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Abstract

In the brain, millions of neurons interact to represent thoughts and
create knowledge. The way in which neurons represent thought is one
of the major open questions of neuroscience. Advances is neuroimag-
ing, including Magnetoencephalography (MEG), have allowed us to
capture data on a finer time scale and record the neural signature of
thoughts evolving in the human brain. In this report we explore sev-
eral methods of analyzing the signal recorded by the MEG machine,
and use that analyzed signal to predict the word a person is reading.
The utility of different signal transformations is assessed by measuring
their ability to encode the semantic properties of words. We hope the
discoveries outlined in this report will help to explain how groups of
neurons can encode concepts, and in turn will lead to a better under-
standing of the human brain.

1 Introduction
The human brain’s system of knowledge representation has been pondered
by scientists and philosophers alike. What actions do our brains perform
when we recall a memory or retrieve a fact? In what way does brain activity
change depending on the concept we hold in mind? This report attempts to
answer these questions by exploring several transformations of Magnetoen-
cephalography (MEG) recordings. These transformations of the MEG signal
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provide different representations of the underlying neural activity. For exam-
ple, some transformations capture the phase of the neural oscillations, and
others capture the change in neuronal firing over time. Finding the relation
of MEG signal transformations to thought patterns allows us to understand
how information may be encoded in the brain, and thus elucidates the neural
code.

Much research has dealt with brain images generated by functional mag-
netic resonance imaging (fMRI). fMRI measures the ratio of oxygenated and
de-oxygenated hemoglobin in the blodd, which is affected by brain activity as
well as other factors. Blood deoxygenation is an indirect measure of the rate
of neuronal firing. A more recent imaging technique is magnetoencephalog-
raphy (MEG), which uses sensors positioned in a helmet to measure the weak
magnetic field caused by neurons firing in a coordinated fashion. Changes in
magnetic field are a more direct measure of neuronal firing, and have much
better time resolution than the slow-moving hemodynamic response that
governs changes in blood oxygen levels. MEG can capture a sensor reading
every millisecond (1000 Hz), whereas fMRI machines typically capture an
image every 2 seconds (0.5 Hz). However, the spatial resolution of the MEG
sensors is much coarser than the resolution of the fMRI image. Generally,
one can think of the MEG image as a set of time series, whereas the fMRI
image can be thought of as a 3D image. The MEG machine has three sensors
in 102 different locations for a total of 306 sensors (Figure 1 illustrates the
layout of the 102 sensor locations). In each location there is a magnetome-
ter and two gradiometers. The magnetometer measures the strength of the
magnetic field created by the neurons directly under the sensor. The MEG
gradiometer measures the spatial gradient of this magnetic activity (i.e. the
change in magnetic field strength over space) measured in Teslas per meter
(T/m) [7]. Because the gradiometer measures a spatial gradient, two gra-
diometers are positioned at each location, and the direction of their gradients
is perpendicular.

This report focuses on the task of predicting the word a person is read-
ing based on the MEG signal. We collected MEG data while 9 subjects
viewed 60 word/picture pairs, with 20 interleaved repetitions (single trials)
per word. Each of the 60 words are concrete nouns from one of 12 categories
(animals, tools, buildings, food, furniture, insects, transportation, clothing,
body parts, building parts, utensils and objects). Each sensor time series is
down sampled to 200 Hz and has 340 time samples, for a total of 1.7 seconds.
Complete details of MEG data collection and preprocessing steps appear in
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Appendix A.
For each of the 60 words we have 218 semantic features. These semantic

features are rated answers [1 . . . 5] to questions like “Do you hold it to use
it?” and “Is it alive?”. The answers to these 218 questions were generated via
Mechanical Turk, an online crowd-sourced question answering service. This
projection of the 60 words into a semantic space allows us to decompose the
neural representation of a word into the parts related to each of the semantic
features. Past work has shown that aspects of word semantics have differing
effects on the MEG signal recorded from different brain locations and points
in time after stimulus onset [16]. We wish to explore not only when and
where these effects happen, but whether there are other representations of
the MEG signal, such as frequency, that show differential effects.

Given infinite amounts of both data and computational power, this task
would be conceptually simple. We could learn functions over features derived
from transformations of the MEG data to predict each of the 218 semantic
features. We could measure the predictive performance of functions learned
on subsets of features from each MEG feature type, as well as all cross prod-
ucts of subsets between the MEG feature types. Obviously, the number of
functions learned and the amount of data required quickly gets out of hand.
Given that we have limited computational resources and time, how can we
best use the data?

First, let us reduce the dimensionality of the problem by considering
each pair of MEG feature type and semantic feature independently. This
reduces the size of the computational problem, and it also allows us to directly
connect a MEG feature type to the ability to predict a given semantic feature.
Identifying such connections is a step on the way to uncovering the neural
code. Then, for each MEG feature type, we can use regularized regression to
choose an optimal subset of the features. We can examine the performance
of the learned functions over time, brain locations, and frequencies (where
applicable) to further relate the semantic features to MEG features.

1.1 Zero Shot Learning

While we have MEG data for only 60 words, there are tens of thousands of
words in the English language. In addition, new words are continually being
introduced into the lexicon. We would like to develop a system that can
predict the word a person is reading even though we have not collected an
MEG recording of that word. We accomplish this by decomposing our words
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into their semantic features.
As a result of our projection the 60 words into 218-dimensional semantic

space, we can perform “Zero Shot Learning” [12]. Zero Shot Learning allows
us to predict the word for an MEG brain image for which we have never seen
a training example. We train an independent function f for each of the 218
semantic features, and so we can predict a new vector of semantic features
that is unlike any combination of semantic features that we encountered
during training. This is a particularly attractive characteristic for the task of
predicting words from brain images, as there are tens of thousands of words
in the English language, and we cannot hope to capture MEG recordings
for all of them. Zero Shot learning allows us to break a word down into its
semantic features and use that information to recognize new words without
having to collect additional data.

