
A New View of Predictive State Methods for
Dynamical System Learning

Ahmed Hefny

Abstract
Recently there has been substantial interest in predictive state methods for learning dynam-
ical systems: these algorithms are popular since they often offer a good tradeoff between
computational speed and statistical efficiency. Despite their desirable properties, though,
predictive state methods can sometimes be difficult to use in practice. E.g., in contrast
to the rich literature on supervised learning methods, which allows us to choose from an
extensive menu of models and algorithms to suit the prior beliefs we have about properties
of the function to be learned, predictive state dynamical system learning methods are com-
paratively inflexible: it is as if we were restricted to use only linear regression instead of
being allowed to choose decision trees, nonparametric regression, or the lasso. To address
this problem, we propose a new view of predictive state methods in terms of instrumental-
variable regression. This view allows us to construct a wide variety of dynamical system
learners simply by swapping in different supervised learning methods. We demonstrate
that we can represent spectral learning algorithms for Hidden Markov Models and Kalman
filters within this framework and that we can tweak the regression method or the feature
representation to achieve a favorable outcome.

1. Introduction
Recently, there has been substantial interest in a new class of algorithms for learning dy-
namical systems. These algorithms combine several key intuitions, of which two are im-
portant to the current discussion.

First is the idea of predictive state: we can replace a belief about a latent variable S
by the prediction of some observable variables X that depend on S. That is, on observing
some evidence E about S, we could calculate the belief P(S | E). But, as long as the
function f(S) = E(X | S) is sufficiently rich (e.g., for discrete X and S represented by
one-hot encodings, invertible), it is equivalent to calculate E(X | E) directly: we could
recover P(S | E) by inverting f , but in many cases we don’t need to do so.

Second is the method of moments: for a dynamical system model with parameters θ, it
is often intractable to solve the maximum likelihood problem maxθ lnP (observations | θ).
But, we can sometimes find a statistic T such that the expectation of T is a simple, invertible
function of θ: Eθ(T) = g(θ). In this case, we can replace the expectation Eθ(T) with the
empirical average T̂ = 1

N

∑N
i=1 Ti. (Here Ti is the value of our statistic for the ith of a set

of N observations.) We can then define an estimator θ̂ as

θ̂ = g−1(T̂) (1)

1

and seek an efficient algorithm for solving the inverse problem (1). The trick to designing
a good method of moments algorithm is to discover a statistic T such that problem (1) is
well-conditioned and efficiently solvable. One of the main tools that algorithm designers
use for this purpose is to expand the class of models considered, thereby removing difficult
constraints from (1): for example, instead of learning a hidden Markov model (HMM), we
can expand the model class to include all observable operator models (OOMs) [14].

For brevity, we will call methods that use the above intuitions predictive state meth-
ods. Predictive state methods are popular for dynamical system learning because they often
offer a good tradeoff between computational speed and statistical efficiency.

However, there are also some important difficulties with these methods. One is that
it can be hard for predictive state methods to take advantage of prior knowledge about
the structure or parameters of a dynamical system: for example, expanding from HMMs
to OOMs removes our ability to directly refer to the conditional probability distribution
of observations given states, a common place to incorporate structure. Another is that
deriving, analyzing, and implementing new predictive state methods can require substantial
expertise: it can be difficult to discover an appropriate statistic T , accumulate its empirical
average T̂ efficiently, and track how estimation errors in T̂ propagate through the inverse
problem (1) to affect θ̂.

We address both of these problems with a new view of predictive state methods for dy-
namical system learning. In this view, a dynamical system learning problem is reduced to a
sequence of supervised learning problems. So, we can directly apply the rich literature on
supervised learning methods to incorporate many types of prior knowledge about problem
structure. We give a general convergence rate analysis that allows a high degree of flexibil-
ity in designing estimators. And finally, implementing a new estimator becomes as simple
as rearranging our data and calling the appropriate supervised learning subroutines.

Our new view is based on instrumental-variable regression [18, 22]. Instrumental-
variable regression is a well-known technique to compensate for certain types of observa-
tion noise in a linear regression problem; it can let us recover regression coefficients ac-
curately where ordinary regression would yield biased estimates. The connection between
predictive state learning and linear instrumental variable regression has been noted before,
e.g., in [4]. We propose a generalization of the linear two stage ordinary least squares pro-
cedure [22], give error bounds for this generalization, and formulate dynamical systems
learning as an instance of this regression technique.

More specifically, our contribution is to show that we can use much-more-general su-
pervised learning algorithms in place of linear regression, and still get a meaningful the-
oretical analysis. In more detail: (1) we point out that we can equally well use any well-
behaved supervised learning algorithm in place of linear regression in the first stage of
instrumental-variable regression; (2) for the second stage of instrumental-variable regres-
sion, we generalize ordinary linear regression to its RKHS counterpart; (3) we analyze the
resulting combination, and show that we get convergence to the correct answer, with a rate
that depends on how quickly the individual supervised learners converge.

2

Figure 1: A dynamical system.

