find any meaningful functional
enrichment signals that are relevant to breast cancer. For example, among the 582 pathways
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Figure 9: Results on yeast dataset using the overlapping group lasso. (a) Regression error for the
test data. (b) The change in values of the objective function over iterations in Prox-Grad.

that involve 687 genes at 37.55% error rate, we find two large pathways with functional
enrichments, namely response to organic substance (83 genes with p-value 3.3E-13) and the
process of ozxidation reduction (73 genes with p-value 1.7E-11). However, both are quite
large groups and matched to relatively high-level biological processes that do not provide
much insight on cancer-specific pathways.

7.2.2 YEAST DATA: GENOME-WIDE ASSOCIATION STUDY

We apply the tree-structured multi-task overlapping group lasso to analyze a genome-wide
association study data with 1,260 genotypes (as inputs) and gene expression levels (as
outputs) of 3,684 genes collected for 114 yeast strains Zhu et al. (2008). The goal is to
select a parsimonious but meaningful set of genotypes that affect gene expressions. We
run the hierarchical clustering on the output data to learn the tree structure, where each
internal node in the tree defines a group of the tasks (See Kim and Xing (2010) for more
details).

We split the data into training and testing sets with the ratio of 2:1, and in Figure 9
(a), report the boxplot of the errors on the test data averaged over five different random
splits. Clearly, the structural information leads to a superior performance to lasso and the
01 /ly-regularized multi-task lasso.

In Figure 9(b), we show the decrease of the values of the objective function over iterations
in a typical run of Prox-Grad for the best selected regularization parameter. Prox-Grad
converges in 368 iterations in 1366 seconds. Although the same dataset has been analyzed in
(Kim and Xing, 2010), their optimization method based on a variational formulation could
handle only a small-scale dataset because it involves an inversion of J x J matrix in each
iteration. Thus, their analysis is focused only on a single chromosome with 21 genotypes
instead of the entire set of 1260 genotypes. We note that SOCP simply cannot be applied
to this dataset due to the memory issue of storing Newton linear system.
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8. Conclusions

In this paper, we considered an optimization problem for learning a structured-sparsity pat-
tern in regression coefficients with a general class of structured-sparsity-inducing penalties.
Many of the structured-sparsity-inducing penalties including the overlapping-group-lasso
penalties and graph-guided fusion penalty share a common set of difficulties in optimization
such as non-separability and non-smoothness. We showed that the optimization problems
with these penalties can be transformed into the common form, and proposed a general
optimization framework called proximal gradient method that can be applied to an opti-
mization problem of this common form. Our results show that the proposed method can
efficiently solve high-dimensional problems.

As future work, we would like to explore other structured penalties that can be effi-
ciently solved by our optimization approach. Another interesting future direction is that
since the method is only based on gradient, its online version with the stochastic gradient
descent can be easily derived. However, proving the regret bound will require a more careful
investigation.
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Proof of Theorem 2

The f,(8) is a convex function since it is the maximum of a set of functions that are linear
in 3. For the smoothness property, let the function d* be the Fenchel conjugate of the
strongly-convex function d defined as:

'(v) = max{ar, ) — d(a). (29)

We want to prove d* is differentiable everywhere by showing that the subdifferential 0d* of
d* is a singleton set for any ~.
From the definition in (29), for any v and any a € Q, we have:

d*(v) + d(a) = (a,7), (30)
where the inequality holds as an equality if and only if a = argmax,/cg(a’,v) — d(c’).
Since d is convex and closed, we have d** = d (Chapter E in Hiriart-Urruty and
Lemarechal (2001)). Thus, (30) can be written as:
d*(y) + d™ (@) = (@, 7), (31)

where the inequality holds as an equality if and only if v = argmax., cgs{(a,v') — d* (7).
Since (30) and (31) are equivalent, we know that o = argmaxy g @'’y — d(e/) if and
rers{a, ¥y —d*(y'). The latter equality implies that for any ~':

(') = d*(v) + (e, =),

which further means that « is a subgradient of d* at - by the definition of subgradient.
Summarizing the above arguments, we conclude that « is a subgradient of d* at ~ if
and only if

only if v = argmax.,

a = argmax(a/, ) — d(a). (32)
a’'eQ

Since d is a strongly-convex function, this maximization problem in (32) has a unique
optimal solution. Thus, the subdifferential 0d* of d* at any point - is a singleton set that
contains only a. Therefore, d* is differentiable everywhere (Chapter D in Hiriart-Urruty

and Lemarechal (2001)) and « is its gradient:
Vd*(v) = a = argmax{a/,v) — d(a). (33)

o’'eQ
Now we return to our original problem of f,(3) and rewrite it as:
cp

fu(B) = gﬂgg(m CB) — pd(ar) = uglgg[m, Cf> —d(a)] = ud*(j)-

Using (33) and the chain rule, we know that f,(8) is continuously differentiable and its
gradient takes the following form:

VIuB) = nCT(V(SD)) = O aagman(el, SF) — d(er)
— CT(ar‘%renanKa', CB) — pd(a)]) = CT(a*).