Formally, let us define a word w as having a semantic decomposition
into semantic features ~sw = {s1...sm} where m = 218 is the dimension of our
semantic space. Typically one might use machine learning to learn a function
f :

f(X)→ w

So that we would predict the word w based on the MEG data X. Zero Shot
Learning utilizes a known mapping

w → {s1 . . . sm}

and then trains m independent functions

f1(X)→ s′1
...

fj(X)→ s′j
...

fm(X)→ s′m

where s′ represents the value of a predicted semantic feature. The output of
f1 . . . fm are combined to create a predicted semantic vector

~s′ = {s′1 . . . s′m}.

4



We then define a function d({s′1 . . . s′m}, {s1 . . . sm}) that quantifies the dis-
similarity between two semantic vectors. Any distance metric could be used
here; we will use cosine distance:

d(~s, ~s′) = 1−
∑

i sis
′
i√

(
∑

i si
2)
(∑

i s
′
i
2
)

We choose the word w with the semantic vector ~swthat minimizes d(~sw, ~s′)

w = argmin
w

d(~sw, ~s′)

as the final predicted word.

2 MEG Feature Transformations
Zero Shot Learning has provided us with a mechanism to move from a set
of MEG time series X, to a vector of semantic features ~s′ to arrive at a
predicted word w.

fi(X) . . . fm(X)→ {s′1 . . . s′m}
w = argmin

w
d(~sw, ~s′)

Now we seek to define transformations g on the MEG time series X which
may provide additional information to the learned functions f so that the
mapping

fi(g(X)) . . . fm(g(X))→ {s′1 . . . s′m}

increases the chance that the word w that minimizes d(~sw, ~s′) is the correct
word label for the MEG recording X. The space of possible functions g is
infinite. In this section we select and define 7 functions from the infinite space
of functions for further exploration. We call the output of these functions
MEG feature types.

Examples for sensor 77 and each of the 7 MEG feature type are shown
in Figures 2-5. The position of sensor 77 in the MEG helmet can be seen in
Figure 1. A summary of the window size for each MEG feature type appears
in Table 1.
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Throughout this report, we will refer to the MEG signal as X ∈ <306×T ,
where T is the total number of time points. Xi,j is the reading from sensor i
at time j. A superscript on X or one of its computed features denotes that
a variable is computed from or represents data from a single trial, of which
there are R. A full listing of variables and their definitions appears in Table 6
of the Appendix.

Table 1: The window sizes and window overlaps (in milliseconds) used to
compute the different MEG features. The window overlap dictates how much
the windows of adjacent MEG features overlap. For example, two adjacent
windowed mean MEG features will share 5 time points in common (25 ms).
In the case of the Continuous Haar transform, there are multiple window
sizes, with overlaps equal to their width minus one time point.

Window Window
Feature name size (ms) overlap (ms)

Raw 5 0
Windowed mean 50 25

Mean slope in window 50 25
Gradiometer norm 5 0

FFT Power 100 50
FFT Phase 100 50

Continuous Haar - -

2.1 Raw Signal

To create the Raw MEG feature type, all R = 20 trials for a given word are
averaged, and the averaged signal for each of the time points become the
features.

gi,j(X
1 . . . XR) =

1

R

R∑
τ=1

Xτ
i,j

and we define gi,j for i = 1 . . . 306, j = 1 . . . T
If the raw signal is the best MEG feature, then it is the magnitude of the

magnetic field (or gradient of the field, in the case of gradiometers) that best
encodes the semantic features of the words.

6



Figure 1: The position of the sensor whose signal was used to create example
plots in Figures 2-5. Sensor 77 is shown as an orange star, while other sensors
shown as grey circles. The black triangle represents the subject’s nose, and
the view is from above.
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Figure 2: An example of the raw and windowed features for sensor 77 and
the word Airplane. The windowed mean creates a smoother time series than
the raw signal. The windowed slope is normalized so that it represents the
average difference between adjacent time points within a given window.

The window width is 50ms (10 samples) for both windowed features.
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Figure 3: An example of the frequency power created from the short time
Fourier transform (STFT) of sensor 77 recorded during the word Airplane.
The window width for the STFT is 100ms (20 time samples), and they overlap
by 50ms. Frequency bands delta through alpha are shown on the left, and
gamma on the right. Note that the scale is different for the two plots.

Radians'

Figure 4: An example of the frequency phase feature created from the short
time Fourier transform (STFT) of sensor 77 recorded during one trial of the
word Airplane. The window width for the STFT is 100ms (20 time samples),
and they overlap by 50ms.
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Figure 5: An example of the coefficients returned by the continuous Haar
wavelet transform of sensor 77 recorded during the word Airplane. Smaller
scales correspond to smaller wavelets and higher frequencies.

Though we refer to this feature type as Raw, it should be noted that some
preprocessing has been performed on the MEG data. A full explanation of
the preprocessing appears in Appendix A.

2.2 Average in a Window (Windowed Mean)

To create the Windowed Mean MEG feature, all trials for a given word are
averaged, and then the time points within 50ms windows (with 25ms overlap)
are averaged. The transformation g is:

gi,j(X
1 . . . XR) =

1

RW

W−1∑
t=0

R∑
τ=1

Xτ
i,j+t

where W is the width of the time window, i is the sensor number and j is
the time index. Here W = 10 (50 ms) and the windows overlap for 25 ms.
We define gi,j for

i = {1 . . . 306}
j = {1 : 5 : (T −W )}
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where “: 5 :” denotes that j is incremented in steps of 5 (consistent with
Matlab notation).