In the remainder of the paper, we first describe how to use instrumental-variable regres-
sion to learn a dynamical system (Sec. 2). We then provide theoretical guarantees for the
two-stage instrumental-variable regression technique with non-linearity (Sec. 4). Finally,
we give two examples of learning dynamical systems within our proposed framework; the
first example is an HMM model for knowledge tracing (Sec. 5) and the second example is
a Kalman filter model for neural activity in the motor cortex (Sec. 6).

2. Instrumental Regression for Dynamical Systems
We consider a dynamical system of the form in Fig. 1: a sequence of observations ot ∈ O
explained by latent states st ∈ S connected in a chain. A key question we need to solve
in order be able to perform inference in the dynamical system is how to recursively update
our belief about state: given a belief about st and a new observation ot+1, compute a belief
about st+1. This is referred to as filtering. Another inference task is prediction: predicting
an observation ot+k given our belief about the current state st. This involves computing a
belief about future state state st+1 given our belief about st.

If st and ot have small, discrete ranges, the predictive state algorithm for learning a dy-
namical system is well known: see, e.g., [6, 3]. In fact, it is also known that we can interpret
this algorithm as linear instrumental-variable regression [4]. Our proposed framework gen-
eralizes that direction by reducing dynamical system learning to solving three supervised
learning problems, with the additional ability to incorporate arbitrary non-linear regression
models in two of these problems.

The first step to formulate dynamical system learning as a supervised learning problem
is to use an observable (predictive state) representation by replacing our belief about st
with a predictive state: pick a statistic ψt = ψ(ot:t+k−1) of a window of future observations
ot+1:t+k, and instead of tracking our belief P(st | o1:t−1), track the predictive state E[ψt |
o1:t−1]. (The dimension of ψ must be at least as high as the number of discrete latent
states.) We will use Qt|t−k to denote E[ψt | o1:t−k] and hence our predictive predictive state
is denoted by Qt ≡ Qt|t−1. We assume that the system is k-observable and hence latent
states are distinguishable by the distribution of a window of k future observations1 [25].

Second, we formulate a statistic ξt = ξ(ot:t+k) over extended future observations ot:t+k
with conditional expectation Pt = E[ξt | o1:t−1] such that Qt+1|t−1 and Qt+1 (i.e. our belief
about the shifted future ot+1:t+k) can be inferred from Pt and ot.

1. In principle, the statistics can depend on the entire future. The restriction to a window of observations
simplifies the notation and is commonly used in practice.

3

Learning a dynamical system then amounts to learning an operator W that satisfies the
moment condition:2

Pt = WQt ∀t (2)

Filtering and prediction then correspond to inferring Qt+1 and Qt+1|t−1 respectively from
Pt. We assume that W is a linear operator. Unfortunately, we do not observe Qt or Pt but
noisy versions thereof. Moreover, due to the overlap between observation windows, the
noise terms on ψt and ξt are correlated. This noise correlation means that naı̈ve linear re-
gression (using samples of ψt and ξt) will give a biased estimate of the dependence between
Qt and Pt.

To counteract this bias, we employ instrumental regression [18, 22]. Instrumental re-
gression uses instrumental variables that are correlated with the input Qt but not with the
noise εt:t+k. This property provides a criterion to denoise the inputs and outputs of the
original regression problem: we remove that part of the input/output that is not correlated
with the instrumental variables. Since past observations o1:t−1 do not overlap with future
or extended future windows, they are not correlated with the noise εt:t+k+1. Therefore, we
can use history features ht ≡ h(o1:t−1) as instrumental variables.

In more detail, by taking the expectation of (2) over ht we obtain an instrument-based
moment condition

E[Pt | ht] = E[WQt | ht]
E[E[ξt | o1:t−1] | ht] = WE[E[ψt | o1:t−1] | ht]

E[ξt | ht] = WE[ψt | ht] (3)

Assuming that there are enough independent dimensions in ht that are correlated with Qt,
we maintain the rank of the moment condition when moving from (2) to (3), and we can
recover W by least squares if we can compute E[ψt | ht] and E[ξt | ht] for sufficiently
many examples t.

In summary, learning and inference of a dynamical system through instrumental regres-
sion can be described as follows:

• Model Specifcation: Pick features of history ht = h(o1:t−1), future ψt = ψ(ot:t+k−1)
and extended future ξt = ξ(ot:t+k). ψt must be a sufficient statistic for P(ot:t+k−1 |
o1:t−1). ξt must satisfy

– E[ψt+1 | o1:t−1] = fpredict(E[ξt | o1:t−1]) for a known function fpredict.
– E[ψt+1 | o1:t] = ffilter(E[ξt | o1:t−1], ot) for a known function ffilter.

• S1A (Stage 1A) Regression: Learn a (possibly non-linear) regression model to esti-
mate ψ̄t ≡ E[ψt | ht]. The training data for this model are (ht, ψt) across time steps
t.3

2. Note that, similar to [16], Pt is a deterministic function of Qt and hence this condition has a unique
solution if we observe sufficient examples of Pt and Qt.

