
Trade-offs in Explanatory Model Learning

Madalina Fiterau
Carnegie Mellon University

mfiterau@cs.cmu.edu

March 21, 2012

Abstract

In many practical applications, accuracy of a prediction is as important as understandability of the
process that leads to it. Explanatory learning emerges as an important capability of systems designed
for close interaction with human users. Many generic white-box predictive model types are readily
available and potentially appropriate for the task (decision trees, association rules, sub-spacing, etc.)
with more being developed each day. This project introduces an algorithm specifically designed to learn
explainable models: Explanation Oriented Partitioning (EOP). Its performance is compared against a
range of relevant alternatives using multiple synthetic and real-world data sets. EOP typically yields
substantially simpler, more interpretable models, while maintaining comparable predictive accuracy.

1 Introduction

Typical design methodology of data-driven analytic systems focuses on optimization of an empirical loss
function appropriate for the task. In predictive scenarios, such as classification or regression, considerable
efforts are often spent on model selection and tuning so that quantitative metrics of accuracy and reliability
of the solution are optimized. Similarly, in descriptive analytics we often focus on maximizing the fidelity
with which the underlying data mechanisms are represented, while minimizing the risk of overfitting. The
emphasis on accuracy of the resulting models often trumps desire for explainability. This can be seen among
popular out-of-the-box high performers such as boosting or random forests, which often appear to the user
as black-box oracles with very little to offer in terms of explaining their predictions. We acknowledge
the practical need for such methods. We observe that in many field deployment scenarios, especially in the
context of data mining, the end users are ready to trade off some loss of accuracy for ease of understanding of
the results. These users require explainable, white-box models, which would maintain reasonable accuracies.

We introduce Explanation-Oriented Partitioning (EOP), a method that is designed for this task. It uses a
few low-dimensional projections of data, each with its own discriminator, to learn explainable classifications.
This meta-algorithm can work with discriminators of various types, such as SVMs, logistic regression, or
with the non-parametric k-nearest neighbors. It leverages local performance of the classifier to identify low-
dimensional regions (easy to present and interpret) of the feature space where data is well-classifiable. EOP
picks out multiple such clusters, maximizing expressiveness while maintaining compactness of the resulting
model. The individual result for a test data point includes concise information about the region of feature
space which clearly supports the current prediction, in addition to the label of the most likely class. As a
useful side effect, EOP can also identify regions of the feature space where data is particularly noisy and
difficult to accurately discriminate.

EOP is an iterative algorithm. In the first iteration, it selects the one projection that is most effective
in support of the classification task, among all data projections of a given dimensionality. The data that
cannot be accurately classified and explained using the current model becomes the focus of the next iteration.
This way we obtain a hierarchical sequence of models similar to a decision list, each component of which
is a projection of data that can be used to classify and explain the partition assigned to it accurately and
without excessive complexity.

The hierarchical flavor of EOP makes it somewhat similar to boosting [11]. The way it splits the data
brings up a reference to partitioning models such as CART [4]. Empirical evaluation shows that, compared to

1

boosting, EOP produces white-box and often more compact models at the price of a slight loss in classification
accuracy. Compared to CART, EOP models tend to be more accurate at low complexities, and they require
fewer projections of data to provide superior explainability.

EOP is also an ensemble model. Ensemble learning has been long known to enable great improvements
of model accuracy by combining the capabilities of multiple base classifiers [25, 3, 1, 20]. Methods such as
Winnow [14] and Boosting [10] are guaranteed to decrease training error with each iteration by tweaking
either the voting coefficients or the weights of the training data records. Performance can be futher enhanced
by combining those techniques [23]. However, there has been much well justified debate as to what extent
the accuracy of prediction is indicative of the ability of an algorithm to uncover the processes behind data
[2]. To answer that, approaches that simplify trained ensembles have been proposed [8, 7], and methods that
replace accurate black-box models with more interpretable equivalents [6, 15]. Other techniques attempt to
improve understandability by simplifying or compressing the feature space [13, 24, 19]. So far only a handful
of algorithms have been specifically designed to yield understandable models. However, rules learned as
in [17] can be hard to visualize, and itemset mining [16] is not quite native for classification tasks. In
Feating [22], submodel selection relies on simple attribute splits followed by fitting local predictors. EOP
reverses this sequence: it first tests - which are more generic than those found by Feating - to identify useful
discriminators, and then it makes splitting decisions based on their performance.

We empirically compare EOP to a representative group of the methods listed above. Our experiments
show how EOP finds succinct descriptions that capture patterns in data. This ability is a crucial aspect of
practical utility of prediction systems working in close interaction with human users.

2 Explanation-Oriented Partitioning

2.1 EOP Learning

The Explanation-Oriented Partitioning algorithm iteratively selects projections of data in which the data
can be classified with high accuracy. Here it can use any externally supported classifier - in the experiments
shown below we use Support Vector Machines [5] and decision stumps. In each of the selected projections,
EOP identifies contiguous areas (regions) in which predictions are consistently accurate. These regions are
then used in lieu of explanations for predictions made for data inside their bounds. An example prediction
produced by the trained EOP model in response to a test data query could, for instance, pronounce: ‘This
query appears to belong to class A. It can be shown that in the scatterplot of data projected onto x1 and x7 this
query is densely surrounded by instances that belong to the same class in the area bounded by 13.5 < x1 < 25.0
and 0.4 < x7 < 1.3’. The user therefore obtains the context of the prediction and the ability to visually
confirm its sensibility.