For the proof of Lipschitz constant of f,,(3), readers can refer to Nesterov (2005).
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Proof of Proposition 4

Since we have

J

ICvlla =7 [D D (we)2u2 =X > | D (wg)? |02
geyg j€Eg j=1 \g€G s.t. jeg

the maximum value of [|C'v[|2, given [lv|[2 < 1, can be achieved by setting v; for j cor-
responding to the largest summation » 0 5 ., j€g(w9)2 to one, and setting other v;’s to

zeros. Hence, we have ||Cv|2 = ymax;cqi . 5 deg . ng(wg)2'

Proof of Proposition 6
According to the construction of matrix C, we have for any vector v:

IOvIE =~ > (T (rm))(vm — sign(rm)u). (34)
e=(m,l)eE

By the simple fact that (a 4= b)? < 2a% + 2b% and the inequality holds as equality if and
only if a = +b, for each edge e = (m, 1) € E, the value (vy,, — sign(r,,,;)v;)? is upper-bounded
by 2v2, 4+ 2v?. Hence, when |v||2 = 1, the right-hand side of (34) can be further bounded
by:

IOVIE <72 Co e 207 ()20, + 07)
= 72 ZjeV(Ze incident on k 2(T(T€))2)Uj2'
= ’yQ EjGV 2djv]2
< 272 maxjev dja

where d; is defined in (14). Therefore, we have

Cll = Cvll2 <, /272 d;.
Il = max lICv]l2 <, /29° maxd;

Note that this upper bound is tight because the first inequality in (35) is tight.

Proof of Theorem 10

Based on the result from Beck and Teboulle (2009), we have the following lemma:

Lemma 14 For the function f(B) = h(B) + M||B|[1, where h(B) is an arbitrary convex
smooth function and its gradient Vh(B) is Lipschitz continuous with the Lipschitz constant
L. We apply Algorithm 1 to minimize f(B) and let B' be the approzimate solution at the
t-th iteration. For any B, we have the following bound:

_2LIB— B3,

> (36)

F(8Y) - £(B)
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In order to use the bound in (36), we decompose f(3") — f(3*) into three terms:
78" - 18 = (18) - J(8Y) + (F(8") - F8) + (78 - 1(87) . (37)

According to the definition of f, we know that for any 3

f(B) < f(B) < f(B) + D,

where D = maxqeg d(cx). Therefore, the first term in (37), f(8")— f(8"), is upper-bounded
by pD, and the last term in (37) is less than or equal to 0 (i.e., f(8%) — f(B8") < 0).
Combining (36) with these two simple bounds, we have:

2L|8" —

B ., 28— Al
t2 -

t2

T Ic|?
(Amax(X X)+M>. (38)

f(B") = f(B") < uD +

€

By setting ;1 = 5% and plugging this into the right-hand side of (38), we obtain

*(2 2
I 2“6 H2 <)\max (XTX) T 2DHCH) . (39)

18" - £(8) < 5+ =5 .

If we require the right-hand side of (39) to be equal to € and solve it for ¢, we obtain the
bound of ¢ in (21).

Note that we can set p = ; for any h > 1 to achieve O (%) convergence rate, which is
different from (21) only by a constant factor.

Proof of Proposition 13

Given any x € R’ and B, € R/, we have

T T
6,Eix e X

14+ eB™x 14 ealx

‘eﬁTx 4 6,BTx—s—OLTx _ 6osz _ 6osz—i—,3Tx|

(14 eB"™®)(1 + eax)

’eﬁTx _ eaTx|

(14 eB™x)(1 + ea"x)
18"x — ax|

18 = exlla[[x]]2-

IN A
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According to the above inequality, we can derive the following inequalities:

IVF(B) = VI()ll2

ﬁTxi o’ x;

e e

<

N Z_: i <1+63T"1 1+€aTxl>
i=1 2
N

< Y Ixl3l8 = el
i=1
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