3. Our bounds assume that the training time steps t are sufficiently spaced for the underlying process to mix,
but in practice, the error will only get smaller if we consider all time steps t.

4

• S1B Regression: Learn a (possibly non-linear) regression model to estimate ξ̄t ≡
E[ξt | ht]. The training data for this model are (ht, ξt) across time steps t.

• S2 Regression: Use the feature expectations estimated in the previous two steps to
train a model to predict ξ̄t = Wψ̄t, where W is a linear operator. The training data
for this model are estimates of (ψ̄t, ξ̄t) across time steps t obtained from S1 steps.

• Initial State Estimation: Estimate an initial state Q1 = E[ψ1] by averaging ψ1

across several example realizations of our time series.4

• Inference: Starting from the initial state Q1, we can maintain the belief state Qt ≡
E[ψt | o1:t−1] through filtering: given Qt we compute Pt ≡ E[ξt | o1:t−1] = WQt.
Then, given the observation ot, we can compute Qt+1 = ffilter(Pt, ot). Or, in the
absence of ot, we can predict the next state Qt+1|t−1 = fpredict(Pt). Finally, by
definition, the belief state Qt is sufficient to predict P(ot:t+k−1 : o1:t−1).

The process of learning and inference is depicted in Figure 2. Modeling assumptions are
reflected in the choice of the statistics ψ, ξ and h as well as the regression models in
stages S1A and S1B. In the supplementary material we show that, with linear S1 models
and certain choices of statistics, we can recover existing spectral algorithms for dynamical
systems learning. The two stage framework not only provides a unifying view of some of
the successful dynamical systems learning algorithms but also paves the way for extending
them in a theoretically justified manner, as we demonstrate in the experiments.

3. Related Work
This work extends predictive state learning algorithms for dynamical systems, which in-
clude spectral algorithms for Kalman filters [2], Hidden Markov Models [10, 19] and Pre-
dictive State Representations (PSRs) [6, 3] as well as infinite-dimensional variants such as
the Hilbert space embedding of hidden Markov models (HSE-HMM) [20] and predictive
state representations (HSE-PSR) [5].

One common aspect in all these models is that they exploit the covariance structure
between future and past observation sequences to obtain an unbiased observable state rep-
resentation. Indeed, many of these algorithms can be reformulated as a two-stage linear in-
strumental regression. Boots and Gordon [4] note the connection between the HSE-HMM
and instrumental variables, which is manifested in the use of kernel SVD of a future-past
covariance operator to identify the latent state space. We use this connection to build a
general framework for dynamical system learning where the state-space can be identified
using supervised learning methods, including non-linear ones.

Reducing dynamical systems learning to supervised learning dates back to auto-regressive
models [17], where the state of the system is assumed to be fully determined by the previous

4. This is the only step that needs multiple realizations of our time series. If only a single long realization is
available, we need additional assumptions to be able to estimate an initial state; for example, if we assume
stationarity, we can set the initial state to be the empirical average vector of future features, 1

T

∑T
t=1 ψt.

5

𝑜𝑡−1 𝑜𝑡 𝑜𝑡+𝑘−1 𝑜𝑡+𝑘

history ℎ𝑡 future 𝜓𝑡/𝑄𝑡

shifted future 𝜓𝑡+1

extended future 𝜉𝑡/𝑃𝑡

S1A regression 𝐸[𝑄𝑡|ℎ𝑡]

S1B regression  𝐸[𝑃𝑡|ℎ𝑡]

S2 regression

Condition on 𝑜𝑡 (filter)  𝑄𝑡+1
Marginalize 𝑜𝑡 (predict)  𝑄𝑡+1|𝑡−1

Figure 2: Learning and applying a dynamical system using instrumental regression. S1
regression is trained to provide data to train S2 regression. At test time, starting
from an initial belief state Q0, we alternate between S2 regression and filter-
ing/prediction

k observations. Our aim is to use supervised learning methods to learn latent state models
from observation sequences. This bears similarity to Langford et al.’s sufficient posterior
representation (SPR) [16], which encodes the state by the sufficient statistics of the condi-
tional distribution of the next observation and represents system dynamics by three vector-
valued functions that are estimated using supervised learning approaches. While SPR al-
lows all of these functions to be non-linear, there are some advantages that distinguish
our work. First, while SPR is limited to 1-step observable systems (where the distribution
over the next observation uniquely determines the state), our framework can seamlessly
handle k-step observable systems by choosing a large enough (or even unbounded) win-
dow size. The use of instrumental variables ensures that correlated noise on overlapping
windows does not bias our estimates of the system parameters. Secondly, SPR involves
a rather complicated training procedure, involving multiple iterations of model refinement
and model averaging, whereas our framework only requires solving three regression prob-
lems in sequence. Finally, the theoretical analysis of [16] only establishes the consistency
of SPR learning assuming that all regression steps are solved perfectly. Our work, on the
other hand, establishes convergence rates based on the performance of S1 regression.