The algorithm employs a few parameters. The users can specify the target classification error rate
ε, the regularization parameter for the used classifiers λ - its meaning is obviously specific to the chosen
classifier type, and η used to control complexity of the projections of data. The users supply the training
data and the algorithm exhaustively evaluates all feasible projections of a selected dimensionality - we use
2-dimensional projections in the experiments considered below. EOP then identifies the projection π which
allows for the most accurate classification of data given the particular settings of parameters (λ, η), and
the corresponding trained classifier h. The next step is to identify regions in the current projection where
the data is predominantly correctly classified, with the maximum within-region classification error rate of
ε. There may be multiple such potentially overlapping regions in any of the considered projections. EOP
uses a distinct validation subset of data to calibrate identified regions by expanding or contracting their
boundaries, or even deleting some of them, to prevent overfitting. Finally, the training data captured by the
calibrated regions is removed from consideration, and the remainder becomes the input for the next EOP
iteration. Algorithm 1 presents the pseudo-code for learning an EOP model from data.

The resulting model is therefore a hierarchy of projections of data, corresponding trained classifiers and
regions selected in these projections. When the EOP model is queried with a test data point, the top
component of the hierarchy is inspected first. If the query falls inside any of the regions associated with this
sub-model, its classifier predicts the class label, and it is returned to the user together with the description of
the invoked region. Otherwise, the algorithm falls back to the next component of the hierarchy. Therefore,

2

the query-time operation is that of a decision list.

Algorithm 1 EOP Algorithm

EOP(Data, ε, λ, η)
(trainingData, calibrationData) = Split(Data)
Classifiers = []
Regions = []
while TrainingData is not empty do

(h, π) = SelectClassifier(trainingData, λ, η)
trainError =
(ApplyClassifier(trainingData.π) 6= currentData.output)
calibrationError =
(ApplyClassifier(calibrationData.π) 6= calibrationData.output)
sets = ObtainSets(trainingData,trainError,ε)
FilterSets(sets,calibrationData,calibrationError)
if pointsInRegion is Empty then

increase(ε)
else

Classifiers.append(h)
Regions.append(sets)
pointsInRegion = PointsInRegion(trainingData,sets)
currentData.eliminate(pointsInRegion)

end if
end while
return (Regions,Classifiers)

SelectClassifier(data, λ, η)
Π = CombineFeatures(data)
for all π ∈ Π do

h.append(TrainClassifier(π,λ))
rediction = ApplyClassifier(h,π)
error = mean(prediction not equal data.output)
score.append(error + size(π)*η)

end for
idxBest = index(score,min[score])
return (h[idxBest],Π[idxBest])

The basic stopping criterion for EOP’s learning procedure is the exhaustion of training data. It may not
be attainable if the required accuracy of classification in a region, ε, is overly restrictive. If so, EOP can
either dynamically relax ε until all training data is accounted for by the model, or it can leave a certain
amount of hard to handle data unresolved. The choice depends on the requirements of the application.

2.2 Implementations of EOP Region Finding

So far we have described the high-level EOP algorithm without providing specifics regarding region extrac-
tion. We have mentioned that EOP is flexible regarding the choice of the base classifier. It can also rely
on various approaches of region extraction. Below we detail two such methods, a parametric and a non-
parametric segmentation of data, outlining the trade-offs that come with each of them and how bootstrapping
can help in making the process robust.

2.2.1 Bounding Polyhedra

One way of characterizing regions of consistently classifiable data is to encase them in simple boundaries,
such as polyhedra. In order for a polyhedron to qualify as a region of interest, the fraction of misclassified

3

data in it should not exceed ε. Given a particular projection of data, the task of finding a polyhedron that
maximizes data coverage while satisfying the ε condition is NP-hard. Instead, simple heuristics can be used
to achieve satisfactory results.

We used a method which starts with a randomly selected correctly classified data point as a seed, and
subsequently adds more such points located nearby, growing the region for as long as the minimum accuracy
constraint can be maintained. After such a set is found, the process is restarted with another correctly
classified data point that is not yet enclosed in any of the previously constructed polyhedra.

The process ends when all the correctly classified data is consumed. The algorithm allows the resulting
polyhedra to overlap. In order to prevent overfitting, calibrate the result using a hold-out subset of data.
Polyhedra that do not include any of the calibration data or for which the mean error over the enclosed
calibration data exceeds ε are deemed unreliable and removed. The remaining regions are subject to shape
adjustments to better represent the calibration data.

The EOP learning algorithm takes into account the complexity of the set of polyhedra that survive
calibration. We estimate complexity as the sum of the number of facets of each polyhedron across all
polyhedra associated with the particular classifier. Note that the presented process can be easily tailored
to search for simplexes or hyper-rectangles. The latter are especially attractive from the potential end-user
perspective if we require their sides to align with the axes of the data coordinate system. The resulting
region boundaries can then be expressed using highly intuitive interval queries. Also, geometric boundaries
of regions do not have to be linear. Elliptical bounds can be used as well.

2.2.2 Nonparametric Regions

Presenting patterns in a parametric form is, although intuitive, not the only way to express conditions
imposed on the involved data points. An alternative is to estimate the density of the correctly/incorrectly
classified data and define the region using a threshold on the likelihood ratio, so that the data with likelihood
ratios greater than a learned threshold would be considered easily classifiable and therefore eligible for
inclusion in one of the reported regions.

A potential problem is that the regions found in this manner are highly dependent on the properties of a
chosen density estimation method and its parameters such as e.g. bandwidth, selection of which is a design
problem on its own. We go around this issue by not estimating the densities of correctly and incorrectly
classified data. Instead, we score each candidate data point using the information of the distances to its
correctly and incorrectly classified neighbors. The number of neighbors considered is k = 1

ε . The intuition
is that if the point being scored is a part of a contiguous region that satisfies the required accuracy, it
should not have more than one incorrectly classified data within its k-neighborhood. This property can be
used for pruning data unfit for inclusion in any of the regions worth reporting, and bounding the search for
computation time savings.