Like the Raw Signal, if the Windowed Average MEG signal is the best
MEG feature, then it is the magnitude of the magnetic field (or gradient of
the field) that best encodes the semantic features of the words. But, unlike
the Raw Signal, the average is smoother and less noisy. If the Windowed
Average outperforms the Raw Signal, this indicates that averaging reduces
the noise more than it reduces the signal.

2.3 Average Slope in a Window (Windowed Slope)

To create the Windowed Slope MEG feature, all trials for a given word are
averaged, and then the difference between adjacent time points within 50ms
windows (with 25ms overlap) are averaged. The transformation g is:

gi,j(X
1 . . . XR) =

1

RW

W−2∑
t=0

(
R∑
τ=1

Xτ
i,j+t −

R∑
τ=1

Xτ
i,j+t+1)

where W is the width of the time window. Again, W = 10 (50 ms) and the
windows overlap for 25 ms. gi,j is defined for

i = {1 . . . 306}
j = {1 : 5 : (T −W )}

If the Windowed Slope outperforms other features, then it is the trend
of the signal within a window that encodes a semantic feature. That is, the
actual level of the MEG signal is not important, rather its movement up or
down is what carries information.

2.4 Euclidean Norm of Gradiometers

To create the Euclidean Norm of Gradiometers MEG feature, all trials for
a given word are averaged, and the euclidean norm of the two gradiometer
signals is calculated:

gi,j(X
1 . . . XR) =

√√√√( 1

R

R∑
τ=1

Xτ
i,j

)2

+

(
1

R

R∑
τ=1

Xτ
i+1,j

)2
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i = {1 : 3 : 306}
j = {1 . . . T )}

Each triplet of magnetometer, first and second gradiometers appear in
consecutive rows in our MEG signal matrix. Thus, the signals from the first
and second gradiometers are found in rows {1, 2}+3n for n = 0 . . . 101. This
transformation g creates one time series per helmet location. Magnetometers
are discarded.

If the Norm of Gradiometers performs well, it shows that the sign of the
gradiometers does not carry information, but rather the combined activity
that encodes semantic information.

2.5 Frequency Power and Phase

To create Phase and Power features, a short time Fourier transform (STFT)
is applied to single trials, and the resulting Fourier coefficients S are used to
calculate the power and phase in each frequency band. Fourier coefficients
are calculated with the Fourier transform:

Sk =

∫ ∞
−∞

f(t)e−2
√
−1πtkdt

where k is the frequency of interest, t is time, and f(t) is the continuous
and differentiable function that defines the value of the signal at time t. Of
course our MEG time series is neither continuous nor infinite, so we use the
discrete approximation:

Sτi,k =
1

T

T∑
t=1

Xτ
i,te

−2
√
−1πk(t−1)
T

Sτi,k is the Fourier coefficient for frequency k and sensor i over all time 1 . . . T
and τ is the trial number.

Non-stationary signals are signals which have frequency components that
change over time. The Fourier Transform is formulated for stationary data,
where the frequency components are identical within a time window. When
applied to non-stationary data, the results can be ambiguous - that is two
signals with contributions from the same frequency bands but at different
times will produce the same frequency power patterns. To compensate for
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this, the Short Time Fourier Transform (STFT) was invented. The Short
Time Fourier Transform computes the Fourier coefficients for (possibly over-
lapping) windows of time, with the hope that the signal will be stationary
or near-stationary within a time window. For the STFT we define

Sτi,j,k =
1

W

W−1∑
t=0

Xτ
i,t+je

−2
√
−1πkt
W

where j is the first point in a time window and W is the window width. Here,
W = 20, or 100 ms and the windows overlap by 50 ms. We compute Sτi,j,k
for

i = {1 . . . 306}
j = {1 : 10 : (T −W )}

Frequencies between 0 and 60 are computed.
The power for trial τ , sensor i at time j and frequency k is calculated as

power(i, j, k, τ) = c|Sτi,j,k|2

where c is a constant that depends on the window function used, and the
sampling frequency. Phase is calculated as:

phase(i, j, k, τ) = imag(log(Sτi,j,k))

where imag returns the imaginary portion of the complex coefficient.
Power and phase are calculated for each single trial independently, and then
the average is taken over the single trials. Our final functions g operate on
the Fourier coefficients.

gpower
i,j,k (S1

i,j,k . . . S
R
i,j,k) =

1

R

R∑
τ=1

power(i, j, k, τ)

gphase
i,j,k (S1

i,j,k . . . S
R
i,j,k) =

1

R

R∑
τ=1

phase(i, j, k, τ)
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The valid indices for i and j are the same as for the Fourier coefficients:

i = {1 . . . 306}
j = {1 : 10 : (T −W )}

The time windows of the STFT have width 100ms with 50 ms overlap.
Due to the low pass filter on the original data, frequencies above 60 Hz are
eliminated.

The rhythmic coordination of many neurons to form oscillations is a topic
of great interest amongst MEG researchers (e.g. [15], [11], [5]). If the STFT
Power feature performs best, then the activity of neurons firing at a particular
rate is what encodes information. If the STFT Phase feature performs best
then it is not the strength of the oscillations in a frequency band, but their
synchronization to the stimulus that is important.