4. Theoretical Analysis
In this section we present our main theoretical result: consistency and a convergence rate
bound for two-stage instrumental regression, under the assumption that S1 predictions con-

6

verge to the true conditional expectations at an appropriate rate, regardless of the functional
form of the S1 regressors.

We assume we are given i.i.d. triplets (xt, yt, zt), where xt ∈ X , yt ∈ Y and zt ∈ Z
denote input, output and instrumental variables respectively. (As mentioned above, we can
equally well use correlated samples, as would result from successive time steps of a time
series; our convergence rates will then include a factor that depends on the mixing rate of
the underlying dynamical system.)

For generality, we assume that X , Y and Z are reproducing kernel Hilbert spaces
(RKHS) of possibly infinite dimension, and that the operator W is estimated through (ker-
nel) ridge regression

Ŵλ =

(
T∑
t=1

ŷt ⊗ x̂t

)(
T∑
t=1

x̂t ⊗ x̂t + λIX

)−1

(4)

where ⊗ denotes tensor product and λ > 0 is a regularization parameter that ensures the
invertibility of the estimated covariance. λ can be 0 in finite dimensional cases where we
have an invertible covariance matrix. The RKHS view is useful when the future statistics
are represented in terms of kernels—for example, if they are kernel mean maps of the
distribution of future observations, a case that is closely related to the HSE-HMM [20] and
HSE-PSR [5] models.

Let x̄t and ȳt denote E[xt|zt] and E[yt|zt]. Also let x̂t and ŷt denote Ê[xt|zt] and
Ê[yt|zt], as estimated by the S1A and S1B regression steps. We assume that x̄t, x̂t ∈ X
and ȳt, ŷt ∈ Y . Let Σx̄x̄ ∈ X ⊗ X and Σȳȳ ∈ Y ⊗ Y denote the (uncentered) covariance
operators of the distributions of x̄ and ȳ respectively: that is,

Σx̄x̄ = E[x̄⊗ x̄] Σȳȳ = E[ȳ ⊗ ȳ]

Before we state our main theorem we need to quantify the quality of S1 regressions in a
way that is independent of the functional form that we assume in S1.

Definition 1 (S1 Regression Bound) For a given δ > 0 and N ∈ N+, we define the S1
regression bound ηδ,N > 0 to be a number satisfying the condition that, with probability at
least (1− δ/2), the following holds for all 1 ≤ t ≤ N :

‖x̂t − x̄t‖X < ηδ,N

‖ŷt − ȳt‖Y < ηδ,N

As long as, for each fixed δ,

lim
N→∞

ηδ,N = 0, (5)

our results show that the two stage estimator is consistent:

7

Theorem 2 Assume that ‖x̄‖X , ‖x̄‖Y < c <∞ almost surely. Also, assume that tr(Σx̄x̄), tr(Σȳȳ) <
∞. Let ηδ,N be as defined in Definition 1 and assume it satisfies (5). Assume W is a
Hilbert-Schmidt operator, let Ŵλ be as defined in (4), and let R(Σx̄x̄) denote the closure
of the range of Σx̄x̄. Then the following statement holds with probability at least 1 − δ for
each xtest ∈ R(Σx̄x̄) s.t. ‖xtest‖X ≤ 1.

γδ,N ≡ ‖Ŵλxtest −Wxtest‖Y =

O

ηδ,N
1

λ
+

√
1 +

√
log(1/δ)

N

λ
3
2




+O

(
log(1/δ)√

N

(
1

λ
+

1

λ
3
2

))
+O

(√
λ
)

Theorem 2 gives a generic error bound on S2 regression in terms of S1 regression perfor-
mance. We defer the proof, as well as finite sample analysis, to the supplementary material.
The main insight from the theorem is that the error in estimating the parameterW is the sum
of three contributions: the first term captures the error in the S1 regressions. The second
term captures the effect of estimating the covariance operators from finite data, assuming
S1 regression is exact. Finally, the third term captures the effect of regularization assuming
covariance estimates are exact. It can be shown that, if X and Y are finite dimensional,
Σx̄x̄ spans X and we use least squares to estimate W (i.e. λ = 0), then the first and last
terms will vanish, and λ in the middle two terms will be replaced by λx,min, the minimum
eigenvalue of Σx̄x̄.

For completeness, the following propositions provide concrete examples of S1 regres-
sion bounds ηδ,N for practical regression models.

Proposition 3 Assume X ≡ Rdx ,Rdy ,Rdz for some dx, dy, dz < ∞ and that x̄ and ȳ
are linear vector functions of z where the parameters are estimated using ordinary least
squares. Assume that ‖x̄‖X , ‖ȳ‖Y < c < ∞ almost surely. Let ηδ,N be as defined in
Definition 1. Then

ηδ,N = O

(√
dz
N

log((dx + dy)/δ)

)

Proof (sketch) This is based on results that bound parameter estimation error in linear
regression with univariate response (e.g. [11]). Note that if x̄ti = U>i zt for some Ui ∈ Z ,
then a bound on the error norm ‖Ûi − Ui‖ implies a uniform bound of the same rate on

8

x̂i − x̄. The probability of exceeding the bound is scaled by 1/(dx + dy) to correct for
multiple regressions.