We compute a weight for each of k neighbors of point p: its ith neighbor ni is assigned a weight of
wi = 1

1+d(p,ni)
, where d(p, ni) denotes the distance between p and ni. The score is then computed as the

ratio of the sum of weights of the correctly classified neighbors to the sum of weights of all k neighbors:

Score(p) =

∑k
i=1

1
1+d(p,ni)

C(ni)∑k
i=1

1
1+d(p,ni)

C(ni) = 1 if ni is correctly classified, 0 otherwise.
We compute the scores for the complete set of training data. The next step is to determine the threshold

of the score to decide which of the correctly classified data points should be included in a region to be
reported. We identify a subset Sg of data with scores greater than 1 − ε. The region eligibility threshold

is then set as the lower of 1 − ε and
|Sg∩Sc|
|Sg| where Sc is the subset of correctly classified training data.

Similarly to the parametric approach, we can use calibration data to adjust the eligibility threshold in order
to robustify the learned nonparametric EOP regions against overfitting.

4

2.3 EOP Operation

2.3.1 Example using Synthetic Data

Let us consider a simple example to illustrate EOP operation. We synthesized a data set with 3-dimensional
continuous input space and a binary output. The data belonging to the first class (depicted in red in the
graphs below) follow a uniform distribution [0,5] over all 3 features. The points in the second class (depicted
in blue) have been generated using two models each composed of a bi-variate Gaussian and a uni-variate
uniform distribution. One of the models was Gaussian w.r.t. features 1 and 2, and uniform in dimension 3,
while the other was Gaussian for features 1 and 3, and uniform in feature 2. The Gaussians used in data
generation had the following parameters:

N12 ∼
(
µ =

(
0.3 0.5

)T
,Σ =

(
1.5 0.7
0.7 1.5

))

N13 ∼
(
µ =

(
0.7 0.3

)T
,Σ =

(
1.2 0.3
0.3 1.2

))
. The class priors are uniform. The Gaussian patterns of the second class generate equal number of data
points. Figure 1 shows this data projected on all combinations of pairs of features.

Figure 1: 2-D projections of synthetic data

Each row of graphs in Figure 2 illustrates one iteration of the EOP algorithm. For each row, the graph
on the left represents the scatterplot of data considered at that iteration - points belonging to different
classes are shown with distinct symbols: ‘+’ for label 1 and ‘o’ for label 0. The center graph represents the
probability of accurate classification computed for each data point computed using the k-nn score, shown as
a colormap; the red side of the spectrum denoting the points on which the classifier will do well, while the
blue end shows points where correct classification is unlikely. Finally, the graph on the right represents the
assignment of data to the reportable regions, the ‘+’ symbol marking data that is deemed to belong to the
regions.

The first iteration of EOP selects the projection of data onto features 1 and 3 as enabling the most
accurate classification overall. The top left graph in Figure 2 shows the training data in this projection
with the color and symbol-coded class labels. A classifier h1 is trained on this 2-D problem. The data
that h1 classifies correctly are marked with ‘+’ in the central graph, while the misclassified data points are
marked with ‘o’. The color intensity of these symbols notifies the proximity to neighboring correctly classified
training examples. As expected, the classification is more confident at the farther sides of the classification
boundary, and not so convincing wherever the training data shows significant overlap of the two classes.
The top right graph depicts data considered sufficiently explainable by the above described nonparametric
procedure to be included in region R1 with ‘+’. In the prediction phase, any data point belonging to R1 will
be classified using h1.

To continue the iterative process, the training data put in R1 are eliminated from consideration in sub-
sequent iterations. In the second iteration, the projection on features 1 and 2 is picked with a corresponding
linear separator h2, as shown in the second row of graphs in Figure 2. Again, the points that are the easiest
to classify are the ones located in the areas with little class overlap. They will be removed from consideration
in the subsequent steps of the procedure.

5

Figure 2: The first 3 iterations of nonparametric EOP executed on synthetic data set - one row per iteration.

Figure 3: Selection of consistently classifiable regions
and results of pruning shown using the synthetic data.

In the third iteration, the remaining data is pro-
jected on features [1,3] again. The model carves out
a region of consistent classification located in the top
left of the diagram. If we let the process to continue
it would have terminated after 5 iterations when all
training data points would have been expended.

When a new data point is to be classified, it is
first projected on features [1,3]. If it belongs toR1, it
is classified with h1, otherwise it is projected on [1,2]
and classified with h2 if it belongs to R2. Otherwise
it is passed on to the following projection and so on.
If the point cannot fit any of the learned regions, it
can be either left unclassified or assigned the label
of the most common class - we use the latter in the experiments. To illustrate how the parametric model
works with the same data, EOP using rectangular regions was executed. Figure 3 shows all of the selected
rectangular regions for ε = 0.1 (left) and the regions that survive pruning with validation data (right). This
example illustrates importance of using validation data in preventing explosion of complexity and overfitting.

2.3.2 Avoiding unnecesary complexity

Let us consider a variation of the classic XOR problem: a two-dimensional binary data consisting of four
separable regions symmetrically distributed as shown in the top left plot of Figure 4. Data belonging to class
1 (shown in red) occupies two square regions shifted diagonally apart. Class 0 data (shown in blue) covers
two triangular regions filling in the cavities left by the class 1 distribution. Decisions on both features are

6

required to correctly separate the two classes. Decision trees are known to have difficulties with such data,
mostly because their learning algorithms follow greedy strategies of maximizing immediate gains at each
step of tree development. Therefore, in our example, they end up chunking the data into many small slices,
instead of discovering a visually obvious geometric pattern of data distribution. Consistent with the typical
behaviour of decision trees, the top ten decisions in the learned CART tree explain the data in a roundabout
manner, as depicted in the top right picture in Figure 4. A regularized model obtained with CART consists
of 21 nodes - substantially more complex than the theoretically optimal model with only 3 nodes.