2.6 Continuous Haar Wavelet Decomposition

To understand the Continuous wavelet decomposition, it is easiest to start
with the discrete wavelet decomposition. During a discrete wavelet decom-
position, the mother wavelet template is used to create daughter wavelets
at various scales. At first the width of the daughter wavelet is exactly 2
time samples. It is convolved with the signal for adjacent time points to
create detail coefficients. This process is equivalent to laying many copies
of the wavelet end to end and convolving it with the signal. For the Haar
wavelet, the detail coefficients represent the difference of adjacent time points.
The signal is then down sampled by averaging adjacent time points to cre-
ate approximation coefficients. We again convolve the Haar wavelet with
these new down sampled approximation coefficients, effectively stretching
the wavelet’s scale to twice its previous width. This process continues for
some fixed number of iterations. After N iterations we are left with N sets
of detail coefficients and one set of approximation coefficients (the intermedi-
ate approximation coefficients having been used to create subsequent detail
coefficients).

The function for the Haar wavelet is a step function:

ψ(t) =


−1 if 0 ≤ t < 0.5

1 0.5 ≤ t < 1
0 otherwise

(1)
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where t is time. In a continuous wavelet transform, instead of aligning the
wavelets end to end (as in the discrete case), we shift the wavelet by one time
tick and recompute the coefficients. This results in a coefficient matrix with
dimensions S×T where S are the scales of the wavelet, and T is the number
of time ticks. Due to the slow time shifting of the underlying wavelet, the
continuous wavelet transform is also more robust to noise and time shifts of
frequency components1.

The wavelet decomposition is windowed at multiple time scales, and so,
unlike the Fourier Transform, it can handle non-stationary data with no
alterations to the method. This makes it a particularly attractive candidate
for analyzing MEG data. A pictorial representation of the coefficients from
a continuous Haar wavelet transformation can be seen in Figure 5. For this
study, scales [1 . . . 64] were used.

Let Cτ
i,j,k represent the coefficient resulting from convolving the signal

from sensor i with a Haar wavelet with scale k, centered at time point j for
single trial τ . Then we define the transformation function g as:

gi,j,k(C
1
i,j,k . . . C

R
i,j,k) =

1

R

R∑
τ=1

Cτ
i,j,k

The Haar wavelet decomposition represents many different types of infor-
mation. The continuous wavelet transform is an over-complete representation
of the signal, so like the discrete case, one can fully recreate the original signal
with a linear combination of the wavelet coefficients. The wavelet coefficients
can also be used to extract frequency and phase information from the signal.
Wavelets of a particular scale correspond to different frequency bands; when
coefficients of a particular scale are high, the power in the corresponding
frequency band is also high. Wavelets also encode phase information. When
a wavelet coefficient in a particular band is high at a particular position in
time it signals that the corresponding frequency band is in phase with the
wavelet at that time point. If the Continuous Wavelet features perform the
best, then it may be a combination of phase, power and the raw signal that
contribute to the decoding of semantics. In addition, the robustness of the
Continuous Wavelet Transform to noise may contribute to its performance.

1Alona Fyshe’s previous (unpublished) study for a class project explored the usefulness
of several wavelet types using both the discrete and continuous transform. The conclusion
was that the continuous Haar wavelet transform produced the best features for semantic
feature prediction. For that reason no other wavelet types are explored here.
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It is important to remember that the Haar wavelet is not smooth. Due
to this fact the extracted features are not a perfect replicate of the STFT
phase and frequency features.

3 Related Work
Past work has found useful signal amongst most of the MEG features pro-
posed here. For example, the power in gamma frequency bands (>30 Hz)
has been shown to be an indicator of attention and memory, as well as the
coordination of brain areas [9]. While the task analyzed in this report does
not involve memory, we consider phase features because of their possible role
in top-down influence and coordination.

A common strategy when dealing with low SNR (signal to noise ratio) is
to take a windowed average of the signal. In [4], the average amplitude in
several time windows were used as input to an SVM classifier. The classi-
fier was trained to distinguish living vs. non-living things (Mean accuracy of
76%) and individual words (83% accuracy). Though this study distinguished
between only 10 words, the stimuli were presented both as visual and audi-
tory stimulus. The study showed that the words could be decoded across
presentation modalities.

The continuous wavelet transform has been used to decode the move-
ments made by a subject [13] or to detect networks of neuronal activity
related to movement [1]. Though these studies did not involve language, it
has been proposed that language processing may be a distributed task that,
for example, involves the motor cortex when the language being perceived
is movement related. The idea of a distributed system of semantic repre-
sentation has stirred up controversy (see [14]). Still, we would like to leave
open the possibility of involvement of motor cortex and visual cortex (and
their associated rhythmic activity) when learning our semantic prediction
functions f .

A full examination of the usefulness of wavelet transforms for EEG data
is given in [17], where wavelets were used to classify between three different
cognitive tasks (multiplication, mental rotation of 3D object, silent letter
composition) and 6 motor tasks (imagined movements). This study found
that the information in several different wavelet types could be used to suc-
cessfully differentiate between cognitive and imagined motor tasks. They
also found improved performance using wavelet packets rather than the raw
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coefficients. Due to time constraints, wavelet packets are not explored here.

4 Prediction Framework
We turn now to the methods we use to evaluate the utility of each MEG
feature. To learn a function that predicts each of the 218 semantic features
we employ L2 regularized regression:

β̂ = argmin
β

{
N∑
i=1

(yi − β0 −
P∑
j=1

βjxi,j)
2 + λ

P∑
j=1

β2
j

}
(2)

where N is the total number of training instances and P is the total
number of features, yi is the label for training instance i and xi,j is the jth
feature of the ith training instance and β represents the weights optimized.