Variants of Proposition 3 can also be developed using bounds on non-linear regression
models (e.g., generalized linear models).

The next proposition addresses a scenario where X and Y are infinite dimensional.

Proposition 4 Assume that x and y are kernel evaluation functionals, x̄ and ȳ are linear
vector functions of z where the linear operator is estimated using conditional mean em-
bedding [21] with regularization parameter λ0 > 0 and that ‖x̄‖X , ‖ȳ‖Y < c <∞ almost
surely. Let ηδ,N be as defined in Definition 1. It follows that

ηδ,N = O

√λ0 +

√
log(N/δ)

λ0N


Proof (sketch) This bound is based on [21], which gives a bound on the error in estimating
the conditional mean embedding. The error probability is adjusted by δ/4N to accommo-
date the requirement that the bound holds for all training data.

In the following, we apply theorem 2 to the setting of learning dynamical systems,
where Qt ∈ X , Pt ∈ Y and ht ∈ Z (Qt, Pt and ht are as defined in Section 2). One issue to
note is that theorem 2 assumes that the test input lies withinR(Σx̄x̄). In dynamical systems
context, however, the test input is an estimated predictive state Q̂t. Since S1 regression
can fail to identify the subspace of true states given finite data, Q̂t can have a non-zero
component εt in R>(Σx̄x̄), the orthogonal complement of R(Σx̄x̄). The following lemma
states that, in a stable system, this component gets smaller as S1 regression performs better.

Lemma 5 For a test sequence o1:T , let Q̂t denote the estimated state given o1:t−1. Let Q̃t

denote the projection of Q̂t ontoR(Σx̄x̄). Assume that ffilter is L-Lipchitz continuous on Pt
and that ffilter(Pt, ot) ∈ R(Σx̄x̄) for any Pt ∈ R(Σȳȳ). Given the assumptions in theorem
2 and assuming that ‖Q̂t‖X ≤ R for all 1 ≤ t ≤ T , the following holds for all 1 ≤ t ≤ T
with probability at least 1− δ/2.

‖εt‖X = ‖Q̂t − Q̃t‖X = O

(
ηδ,N√
λ

)

Since Ŵλ is bounded. The prediction error due to adding εt to the input diminishes at the
same rate of ‖εt‖X .

9

5. Case Study I: Learning A Knowledge Tracing Model
In this section we demonstrate that we can learn a hidden Markov model using the two stage
regression framework. We also demonstrate that we can change the regression methods to
gain advantage. Specifically, we consider a limited data scenario, where we have a conflict
between using many history features (picking a long history window to reduce noise in
our predictions, and rich features of that window to achieve a linear relationship between
history and future) or using few history features (reducing the number of parameters we
have to learn from limited data). We show that we can use non-linear S1 regression models
to reduce the number of parameters we need to learn, resulting in better empirical prediction
accuracy compared to linear models while still maintaining consistency.

In this experiment we attempt to model and predict the performance of students learning
from an interactive computer-based tutor. We use the Bayesian knowledge tracing (BKT)
model [8], which is essentially a 2-state HMM: the state st represents whether a student has
learned a knowledge component (KC), and the observation ot represents the success/failure
of solving the tth question in a sequence of question that cover the said KC. With high
probability, the student remains in the same state (learned or unlearned) and with smaller
probability, the student may transition from unlearned to learned (learning) or learned to
unlearned (forgetting). In the learned state, the student is more likely to answer a question
correctly than in the unlearned state. It is also possible for the student to answer a question
correctly while in the unlearned state (guessing) or incorrectly while in the learned state
(slipping). The possible transitions and observations are summarized in figure 3.

5.1 Data Description

The data set we used to evaluate the model is a publicly available data set from DataShop
[15] called “Geometry Area (1996-97).” This data was generated by students learning
introductory geometry, and contains attempts by 59 students in 12 knowledge components.
As is typical for BKT, we consider a student’s attempt at a question to be correct iff the
student entered the correct answer on the first try, without requesting any hints from the
help system. The sequence of first attempts for a student/KC pair constitutes a training
sequence. We discard sequences of length less than 5, resulting in a total of 325 sequences.
We pad each observation sequence at the beginning with dummy observations, to handle
the case where the history window extends before the beginning of the sequence. (This
procedure allows us to use more data in our regressions, which is important because of our
limited sample size.) Therefore a history observation which is used as training input for
S1 regression can be in one of three states: “correct”, “incorrect” or “before beginning of
time.” We restrict the regression output however to be binary (“correct” or “incorrect”).