EOP, albeit not perfect, fares substantially better with regard to complexity in this example. It starts by
training the best linear separator of the complete distribution of data, which, unsurprisingly, is equivalent to
a default classifier and it classifies all data as belonging to the more populous class 1. The training samples
of class 1 are then marked as correctly classified, and two regions of highly reliable classification are identified
as shown in the bottom left graph of Figure 4. In the next iteration, EOP identifies regions covered by the
points of class 0 as shown in the bottom right of Figure 4. The hierarchy of the resulting model will have 3
levels: one for the regions of class 1, one for the regions of class 0, and the third level will collect data left
over from previous iterations. These data points are located close to the boundary between the two classes
and EOP could not confidently place them in any of the regions, therefore it will either refuse to commit to
classifying them, or label them as members of the most frequent class.

Figure 4: XOR data (left). Corresponding decisions learned by CART (center-left). First set of regions
found by EOP (center-right). Second set of regions found by EOP (right)

3 Experimental Evaluation

The previous examples provide intuition for how EOP can find concise patterns in data. Now we focus on
quantitatively comparing the performance of EOP versus classical alternatives, AdaBoost and CART, as
well as a handful of more contemporary algorithms (random forests [21], multiboosting [23], subspacing [13],
and feating [22]), using realistically complex synthetic and real-world data. The results indicate that EOP is
comparable in terms of the attainable classification accuracy to these alternatives. However, EOP achieves
it using simpler models and more informative initial projections with easily classifiable subsets of data.

We used synthetic data and multiple real world datasets drawn from the UCI repository [9]. The two-
class synthetic data was generated by sampling from uniform distributions along all coordinates. Then, we
injected additional data drawn from randomly shaped and positioned Gaussians spanning a number (lower
than the overall dimensionality of data) of randomly selected dimensions. Each such Gaussian produced
data of only one of the two classes, with the class label drawn uniformly. Each synthetic set included 7
such injections: one 4-dimensional, two 3-dimensional and four 2-dimensional. The data generated in this
manner can be easy to classify if the injected patterns are populous and sufficiently disjoint, or more difficult
to classify if the patterns overlap or involve a small number of instances. We created 10 datasets of varying
difficulty, each with 10 real-valued input features, one binary class output, and 3,000 data points. In UCI
datasets, we ignored any non-numeric input features, if present. We used Breast Cancer Wisconsin (10
inputs, 569 records), MiniBoone (10 inputs, 5000 records), Breast Tissue (9 inputs, 1696 records), and Vowel
(10 inputs, 990 records) data. Two thirds of each were available for training models, the rest was used for
testing, and only the test set results are presented below.

We also successfully executed EOP on larger datasets (up to 10,000s of features and 100,000s of records

7

so far) replacing the standard exhaustive approaches to projection selection and region identification with
randomized sampling.

3.1 Accuracy and Complexity

3.1.1 Comparison to Boosting

Table 1: Comparison of nonparametric
EOP (E) and boosting (B) - both with SVM
base classifiers - in terms of accuracy (A)
and complexity (C) on artificial data

B A B C E A E C

DS1 0.97 48 0.964 22.53
DS2 0.904 63 0.903 25.5
DS3 0.97 217 0.964 39.12
DS4 0.928 39 0.922 28.21
DS5 0.944 97 0.928 28.97
DS6 0.918 149 0.931 59.87
DS7 0.954 206 0.964 27.63
DS8 0.968 214 0.967 23.08
DS9 0.978 9 0.976 27.67
DS10 0.914 138 0.895 41.45
Mean 0.9448 118 0.941 32.403
Stdev 0.027 77.896 0.029 11.489
T-test 0.832 0.003

Adaboost trains a sequence of weak classifiers by increasing
at each iteration the weight of the points that were incor-
rectly classified at previous iterations. The training set error
decreases at each step, and is theoretically guaranteed to go
to zero in the limit, after a sufficient number of iterations. In
practice, testing set error often reaches a non-zero, albeit small,
plateau.

EOP is similar to Adaboost in its iterative subsetting of
data into increasingly difficult subproblems. It also follows the
basic principle: no matter how fundamentally incompetent a
particular classifier is, it will often do well in some part of the
feature space. However, the intents differ: boosting primarily
tries to lower error rates, while EOP prioritizes explainability
of the models, while trying to maintain decent accuracy.

Table 1 presents the outcome of running nonparametric
EOP and Adaboost on synthetic data. The classification er-
ror is low in both cases, and although boosting beats EOP
on average by a small margin, the difference is not significantly
systematic as indicated by the p-value of the paired T-test. On
the other hand, EOP outperforms boosting in simplicity and the difference is significantly systematic. We
use operational complexity as the metric of reference - the expected number of operations to be performed
when a test data point needs to be classified. For boosting, this means a vector multiplication for each
classifier, while in the case of nonparametric EOP it is the expected number of neighbors that need to be
taken into account before a decision is reached plus the classification effort - one vector multiplication.

3.1.2 Comparison to CART

Table 2: Comparison of nonparametric EOP - with
decision stumps - (E) and CART (C) in terms of ac-
curacy (A) and complexity (C) on artificial data

CART A CART C EOP A EOP C

DS1 0.947 21 0.924 16
DS2 0.918 15 0.903 7
DS3 0.951 27 0.930 8
DS4 0.838 41 0.754 5
DS5 0.927 31 0.887 9
DS6 0.873 33 0.830 6
DS7 0.880 27 0.828 15
DS8 0.957 27 0.923 24
DS9 0.934 33 0.891 7
DS10 0.959 17 0.936 11
Mean 0.918 27.2 0.881 10.8
Stdev 0.041 7.91 0.059 5.92
T-test 0.00012 0.00063

A prototypical white box method, CART, learns de-
cision trees for classification by splitting the feature
space into regions that have consistent values of the
output labels. Heavy pruning and cross-validation
are used to prevent overfitting. The outcome of the
algorithm is not just accurate, but also a meaningful
model revealing some structural information about
data. Additionally, because the feature space is split
only as necessary, the resulting model can be com-
pact. The trained CART decision tree classifies im-
plicitly: once a leaf node is reached, the prevalent
class label is chosen to answer the query.