L2 regularized regression, or Ridge Regression, has several nice proper-
ties. Firstly, the regularization automatically down weights less important
features. Secondly, it has a closed form and can be solved without gradi-
ent descent methods. Thirdly, because L2 produces a linear predictor, we
can employ Generalized Cross Validation (GCV) to choose our Lambda pa-
rameter [6]. GCV allows us to calculate the leave one out cross validation
(LOOCV) performance of a regressor without having to train N separate
functions. Let f̂ be a function learned using all instances xi and f̂−i be
a function learned using training instances {xj : j 6= i}. The LOOCV is
calculated as

1

N

N∑
i=1

(yi − f̂−i(xi))2 (3)

(4)

which can be shown [8] to be equal to

=
1

N

N∑
i=1

(
yi − f̂(xi)

1− Sii

)2

(5)

where Sii is the ith diagonal of the matrix S, and S is the portion of the
learned weight matrix that depends only on the data x:
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ŷ = Sy

where ŷ is the value predicted by a function trained with labels y. This
formulation is convenient because the matrix S depends only on the training
data. This allows us to remove the effect of the training data from the
prediction via the denominator in Equation 5. The final GCV approximation
is:

1

N

N∑
i=1

(
yi − f̂(xi)

1− trace(S)/N

)2

. (6)

Recall that for each of our 60 words we have human-curated ratings for
218 semantic features, and that we will use this decomposition to perform
Zero Shot Learning. To test our Zero Shot learning performance, we could
hold out one training instance, predict a new semantic feature vector and
then use that new vector to rank the full set of 60 training words. However,
a naive predictor could perform very well on this task - as only one of the
60 words was not seen during training, an algorithm that always ranked the
unseen vector first would perform with 100% accuracy. For this reason we
leave out a pair of words and their associated MEG feature vectors. Then
the task is to correctly assign the two held out words to the two held out
MEG feature vectors. To assign words to MEG feature vectors we use the
cosine distance between the predicted semantic feature vectors and the true
semantic feature vectors and choose the assignment that minimizes the sum
of the two distances. Though this procedure is technically leave two out cross
validation at the word level it is leave one out cross validation at the word
pair level. For simplicity, we will refer to this cross validation procedure as
leave two out cross validation (LTOCV) and the test as 2 vs 2. For each fold
of the LTOCV we can use GCV on the training set to choose an optimal λ
with which to compute the final weight vector β.

Within our 60 words there are 12 word categories, with 5 words per
category. Because they are close in semantic space, words within category
(e.g. screwdriver and hammer or lettuce and celery) may be more difficult
to distinguish between that words across category. For this reason, a cross
validation partition may be particularly difficult if it happens to have a lot
of same-category pairs. To address this problem we perform 5 rounds of
LTOCV to minimize the chance that we choose a difficult partitioning (or
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an easy one). If there is no relationship between the MEG data and word
semantics, the expected performance on the 2 vs. 2 test is 50%.

To train the regressors we use 750ms of MEG signal beginning immedi-
ately after the onset of the stimulus. 750ms is the generally agreed upon
time at which semantic processing has finished. For features created from
MEG signals using a window we used those windows with midpoints between
0 and 750ms after stimulus onset. We standardize the semantic features so
that each has mean 0 and standard deviation 1.

4.1 Percent of Variance Explained

In addition to the 2 vs. 2 task described in Section 4, we would also like
to evaluate the performance of each MEG feature and each semantic feature
individually. To evaluate individual semantic feature performance for a given
MEG feature, we train a set of regressors using the framework described in
Section 4. We then calculate the Percent of Variance Explained (POVE) for
that MEG feature and semantic feature combination. POVE is:

POVE = 1−
∑

i(fi − yi)2∑
i(yi − ȳ)2

where yi is the true value of the semantic feature for test instance i, fi is
the predicted semantic feature value, and ȳ is the mean of all yi.

Some will be familiar with POVE by its other name: R2, or coefficient of
determination. In the context of regression, one often computes R2 on the
training data to measure the amount of variation in the training data that
is explained by the model. Under those circumstances, some nice properties
hold: ∑

i

(yi − fi)2 +
∑
i

(fi − ȳ)2 =
∑
i

(yi − ȳ)2 (7)

And thus
POVE = R2 =

∑
i(fi − ȳ)2∑
i(yi − ȳ)2

(8)

Under these constraints, R2 cannot be negative. However, in this study,
we calculate the POVE on the test data. When test data is used to calculate
POVE, Equation 7 does not hold; fi is formulated to minimize the error on
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the training data, not the unseen test data. Under this formation, the POVE
can actually be negative.

For example, consider the case of POVE for a naive of predictor, where
the learned function f just predicts the mean of the training labels. Assume
we use leave one out cross validation (LOOCV). Our naive predictor always
predicts:

ȳ−i =
1

N − 1

∑
j 6=i

yj

Note that

ȳ−i =
1

N − 1

∑
j 6=i

yj

=
(Nȳ − yi)
N − 1

where N is the full size of the data set. For our naive predictor, POVE is

1−
∑

i(yi − ȳ−i)2∑
i(yi − ȳ)2

= 1−
∑

i(yi −
(Nȳ−yi)
N−1

)2∑
i(yi − ȳ)2

= 1−
∑

i(
(N−1)yi−Nȳ+yi

N−1
)2∑

i(yi − ȳ)2

= 1−
∑

i(
N(yi−ȳ)
N−1

)2∑
i(yi − ȳ)2

= 1− N2

(N − 1)2

∑
i(yi − ȳ)2∑
i(yi − ȳ)2

= 1− N2

(N − 1)2

Two surprising points have emerged. Not only is the POVE negative, it is
completely independent of the distribution of the data, and depends only on
the size of the data set! In the experiments outlined here we perform leave
two out cross validation. There is no such simplified solution for POVE and
the naive predictor under LTOCV, but as N grows, the performance quickly
converges to that of LOOCV. Figure 6 shows POVE of the naive predictor
under LOOCV and the estimated POVE for LTOCV.
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Figure 6: Percent of Variance Explained (POVE) for the naive predictor that
simply predicts the mean of the training labels. POVE was evaluated under
leave one out cross validation (LOOCV) and leave two out cross validation
(LTOCV). Each point of the POVE for LTOCV was estimated using 500
samples drawn from a standard Normal and randomly selected cross valida-
tion folds.
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4.2 False Discovery Rate

Since we are measuring the performance of many MEG features for many
semantic features across many subjects, we must correct our performance re-
sults for multiple comparisons. For this we use a combination of Fisher’s
Method and the False Discovery Rate (FDR) method of Benjamini and
Hochberg [2] (see also [22]).