5.2 Model Description

Under the (reasonable) assumption that the two states have distinct observation probabili-
ties, this model is 1-observable. It is reasonable then to choose the predictive state to be the

10

Skill
Known

Correct
Answer

Skill
Unknown

Incorrect
Answer

Skill
Known

Skill
Unknown

forget

learn

slip

guess

Current State Current Observation Next State

Figure 3: Transitions and observation emissions of the BKT model. (Each node repre-
sents a possible value of the state/observation). Solid arrows represent transi-
tions while dashed arrows represent emissions. Horizontal arrows represent “or-
dinary” transitions and emissions, where skill level is maintained and correctly
represented by the answer. Diagonal arrows represent emissions where the stu-
dent guessed or slipped, or transitions where the student learned or forgot the
skill.

expected next observation, which results in the following statistics:

ψt = ot

ξt = ot ⊗k ot+1,

where ot is represented by a 2 dimensional indicator vector and ⊗k denotes the Kronecker
product. Given these statistics, Pt = E[ξt|o1:t−1] is a joint probability table of ot:t+1 from
which conditioning on ot (filtering) and marginalizing over ot (prediction) are simple op-
erations. It thus remains to choose the history features ht and the S1 regression model. In
the appendix, we show that if use ht = ot−1 and linear regression as S1 regression model,
the resulting algorithm is equivalent to spectral HMM method of [10] and thus we use it as
a baseline. In fact, if we had access to sufficient data, we could learn the HMM using this
base line model. Not counting dummy observations, the model has to learn 7 parameters
(7 free covariance entries). Under limited data, however, we can achieve faster learning by
incorporating prior knowledge. Here, we will take advantage of the intuition that switching
states (learning or forgetting) is a relatively unlikely event. Hence, aggregating observa-
tions over multiple previous time steps is a better predictor of the state, since aggregation
will mitigate the effects of guessing and slipping. So we would like to use ht = ot−b:t−1 for
some b > 1. We then have a choice: if we represent ht by an indicator vector of dimension
2b, then the optimal predictor of ot from ht will be linear, but the number of parameters we
must learn will increase exponentially with b. On the other hand, if we represent ht by a

11

Model S1 Regression History Features
model 1 Linear ot−1

model 2 Linear ot−4:t−1 (Indicator)
model 3 Logistic ot−4:t−1 (Separate)

Table 1: Evaluated models: “indicator” means we have one feature for each distinct se-
quence of length b, while “separate” means that we have separate discrete features
for each observation in the history window.

binary vector of length b, then we will only need to learn b+ 1 parameters, but the optimal
predictor of ot from ht will no longer be linear leading to poor performance of linear re-
gression. It is not obvious a priori which choice will result in better learning performance.5

Our formulation makes the choice much easier: we can use a history window of any
length, pick the more-concise length-b representation, and train a nonlinear predictor such
as a logistic regression. By doing so we combine the advantages of both of the previous
paragraph’s approaches: we only need to learn O(b) parameters, but our class of predictors
still includes a near-optimal choice. (Logistic regression becomes exactly optimal as the
probabilities of learning and forgetting approach zero. Since these probabilities are typi-
cally small in practice, logistic regression will be close to optimal in practice.) As we will
see below, the result is better learning from limited data.

5.3 Evaluation Procedure and Results

We evaluated three variants of HMM learning via two-stage regression. They are summa-
rized in Table 1. We evaluated the models using 1000 random splits of the 325 sequences
into 200 training and 125 testing. For each split, we trained each model on the training
sequences. Then for each test sequence, we filter through the first 3 observations then
predict the rest of the sequence, reporting the root mean square error for each split. The
results are depicted in figure 4. The results show that, in terms of accuracy, model 3 out-
performs model 2, which in turn outperforms model 1. In other words, feature expansion
does increase predictive accuracy. However, even more gain is achieved using non-linear
S1 models that require fewer parameters.

6. Case Study II: Neural Spike Data
In this section we demonstrate that we can use two stage regression to learn a Kalman fil-
ter and that state of that Kalman filter has good predictive power. Specifically, we learn a
Kalman filter on neural trajectories of a reach task, where a monkey is expected to acquire
by hand a target in one of 16 directions. We show that the state of the Kalman filter condi-

5. The numbers above ignore the effect of padding observation sequences, but the conclusions are similar in
either case.

12

0.27 0.28 0.29 0.3 0.31 0.32 0.33
0.27

0.28

0.29

0.3

0.31

0.32

0.33

model 1

m
od

el
 2

0.27 0.28 0.29 0.3 0.31 0.32 0.33
0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

model 1
m

od
el

 3

0.27 0.28 0.29 0.3 0.31 0.32 0.33
0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

model 2

m
od

el
 3

Figure 4: Experimental results: each graph depicts the performance of two models (mea-
sured by RMSE) on 1000 train/test splits. The black line represents the x = y
lines. More points below the line indicates that model y is better than model x.

13

tioned on the neural activity in the planning phase (the time interval before movement) is a
good predictor of the direction.

6.1 Data Description

We give a summary the data collection procedure but more details can be found in [23].
All procedures were performed in accordance with the guidelines of the Institutional Care
and Use Committee of the University of Pittsburgh.