EOP groups and filters data by how well a clas-
sifier can deal with them, so the assignment of the
output class is indirect - the label is in fact assigned
by the corresponding classifier. Also, EOP splits
data differently than CART. Its sequential approach
leads to a hierarchy structured as a list rather than
a tree, often yielding lower complexity; nonetheless it is subject to similar dangers of overfitting. Since
both methods produce human understandable models, a white-box comparison can be drawn. For fairness

8

to CART, we compare EOP models that use decision stumps as base classifiers (we could use fancier base
classifiers to obtain higher accuracies).

Table 3: Comparison of parametric EOP - with deci-
sion stumps - and CART in terms of accuracy (A) and
complexity (C) on artificial data

CART A CART C EOP A EOP C

DS1 0.850 11 0.837 2
DS2 0.820 9 0.747 4
DS3 0.826 17 0.741 3
DS4 0.914 9 0.790 6
DS5 0.842 11 0.838 4
DS6 0.884 5 0.886 3
DS7 0.874 7 0.747 2
DS8 0.834 5 0.753 3
DS9 0.840 9 0.705 5
DS10 0.812 25 0.693 3
Mean 0.850 10.8 0.773 3.3
Stdev 0.031 6.07 0.062 1.49
T-test 0.00073 0.00197

Table 2 shows how nonparametric EOP fares
against CART on synthetic data. The compared
models - including the η and ε parameters of EOP -
are obtained through cross-validation. While CART
is on average about 3 percentage points more accu-
rate, EOP uses models that are considerably less
complex in terms of the number of weighted deci-
sions (the weights are equal to the number of data
dimensions used by decisions). The differences in
performance and model complexity are significant
in terms of paired T-test.

Table 3 summarizes performance of the paramet-
ric version of EOP as compared to CART. Although
the accuracy is on average not quite as good as that
of nonparametric EOP, there still are some datasets
for which this model performs better than CART.
Importantly, the parametric models are consider-
ably less complex, and rely on easy to interpret re-
gions. We present results for a parametric EOP that uses axis-aligned rectangular regions. Assignment of a
testing data point to the appropriate region can be done using two vector comparison operations per tried
region, so parametric EOP’s complexity is proportional to the expected number of rectangles against which
a query needs to be tested. Note that the results for CART differ between these tables due to randomness
of the data generation process.

3.1.3 Real-world Data Evaluations

Table 4: Comparison of accuracy and model complexity ob-
tained by different methods - Random Forests (RF), Multiboost-
ing (Mb), Subspacing (Ss), Feating (FT), CART, nonparametric
EOP (N-EOP) and parametric EOP (R-EOP) - on datasets from
the UCI repository - Breast Cancer Winsconsin, MINIBoone,
Breast Tissue, Vowel.

Acc RF Mb Ss FT CART N-EOP R-EOP

BCW 0.942 0.922 0.912 0.938 0.908 0.905 0.894
MB 0.86 0.849 0.87 0.728 0.856 0.83 0.83
BT 1 0.943 1 0.956 1 0.982 0.78
Vow 0.944 0.841 0.899 0.868 0.947 0.872 0.842

Compl RF Mb Ss FT CART N-EOP R-EOP

BCW 325 15 30 20 3 3 2
MB 2456 60 30 20 19 8 7
BT 18 15 30 20 15 4 2
Vow 516 60 30 20 31 8 4

Qualitatively similar results were ob-
tained when EOP and CART were com-
pared using real-world datasets taken
from the UCI repository. But for the sake
of completeness of comparison, we added
a few additional contemporary and rele-
vant algorithms to our evaluations. Ran-
dom Forest [21] is a popular and powerful
black-box technique that learns a bagged
ensemble of decision trees, each on a dif-
ferent bootstrap sample of the training
data, in hopes to reduce the variance
component of the predictive error. We
find Random Forests highly competitive
in many applications encountered in our
practice. Random Subpsacing [13] learns
a random forest by sampling a subset of
features to train each tree. It is similar to EOP in how it tries multiple projections of data onto reduced-
dimensionality subspaces, and how it allows the use of various splitting functions. Multiboosting [23] aims to
bridge the gap between ensemble learning methods designed to reduce the bias component of the predictive
error (e.g. boosting) with those that take on variance (e.g. bagging). In that, it is complementary to the
other methods selected for our evaluations, as well as to EOP. Feating (feature-subspace aggregation) [22]
is a relatively recent method that splits the data space through a decision tree and trains local models. It
is similar to EOP in that the decision structures rely on discriminators tied the leaves. Feating submodel
selection relies on simple attribute splits, followed by fitting local predictors. EOP reverses this sequence: it
first uses tests - which more general than the ones in Feating models - to identify useful discriminators and

9

them, based on their performance, it determines the span on which each discriminator will be active.

Figure 5: Variation of error with model complexity
for CART(+) and nonparametric EOP(o) on datasets
from the UCI repository

Table 4 summarizes the comparison. Although
nonparametric EOP does not come first on accu-
racy, it typically outperforms one or two counter-
parts. However, in most cases it offers a substantial
reduction in complexity - only CART matches non-
parametric EOP on Breast Cancer data. Parametric
EOP allows further savings of complexity at the ex-
pense of slight reduction of accuracy.

Figure 5 compares accuracy of nonparametric
EOP and CART computed during learning the
structure, at subsequent levels of the respective hi-
erarchies. EOP achieves better performance for all
datasets at the first level of hierarchy and for most
of them at the second level. CART requires deeper
structures to finally take the lead at the cost of ad-
ditional complexity.