Fisher’s Method takes a group of p-values and combines them to create
one statistical test.

X2 = −2
s∑
i=1

ln(pi) (9)

Where s is the number of p-values combined to create the test statistic
and the pi are the p-values. The resulting test statistic has a chi-squared
distribution with 2 ∗ s degrees of freedom. For our purposes, we will be
combining s = 9 p-values from the 9 subjects to create one p-value per
semantic feature/MEG feature pair.

Now we sort the p-values obtained from Fisher’s Method:

P(1) < P(2) < . . . P(m)

wherem is the total number of p-values to be evaluated (one per semantic
feature type). Then calculate

`i =
iα

Cmm

where i is the index {1 . . .m}. If the p-values being tested are independent,
Cm = 1. In our case, however, our p-values are not independent; many
of the semantic features are correlated with each other, and some have no
correlation. For this reason we must use Cm =

∑m
i=1 1/i to strengthen our

bounds to cover arbitrary dependence amongst the m tests. This is the
strictest of corrections to the FDR procedure. See Theorem 1.3 of [3] for a
complete derivation of this correction factor. Now define

R = max
{
i : P(i) < `i

}
and identify P(R) as the BH threshold. We will reject the null hypothesis

for all P(i) such that P(i) ≤ P(R).

22



4.3 Estimating the Null Distribution

In order to employ the method outlined above, we must be able to evaluate
the probability of seeing some POVE value, given that the value was drawn
from the null distribution. The null distribution should represent the case
that there is no connection between the semantic features and the MEG data.
To estimate the null distribution we perform 108 permutation tests in which
we shuffle the labels of each of the 1200 MEG single trials, and use that
relabeled data to create the MEG features. We then learn regressors with
the same procedure outlined in Section 4, and calculate the POVE for the
functions trained on permuted data. On average, the mean POVE for the
null distributions is −0.0311. This is very close to the value calculated in
Section 4.1 for the naive predictor and LOOCV:N2/(N−1)2 = −0.0342. The
POVE values created from permuted data form an empirical PDF (EPDF).

Using the null EPDF, we can estimate the probability of a POVE value
(that is, create a p-value) by interpolating between the observed points of the
EPDF. We do this for all POVE values calculated from regressors trained on
the non-permuted data. We sort the resulting p-values and correct them with
the Benjamini-Hochberg method. We choose the standard cutoff of α = 0.05.
Because we are separately testing seven MEG feature types we use Bonferroni
correction to adjust the level of the test. Bonferroni correction requires that
the desired level be divided by the total number of tests performed, so we
adjust our level to α = 0.05/7.

5 Results
Table 2 shows the performance of all 9 subjects and 7 MEG features on the
2 vs 2 classification task. For permuted data, the performance on the 2 vs
2 task was no more than 51% across all subjects and all feature types. The
Continuous Haar Wavelet Transform performs the best overall, though the
Raw MEG feature performs better for subject 1. The Raw and Windowed
Mean MEG features give are similar to each other in performance, with the
Raw feature performing slightly better for some, but not all, subjects. The
norm of the gradiometer is the next best for 2 vs. 2 performance. STFT
Phase and the Windowed Slope rank fifth and sixth respectively, but have
a performance difference of only 0.3%. The worst feature is STFT Power,
giving 2 vs 2 performance of only 78.9%.
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Table 2: Two vs Two accuracy (in percent) in for all 9 subjects and 7 feature
types, as well as the average over all 9 subjects. Higher scores are better. All
MEG features produced 2 vs 2 results that are significantly better than the
null with p = 0.05/7 and p-values combined using Fisher’s Method.

MEG Feature S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean
Raw 90.7 92.7 89.3 96.7 91.3 92.0 88.7 84.0 93.3 91.0
Grad Norm 88.7 92.0 82.7 95.3 90.7 84.7 84.0 84.0 89.3 87.9
W Mean 88.0 91.3 86.7 97.3 89.3 93.3 90.0 82.0 93.3 90.1
W Slope 84.0 87.3 70.7 93.3 81.3 84.0 79.3 78.0 86.0 82.7
Power 78.0 80.7 71.3 86.7 88.0 72.0 84.7 70.7 78.0 78.9
Phase 79.3 87.3 73.3 92.0 88.7 79.3 85.3 76.0 86.0 83.0
Haar 89.3 97.3 90.0 98.7 94.0 94.0 91.3 89.3 95.3 93.3

Table 3: The percent of semantic features significantly decodable in 5 feature
categories and across all 218 semantic features, as calculated across 9 subjects
for each of the 7 MEG feature types. The number of semantic features in the
feature categories are: Alive 44, Eating 5, Manipulable 6, Shelter 4, Size 8.
Column All is the percentage of all the semantic features that are significant
for the given MEG feature type.