One male Rhesus monkey (Macaca mulatta) was trained to perform a hand-controlled
two-dimensional center out task in a virtual reality setup. An infrared marker was used to
continuously track the hand position (Optotrak 3020 motion tracking system), which was
then presented as visual feedback in the form of a cursor on the screen. Sixteen targets
were radially located at the edges of an imaginary circle in the virtual setup. In each trial
the monkey began by holding the cursor at a central-start position, then one of sixteen
targets was randomly presented, the monkey reached to acquire the target and was required
to hold for about 200ms at the end. If the monkey fails to acquire the right target the trial
is discarded. Figure 5 displays hand trajectories for the recorded trials.

The monkey was implanted with a 96-channel array (Blackrock Microsystems, Salt
Lake City, UT). The implant was visually placed in the proximal arm area of primary
motor cortex (M1). A 96-channel Plexon MAP system (Plexon, Dallas, TX) was used to
amplify, filter, and record the data. Spike sorting was used to isolate single unit activity as
described in [23], which resulted in 93 identified units (neurons).

The dataset contains 47 trials for each direction. For each trial, we obtained spike counts
for each of the 93 units binned in 20ms intervals. We aligned movement onset as the 20ms
bin in which the movement speed of the hand reached 15% of the maximum speed in the
trial. We trimmed all trials so that they contain exactly 6 bins (120 ms) before movement
onset and 13 bins (260 ms) after movement onset. The 120ms and 260ms are the shortest
pre-onset and post-onset intervals across all trials.

6.2 Model Description

A Kalman filter is given by

st = Ost−1 + νt

ot = Tst + εt

νt ∼ N (0,Σs)

εt ∼ N (0,Σo)

In our case, ot is the square root of the spike count in time bin t for each unit (i.e.,
a 93 dimensional vector). The square root transform is known to stabilize the variance
of Poisson-distributed counts [7]. We assume a stationary filter where Σt ≡ E[sts

>
t] is

independent of t. We also assume a k-observable system where k = 3. We start by
identifying a low dimensional subspace that contains the predictive state.

14

Figure 5: Hand motion traces of the recorded trials experiment in x, y coordinates. Each
color indicates one of the 16 targets. All trials start from the center.

We choose our statistics

ht = ot−k:t−1

ψt = ot:t+k−1,

where a sequence of observations ot1:t2 is represented by stacking their corresponding
vectors into a single long vector. We then use reduced rank regression [13] as our S1A
regression model. Reduced rank regression, for a regression problem from Rn to Rm ,
finds regression weight matrix Wm×n = Um×rV

>
n×r, where U has orthogonal columns and

r < m, n. In our case m = n = 93× 3 and we set r to 20.
The matrix U then acts as a basis for the predictive state. Therefore we use the same

basis for the shifted future

ξt =

(
ot

U>ot+1:t+k

)
In other words, ξt is the result of stacking the next observation and shifted future expressed
in the U basis. Given ξt, we use linear regression as the S1B model. In the appendix, we
show that the resulting algorithm is indeed a spectral learning algorithm for Kalman filters.

It remains to specify filtering and prediction functions. Prediction is trivially done by
reading off from ξt the coordinates corresponding to ot and U>ψt+1 as desired. Recogniz-
ing that ξt is normally distributed, filtering can be done under a steady-state approximation,
where the covariance of ξt is assumed to be constant and hence can be estimated from the
training data.

15

6.3 Evaluation Procedure and Results

We would like to evaluate whether the state of the Kalman filter can be used to predict
movement direction given the neural activity before movement onset (i.e., during the first
120ms in the trial).

We use 5-fold cross validation. In each fold, we train the Kalman filter on the whole
duration of the training trials and then perform filtering on the same trials for 6 time steps
(i.e., up to movement onset). The predictive state at t = 6 is treated as a feature vector
in a classification problem where the target class is the direction. We construct a nearest
neighbor (NN) classifier from the training trials using these feature vectors.

Afterwards, for each test trial, we filter up to t = 6 given the Kalman filter parameters
learned in the training phase and use the resulting predictive state as an input to the NN
classifier. We measure the prediction error as the average angular difference between pred-
icated and actual directions (in degrees). A random classifier would achieve an error of 90
degrees. We compare the Kalman filter based classifier to two baselines.

1. Overall activity: This is an NN classifier where the feature vector is the average
spike count up to movement onset.

2. Cosine tuning: This is based on the direction profile concept [1]. This baseline
is based on the assumption that, for each neuronal activity unit i, the spiking rate
si is a function of the movement angle θ, where the maximum of this function is
the preferred direction of that unit. We used the cosine tuning model si = f(θ) =
ci + wi cos(θ − θi), where the parameters ci, wi and θi are estimated for each of the
93 units from the training trials by minimizing mean square error. In more detail,
for each unit we solve a regression problem where an input example consists of a
direction as the input and the spike count for that unit in all training trials for that
direction ,averaged over time and trials. The value of θi is the preferred direction for
unit i. At test time, the predicted direction is given by

6∑
t=1

93∑
i=1

situi ,

where sit is the spike count of the ith unit in the tth time bin and ui is the unit vector
corresponding to θi. We try two variations of cosine tuning; the first version estimates
the direction profile based on the entire time in training trials while the second version
estimates the profile based only on the time before movement onset.