0 0.2 0.4 0.6 0.8 1 1.2

BCW

MB

BT

Vow R-EOP

N-EOP

CART

Feating

Sub-spacing

Multiboosting

Random Forests
0 10 20 30 40 50 60 70

BCW

MB

BT

Vow
R-EOP

N-EOP

CART

Feating

Sub-spacing

Multiboosting

Figure 6: Accuracy (left) and complexity (right) of multiple methods on the UCI datasets.

Figure 6 shows how the considered white-box and black-box methods perform, in terms of accuracy and
complexity, on UCI datasets. The graphs show some differences in terms of accuracy - more specifically,
Random Forests is the best out of the black box models, while CART and sub-spacing are among the
competitive white-box models. Overall, in terms of accuracy, there are few notable differences - Feating
performs worse on the MiniBoone dataset and Rectanglar EOP. However, there certainly are differences as
far as the simplicity of the models is concerned: the EOP models are consistently less complex than the rest.

Table 5: Complexity and accuracy of several methods on datasets from real applications
Accuracy RandF Mboost Sub-spacing Feating CART N-EOP R-EOP Adaboost
Mimic II 0.9935 0.9936 0.9936 0.9936 0.9933 0.9926 0.9941 0.9936
Cell Data 0.7811 0.7877 0.788 0.7877 0.7884 0.7311 0.7909 0.7877

Fuel 0.7095 0.6855 0.7174 0.7115 0.7107 0.554 0.5282 0.7033
Spambase 0.9143 0.7511 0.8997 0.8125 0.8813 0.8461 0.8304 0.8615

Complexity RandF Mboost Sub-spacing Feating CART N-EOP R-EOP Adaboost
Mimic II 2961 21 20 20 1 1 1 20
Cell Data 3656 21 20 20 13 8 5 20

Fuel 51058 21 20 20 17 3 9 20
Spambase 8549 21 20 20 91 5 4 20

10

3.2 Explainability

To quantify the explainability of EOP models, we have chosen four metrics based on selection criteria and
recommendations provided in comprehensive surveys by Geng and Hamilton [12] and Lenca et al. [18] and
designed to scoring rules A → B. Bayes Factor (BF) and Lift (L) are simple metrics of high intelligibility,
that have been shown to perform well at identifying relevant rules [18]. Additionally, we consider Normalized
Mutual Information (NMI) for the properties described in [12] and because of its applicability to hierarchical
models. Further, we use J-Score (J), a well-studied symmetric measure of interestingness that considers
impact of positive and negative examples in data. The exact formulas used to compute those metrics are
shown below.

BF (A→ B) =
p(A|B)

p(A|B)
=
nABnB
nBnAB

L(A→ B) =
p(B|A)

p(B)
=
n · nAB
nAnB

J(A→ B) = p(A)
(
p(B|A) log

p(B|A)

p(B)
+ (1− p(B|A)) log

1− p(B|A)

1− p(B)

)
A = ∧di=1ai

NMI(A→ B) =

(∑d
i=1 p(ai, b) log2

p(ai,B)
p(ai)p(b)

)
−
∑d
i=1 p(ai) log2 p(ai)

These metrics have been originally designed for scoring single rules, but they can easily be adapted to
handle hierarchical models like EOP. In the formula below, M denotes the model, D is the depth of the
hierarchy, Ri represents the set of regions that are handled by classifier hi. Ri has cardinality qi. Ri(x)
denotes the event that a point x belongs to a region in Ri, while C(hi, x) denotes the event that hi correctly
classifies point x.

M = {(Ri = {r1 . . . rqi}, hi) | i = 1, D}
= {∪(Ai → Bi) | i = 1, D}

Ai =
(
∧i−1j=1 ¬Rj(x)

)
∧Ri(x) Bi = C(hi, x)

The metric M for the model is computed as a linear combination of component Ms obtained for individual
levels of the hierarchy that are visited during prediction, weighted by their corresponding support:

M(M) =

D∑
i=1

p(Ai)M(Ai → Bi)

Tables 6 and 7 summarize explainability scores of EOP and CART models obtained using previously
described synthetic and real-world data sets. For synthetic data, we computed means, standard deviations
and p-values from paired T-test, to determine whether the observed differences in performance are significant.
Bayes Factor becomes numerically unstable whenever one of the components of the hierarchical model is
fully homogeneous with respect to the output class distribution. It is reflected in the result tables with
symbol ”Inf”, and we ignore the corresponding datasets in computing summary scores and in comparisons.
The empirical results show that EOP indentifies more explainable regions of feature space with regularity,
according to all metrics but J-Score. The difference in J-Scores observed on synthetic data does not appear
statistically significant, and J-Score results for real-world data are mixed.

11

Table 6: Metrics for CART and Nonparametric EOP - with de-
cision stumps - on artificial data

CART EOP

BF L J NMI BF L J NMI
DS1 Inf 0.005 0.223 0.018 3.109 0.016 0.262 0.440
DS2 Inf 0.010 0.236 0.052 1.818 0.048 0.136 1.093
DS3 1.160 0.014 0.267 0.014 1.372 0.019 0.009 0.337
DS4 1.620 0.004 0.005 0.048 1.498 0.038 0.400 0.559
DS5 1.454 0.008 0.113 0.062 2.826 0.027 0.146 0.703
DS6 1.445 0.007 0.148 0.041 1.719 0.013 0.096 0.785
DS7 4.181 0.008 0.195 0.033 4.875 0.027 0.265 0.854
DS8 Inf 0.010 0.236 0.052 1.818 0.048 0.136 1.093
DS9 Inf 0.008 0.198 0.051 2.143 0.024 0.670 0.369

Mean 1.972 0.008 0.180 0.041 2.458 0.029 0.235 0.693
Stdev 1.340 0.003 0.081 0.016 1.398 0.013 0.199 0.289
tTest 0.012 0.001 0.252 0.000

Explainability is useful in many prac-
tical applications. It is often the case in
scientific research when understanding of
the results is as important as discovering
patterns. The goal of one such applica-
tion is to determine whether a stem cell
has been subjected to a treatment. The
hope is that it could be determined using
a set of measurements taken under a mi-
croscope, such as the area and perimeter
of the cell, the stage of the cell cycle at
the time of the observation, the genera-
tion the cell belongs to, as well as some
other measurements.