MEG feature Alive Eating Manipulable Shelter Size All
Raw 81.8 % 0.0 % 100.0 % 100.0 % 100.0 % 52.1 %
Grad Norm 77.3 % 0.0 % 100.0 % 75.0 % 87.5 % 44.7 %
W Mean 79.5 % 0.0 % 100.0 % 100.0 % 87.5 % 49.3 %
W Slope 54.5 % 0.0 % 100.0 % 25.0 % 75.0 % 28.6 %
Power 47.7 % 0.0 % 66.7 % 75.0 % 62.5 % 23.5 %
Phase 72.7 % 0.0 % 100.0 % 100.0 % 87.5 % 47.9 %
Haar 88.6 % 60.0 % 100.0 % 100.0 % 100.0 % 72.4 %
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Because there are 218 semantic features, it can be difficult to analyze
the performance of a given MEG feature on the full set of semantic features.
For this reason we have chosen a number of subsets of the semantic features
and analyzed them in aggregate. Table 3 shows the percent of semantic fea-
tures that are significantly decodable for several groups of features with a
common theme. The groups (with number of semantic features per group
in parenthesis) are Alive (44), Eating (5), Manipulable (6), Shelter (4), Size
(8). Perhaps most striking is that semantic features related to eating can be
reliably decoded only with the Continuous Haar MEG feature. This is sur-
prising because past fMRI studies [10] have shown eating to be amongst the
most decodable of features. However, that same study showed that several of
the brain areas where eating was best decoded were in the inferior temporal
gyrus, a brain area that is difficult to record from with MEG. Perhaps it
is the robustness to noise of the Continuous wavelet transform that allows
for this improved performance. Alternatively, it may be the combination of
information from phase and signal magnitude that allows for the significant
decoding of semantic features related to eating.

Overall, the performance of the Raw and Windowed Mean MEG feature
are very similar, but for a few semantic feature categories (Alive and Size)
the Raw MEG feature performs better. This implies that information within
the 50ms window used to create the windowed mean is important for some
semantic distinctions. The Euclidean Norm of Gradiometers and Windowed
Slope MEG features perform below the Raw MEG feature in all cases except
for the Manipulability feature category, where they are equal.

Across the board, the Phase MEG feature outperforms the Power MEG
feature. Thus, the information about the semantics of an object lies not in
the total energy in a frequency band, but in the “locking” of neurons firing
at a particular rate in response to stimulus onset.

In all cases the Continuous Haar wavelet outperforms all other MEG fea-
tures. In hindsight, this is not surprising as most of the other MEG can be
recreated from the Continuous Haar Wavelet coefficients. For example, the
Raw signal can be recreated from a linear combination the wavelet coeffi-
cients, and frequency and phase information can also be extracted. We will
explore the significance of the Continuous Haar Wavelet’s performance at the
word level in the next section.
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5.1 Rank Accuracy

The 2 vs 2 test results in high accuracy for most of the MEG features consid-
ered, possibly because the task is fairly easy. Even if the predictions for each
of the two held out words are far from their true values, each predicted vector
need only to be closer to the true vector than the alternate held out vector
for the resulting assignment to be correct. Evaluating the predictions using
a more difficult task could help us to better differentiate the performance of
the MEG feature types. For this we turn to a new data set.

In addition to the 60 words for which we have MEG data and semantic
features, we have semantic features (but no MEG data) for 940 other words.
Given a predicted semantic feature vector, we can measure the cosine distance
between the predicted vector and each of the 940 additional feature vectors,
plus the true semantic feature vector. Now we are ranking 941 semantic
feature vectors by their distance to the predicted semantic feature vector.
We sort these distances and find the position of the true semantic feature
vector for the ith held out word. Rank accuracy is then

rank accuracy = (1− ri
W

) ∗ 100 (10)

where ri is the position of the true semantic feature vector in the list of sorted
distances andW = 941 is the total length of the sorted list. Rank accuracy is
equal to the percentage of semantic feature vectors that are further from the
predicted vector than the true semantic feature vector. Under this schema,
higher scores are better and a perfect score would be 100. Table 4 shows the
median rank accuracy for each of the 9 subjects and 7 MEG feature types.
On permuted data, the rank accuracy was never above 61% for any of the
7 MEG feature types. The mean rank across the 7 MEG feature types was
38.5%.

The Raw MEG feature and the Continuous Haar Wavelet feature give the
best rank accuracy, but the Haar Wavelet has the maximum rank accuracy for
all subjects. We can test wether the Continuous Haar Wavelet is indeed the
better MEG feature type by recording the distance of each predicted vector
to the true semantic feature vector. If there is no difference between the Raw
and the Haar Wavelet MEG feature type, then we would expect the difference
in the distance between the two predicted semantic feature vectors (one each
from regressors trained on the Raw and Haar wavelet MEG features) and
the actual semantic feature vectors to be normally distributed with mean 0.
This analysis of difference in distance lends itself well to the paired t-test,
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which confirms that the Haar wavelet does produce better predictions, with
p < 10−60. One might argue that the difference between the distances need
not be normally distributed. To address this we can perform a Wilcoxon
rank sum test to test wether the medians of the distances are equal. The
Wilcoxon test rejects the null hypothesis that the medians are equal with
p = 7 ∗ 10−7.

Table 4: Median rank accuracy (over 941 words, as described in Section 5.1)
for all 9 subjects and 7 feature types. Higher scores are better. A paired t-
test shows that the Haar wavelet transform produces predicted vectors with
smaller distance to the true semantic feature vector than predictions based
on the raw signal (p < 10−60).