Figure 7 shows the EOP model ob-
tained after training on 5,000 data points
evaluated on an equally large test set. In
this case, the hierarchical model only identifies intervals (one-dimensional rectangles) of feature space in
which data can be confidently discriminated, rather than multidimensional combinations. This behavior can
be tuned using the EOP dimensionality regularization parameter λ.

Table 7: Metrics for CART and Nonparametric EOP on real data

CART EOP

BF L J NMI BF L J NMI
MB 1.982 0.004 0.389 0.040 1.889 0.007 0.201 0.502

BCW 1.057 0.007 0.004 0.011 2.204 0.069 0.150 0.635
BT 0.000 0.009 0.210 0.000 Inf 0.021 0.088 0.643
V Inf 0.020 0.210 -0.010 2.166 0.040 0.177 0.383

Mean 1.520 0.010 0.203 0.010 2.047 0.034 0.154 0.541

The interpretation is that the cells
with specific features falling within
learned intervals can be safely classified
as having been subjected to treatment.
If, going from the top level of the EOP
hierarchy, classification by cell area is in-
conclusive, cell generation and cycle time
are considered. The intuition is that for
small or very large cells it may be more
difficult to determine whether treatment was applied or not, however, falling back on generation and then
cycle time helps to provide a confident answer in many such cases. As a side note, the overall classification
accuracy of EOP on this data is 77%, comparing favorably to 72% obtained with a random forest model.

Figure 7: Explanatory projections for the Cell dataset

Another example involves a spam de-
tection problem - we use the Spambase
dataset from the UCI repository [9]. The
data contains about 4,000 records and 57
features. EOP obtains a spam predic-
tion accuracy of 80%, with the top three
projections and the associated high con-
fidence regions shown in 8. Each two-
dimensional EOP region is depicted with
a distinct color. The scatter plots show
testing data resolved at subsequent levels
of the EOP hierarchy.

The classifier used in the first iter-
ation simply labels everything as spam.
The high confidence region, which indeed
does enclose mostly spam test examples,
does not have a high incidence of the word ‘your’, but it shows a high incidence of capital letters, which
makes an intuitive sense. When the next iteration classifier is less likely to mark something as spam, the
selected regions immediately reflect this semantic change: the threshold for the incidence of the word ‘your’
is lowered and the required incidence of capitals is increased. The square region on the left also encloses
examples that will be marked as ‘not spam’ because of the lower incidence of capitals.

12

Figure 8: Explanatory projection for Spambase

3.3 Robustness

It is often useful in practice to identify subsets of data that are hard to confidently classify and set them
aside. A variant of the EOP (Accuracy Targeting EOP, ATEOP), screens all projections of data for the
largest robust regions where data can be classified with acceptable accuracy. Unlike the standard EOP
implementation, ATEOP does not dynamically lower the error threshold to handle all data if possible.
Instead, it aims at maintaining overall reliability of classification, and ignoring left-overs that are hard to
deal with.

Figure 9: Accuracy of ATEOP a function of the allowable classification error
rate: Accuracy for data covered by the model (blue); Accuracy for all data
(red); Accuracy of the CART model on all data(green dashed)

Algorithm 2 details ATEOP
pseudocode. The parameter ε
represents the allowable clas-
sification error rate, and α
represents the minimum sup-
port of data that regions must
provide in order to be con-
sidered worthy of inclusion in
the model. Regions that meet
these criteria on training data
are verified using a separate
validation set. If validation
turns out too restrictive, ε
is gradually reduced to force
more robust selections during
training. If multiple regions
meet the threshold criteria,
the one with the most exten-
sive data coverage is chosen.
The data in that region is then
removed, and the process continues until all data is processed or no new satisfactory regions can be found.

Figure 9 displays the trade-off between achieving the required accuracy and data coverage. We ran
ATEOP on one of the synthetic data sets explained above. In the graph we plot the obtained accuracy
measured on the data included in the model (which is as high as required), as a function of the accuracy

13

threshold ε. We also plot accuracy of the default classifier applied to the left-over data. As ε increases,
ATEOP is allowed to become more error-tolerant, the less data has to be left out, and the accuracy based
on data included in the model goes down. Eventually, when accuracy threshold is lenient enough to allow
all data to be included in some part of the ATEOP hierarchy, the two plots converge. For reference, also
plot the accuracy achieved by CART. It is as expected slightly higher than the accuracy achieved at the
convergence of the two ATEOP characteristics. A desired balance, which varies by application requirements,
can be obtained through cross-validated selection of the threshold.

Algorithm 2 ATEOP Algorithm

ATEOP(ε,α)
ε0 = ε
Classifiers=[]
Regions=[]
while TrainData is not Empty and foundProjection do

foundProjection = false
while ε0 > 0 and not foundProjection do

minRegionSize = α*size(TrainData)
for all π ∈ Π do

[h,R] = ObtainClassifierAndRegions(TrainData,ε0)
PointsInSet = R.filterPoints(CalibrationData)
CalibrationError = h.classificationError(PointsInSet)
if CalibrationError< ε

and PointsInSet.size()>minRegionSize then
minRegionSize = PointsInSet.size()
Classifiers.add(h)
Regions.add(R)
foundClassifier=true

end if
end for
if foundProjection then

TrainingData.eliminatePointsIn(R)
CalibrationData.eliminatePointsIn(R)

end if
end while

end while

3.3.1 Pattern Identification

Pattern Features [1,5,7] [1,6] 6 Default
[1,10] 31 5 3 1
[2,7] 36 5 4 0
[5,6] 44 8 1 0
[7,6] 34 10 5 0
[9,2,1] 29 10 1 0
[6,9,4] 21 12 4 0
[1,10,3,5] 41 7 3 0

Region FeaturesPoints from the patterns picked at each iteration

Iteration 1 Iteration 2 Iteration 3 Default

Number of points picked at each iteration

Figure 10: Illustration of how EOP deals with injected lower-
dimensional patterns - number of points from each pattern ex-
plained at each stage.