MEG Feature S1 S2 S3 S4 S5 S6 S7 S8 S9 All
Raw 90.3 93.0 88.2 95.1 90.8 86.9 86.8 87.2 89.9 90.1
Grad Norm 86.2 90.1 82.5 94.1 92.2 79.9 88.3 85.9 87.8 88.2
W Mean 89.2 91.9 88.7 95.5 90.8 87.5 89.3 86.2 91.9 90.1
W Slope 81.5 89.6 70.4 91.2 79.0 76.3 78.5 84.6 85.2 82.9
Power 81.2 81.0 54.4 84.2 79.1 63.4 73.2 65.7 65.9 74.1
Phase 63.3 82.6 54.5 87.5 84.5 60.6 82.3 65.1 71.4 72.8
Haar 95.1 96.0 90.1 97.3 92.2 90.7 89.0 88.9 96.0 93.3

5.2 Analysis of the Haar Wavelet Features

The Continuous Haar Wavelet MEG feature is the top performing amongst
the features we have evaluated here. But there are several dimensions to
this feature: frequency, time and sensor space. Which among these dimen-
sions carry the most decoding power? Figure 7 shows the rank accuracy
as a function of time and frequency for the Continuous Haar Wavelet MEG
feature. From this plot we can see that the majority of the power is focused
between 200 and 300 ms after stimulus onset, and in the delta, theta and
alpha frequency bands.

What areas of the brain contribute the most meaningful features? For
this we separate out the 306 sensors into those approximately covering each
of the four lobes of the brain: Temporal, Parietal, Frontal and Occipital. The
best performing lobe is the occipital lobe, followed closely by the temporal
lobes. Parietal gives the third best rank accuracy, and the frontal gives the
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Figure 7: The rank accuracy for different scales and time segments of the
coefficients produced by the Continuous Haar Wavelet Transform. Delta
corresponds to frequencies 0-4Hz, theta 4-8Hz, alpha 8-13Hz, beta 13-30Hz,
gamma >30 Hz. Our MEG data was lowpass filtered to exclude frequencies
above 60Hz, so the gamma frequency band was truncated at 60 Hz. The plot
shows that the most useful coefficients are focused between 200 and 300 ms
after stimulus onset, and between the delta to alpha frequency bands.

lowest. All pairwise differences between the lobes are significant with p =
0.05/(4∗3/2) where (4∗3/2) is the number of pairwise tests performed. It is
surprising that the occipital lobe gives such good word prediction, especially
since we are decomposing the words into semantic feature vectors before
training classifiers. High performance using features derived from activity in
the occipital lobe may have something to do with the visualization of words
or be a side-effect of working in sensor-space (which may attribute things to
the visual lobe though the sensors are actually covering a nearby region).

6 Conclusion
We have explored the utility of several transformation of the MEG signal with
respect to decoding the semantic properties of a word a subject is reading.
We have shown that the Continuous Haar Wavelet Transform is by far the
best MEG feature of those considered here. We propose that this is because
the Wavelet transform contains most of the information available in other
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Table 5: The average rank accuracy over 941 words of predictors trained with
the Haar wavelet feature, but only a subset of the MEG sensors covering the
four lobes of the brain. A paired t-test with Bonferroni correction shows that
the difference in rank accuracy between all pairs of lobes is significant.

Brain Region Average Rank Accuracy
Temporal 79.74
Parietal 72.76
Frontal 65.95
Occipital 80.80

feature types and thus represents the best of all worlds. We have shown that
the wavelet transform performs well for both Percent of Variance Explained
and for rank accuracy on a large list of words. Though the wavelet trans-
formation results in many more MEG features (64x more features in this
case), we think the improvement in decoding accuracy is worth the extra
computational expense.

In the future we would like extend this work to incorporate multivariate
feature types (those that combine sensors together) and to train larger clas-
sifiers that incorporate more than one feature type. In addition, we would
like to use the wavelet transform to perform single trial analysis, where only
one trial per word is available. We hope that the robustness of the wavelet
transform to noise will prove advantageous in this challenging low SNR task.
We also plan to extend this work to combinations of words, such as adjective
noun pairs. We expect that the increases in accuracy found here will extent
to multi-word paradigms as well.
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Table 6: Variable names and definitions as used in this report.

Variable Definition
m number of semantic features (218)
s number of subjects
T total number of time points
X MEG time series (306× T )
Xi,j value for sensor i and time point t in the MEG time series
R number of single trials collected per word (20)

A MEG Data Acquisition
All subjects gave their written informed consent approved by the University
of Pittsburgh (protocol PRO09030355) and Carnegie Mellon (protocol HS09-
343) Institutional Review Boards. MEG data were recorded using an Elekta
Neuromag device (Elekta Oy). The data was acquired at 1 kHz, high-pass
filtered at 0.1 Hz and low-pass filtered at 330 Hz. Eye movements (horizontal
and vertical eye movements as well as blinks) were monitored by recording
the differential activity of muscles above, below, and beside the eyes. At
the beginning of each session we recorded the position of the subject’s head
with four head position indicator (HPI) coils placed on the subjectÕs scalp.
The HPI coils, along with three cardinal points (nasion, left and right pre-
auricular), were digitized into the system.

The data were preprocessed using the Signal Space Separation method
(SSS) [20, 18] and temporal extension of SSS (tSSS) [19] to remove artifacts
and noise unrelated to brain activity. In addition, we used tSSS to realign
the head position measured at the beginning of each block to a common
location. The MEG signal was then low-pass filtered to 50 Hz to remove the
contributions of line noise and down-sampled to 200 Hz. The Signal Space
Projection method (SSP) [21] was then used to remove signal contamination
by eye blinks or movements, as well as MEG sensor malfunctions or other
artifacts. Each MEG repetition starts 260 ms before stimulus onset, and
ends 1440 ms after stimulus onset, for a total of 1.7 seconds and 340 time
points of data per sample. MEG recordings are known to drift with time, so
we corrected our data by subtracting the mean signal amplitude during the
200ms before stimulus onset, for each sensor/repetition pair. Because the
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magnitude of the MEG signal is very small, we multiplied the signal by 1012

to avoid numerical precision problems.
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