A separate experiment illustrates the
ability of EOP to identify patterns in
data. Additional relatively small clusters
of synthetic one class data from Gaussian
distributions were injected into randomly
chosen dimensions of the data.

The first column in the table in fig-
ure 10 shows which sets of features were
impacted by the injections. This ex-
periment involved 7 simultaneous injec-
tions containing about the same number
of points. The columns of the table cor-
respond to levels of the EOP hierarchy.
Each cell i, j of the table shows how many
of the injected data points belonging to

14

pattern i have been captured by some region at iteration j. The darker the color, the more points have been
explained. Results show that EOP selects relevant projections of data at early iterations, to quickly reveal
the injected overdensities - it deals with many of the datapoints at the very first iteration. Subsequently,
the second projection explains another batch of points - corresponding to patterns 4,5 and 6. The first row
of the table corresponds to a pattern spanning features 1 and 10. It consists of 40 data points. 31 of them
were handled at level 1, the following 5 at level 2, and 3 at level 3 and 1 was left for the default classifier.

4 Conclusions

We have introduced Explanation-Oriented Partitioning, a data mining algorithm that learns explainable
classifications. It works by identifying high confidence regions in low-dimensional projections of feature
space that are populated by easy to classify data.

These regions can be used as contextual explanations to accompany predictions made for test queries.
EOP can incorporate any externally provided classifiers. It relies on these to identify interesting projections
of data that form a hierarchical, low-complexity model, that maintains competitive predictive accuracy while
providing superior explainability of data when compared to relevant peers. The most important outcome
however is that EOP classification results are easy to understand by human users. We have shown parametric
and nonparametric variants of the procedure for identification of explainable regions of feature space.

The presented algorithm is shown to closely match the performance of boosting while providing completely
explainable models. It also fares well when compared to alternative approaches by producing more compact
models at a small tradeoff in accuracy. EOP algorithms are capable of finding expressive projections of data
while maintaining high levels of fidelity. The resulting models are compact and capture the essence of data
in the way that feels intuitive to users.

References

[1] L. Breiman. Stacked regressions. Machine Learning, 24:49–64, 1996. 10.1007/BF00117832.

[2] L. Breiman. Statistical modeling: The two cultures. Statistical Science, 2001.

[3] L. Breiman and L. Breiman. Bagging predictors. In Machine Learning, pages 123–140, 1996.

[4] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and Regression Trees. Chapman
and Hall/CRC, 1 edition, Jan. 1984.

[5] C. Cortes and V. Vapnik. Support-vector networks. In Machine Learning, pages 273–297, 1995.

[6] M. W. Craven and J. W. Shavlik. Extracting Tree-Structured Representations of Trained Networks. In
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing
Systems, volume 8, pages 24–30. The MIT Press, 1996.

[7] P. Domingos. Knowledge discovery via multiple models. Intelligent Data Analysis, 2:187–202, 1998.

[8] E. M. Dos Santos, R. Sabourin, and P. Maupin. A dynamic overproduce-and-choose strategy for the
selection of classifier ensembles. Pattern Recogn., 41:2993–3009, October 2008.

[9] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[10] Y. Freund. Boosting a weak learning algorithm by majority, 1995.

[11] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application
to boosting, 1997.

[12] L. Geng and H. J. Hamilton. Interestingness measures for data mining: A survey. ACM Comput. Surv.,
38, September 2006.

15

[13] T. K. Ho. The random subspace method for constructing decision forests. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 20(8):832 –844, aug 1998.

[14] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm.
In Machine Learning, pages 285–318, 1988.

[15] B. Liu, M. Hu, and W. Hsu. Intuitive representation of decision trees using general rules and exceptions.
In Proceedings of Seventeeth National Conference on Artificial Intellgience (AAAI-2000), July 30 - Aug
3, 2000, pages 615–620, 2000.

[16] M. Mampaey, N. Tatti, and J. Vreeken. Tell me what i need to know: succinctly summarizing data with
itemsets. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining, KDD ’11, pages 573–581, New York, NY, USA, 2011. ACM.

[17] M. J. Pazzani, S. Mani, and W. R. Shankle. Beyond concise and colorful: Learning intelligible rules,
1997.

[18] P. M. B. Phillipe Lenca, B. V. A, and S. L. C. On selecting interestingness measures for association
rules: user oriented description and multiple criteria decision aid, 2008.

[19] K. Sim, A. K. Poernomo, and V. Gopalkrishnan. Mining actionable subspace clusters in sequential data.
In SDM, pages 442–453, 2010.

[20] P. Sollich and A. Krogh. Learning with ensembles: How over-fitting can be useful, 1996.

[21] L. B. Statistics and L. Breiman. Random forests. In Machine Learning, pages 5–32, 2001.

[22] K. Ting, J. Wells, S. Tan, S. Teng, and G. Webb. Feature-subspace aggregating: ensembles for stable
andunstable learners. Machine Learning, 82:375–397, 2011. 10.1007/s10994-010-5224-5.

[23] G. Webb and Z. Zheng. Multistrategy ensemble learning: reducing error by combining ensemble learning
techniques. Knowledge and Data Engineering, IEEE Transactions on, 16(8):980 – 991, aug. 2004.

[24] L. Wilkinson, A. Anand, and D. N. Tuan. CHIRP: a new classifier based on composite hypercubes
on iterated random projections. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’11, pages 6–14, New York, NY, USA, 2011. ACM.

[25] D. H. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

16