The results are shown in Table 2.

16

Model Prediction error (degrees)
Kalman state 22.9375

Overall activity 34.5469
Cosine tuning (all) 44.5745

Cosine tuning (preonset) 24.3182

Table 2: Experimental results for predicting movement direction based on pre-onset activ-
ity

7. Conclusion
In this work we developed a general framework for dynamical system learning using super-
vised learning methods. The proposed framework is based on two-stage regression: in the
first stage we use history features to train regression models that denoise future observation
windows into state estimates. In the second stage we use these state estimates to train a
linear model that represents system dynamics.

This framework encompasses and provides a unified view of some successful dynam-
ical system learning algorithms. We demonstrated the proposed framework in learning a
Hidden Markov Model and a Kalman filter. We have shown in the HMM case that we can
use non-linear regression to incorporate more history features in identifying the latent state
without an exponential increase in the number of parameters.

As future work, we would like to apply this framework to more scenarios where we can
leverage additional techniques such as manifold embedding, sparse learning and transfer
learning in stage 1 regression. We would also like to extend the framework to controlled
processes.

References
[1] Bagrat Amirikian and Apostolos P Georgopulos. Directional tuning profiles of motor

cortical cells. Neuroscience research, 36(1):73–79, 2000.

[2] Byron Boots. Spectral Approaches to Learning Predictive Representations. PhD
thesis, Carnegie Mellon University, December 2012.

[3] Byron Boots and Geoffrey Gordon. An online spectral learning algorithm for par-
tially observable nonlinear dynamical systems. In Proceedings of the 25th National
Conference on Artificial Intelligence (AAAI-2011), 2011.

[4] Byron Boots and Geoffrey Gordon. Two-manifold problems with applications to non-
linear system identification. In Proc. 29th Intl. Conf. on Machine Learning (ICML),
2012.

17

[5] Byron Boots, Arthur Gretton, and Geoffrey J. Gordon. Hilbert Space Embeddings of
Predictive State Representations. In Proc. 29th Intl. Conf. on Uncertainty in Artificial
Intelligence (UAI), 2013.

[6] Byron Boots, Sajid Siddiqi, and Geoffrey Gordon. Closing the learning planning loop
with predictive state representations. volume 30, pages 954–956, 2011.

[7] M Yu Byron, John P Cunningham, Gopal Santhanam, Stephen I Ryu, Krishna V
Shenoy, and Maneesh Sahani. Gaussian-process factor analysis for low-dimensional
single-trial analysis of neural population activity. In Advances in neural information
processing systems, pages 1881–1888, 2009.

[8] Albert T. Corbett and John R. Anderson. Knowledge tracing: Modelling the acqui-
sition of procedural knowledge. User Model. User-Adapt. Interact., 4(4):253–278,
1995.

[9] Kenji Fukumizu, Le Song, and Arthur Gretton. Kernel bayes’ rule: Bayesian in-
ference with positive definite kernels. Journal of Machine Learning Research,
14(1):3753–3783, 2013.

[10] Daniel Hsu, Sham M. Kakade, and Tong Zhang. A spectral algorithm for learning
hidden markov models. In COLT, 2009.

[11] Daniel Hsu, Sham M. Kakade, and Tong Zhang. Random design analysis of ridge
regression. In COLT 2012 - The 25th Annual Conference on Learning Theory, June
25-27, 2012, Edinburgh, Scotland, pages 9.1–9.24, 2012.

[12] Daniel Hsu, Sham M Kakade, and Tong Zhang. Tail inequalities for sums of ran-
dom matrices that depend on the intrinsic dimension. Electronic Communications in
Probability, 17(14):1–13, 2012.

[13] Alan Julian Izenman. Reduced-rank regression for the multivariate linear model.
Journal of multivariate analysis, 5(2):248–264, 1975.

[14] Herbert Jaeger. Observable Operator Models for Discrete Stochastic Time Series.
Neural Computation, 12(6):1371–1398, June 2000.

[15] Kenneth R. Koedinger, R. S. J. Baker, K. Cunningham, A. Skogsholm, B. Leber, and
John Stamper. A data repository for the EDM community: The PSLC DataShop.
Handbook of Educational Data Mining, pages 43–55, 2010.

[16] John Langford, Ruslan Salakhutdinov, and Tong Zhang. Learning nonlinear dynamic
models. In Proceedings of the 26th Annual International Conference on Machine
Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009, pages 593–
600, 2009.

18

[17] S.M. Pandit and S.M. Wu. Time series and system analysis, with applications. Wiley,
1983.

[18] Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University
Press, New York, NY, USA, 2000.

[19] Sajid Siddiqi, Byron Boots, and Geoffrey J. Gordon. Reduced-rank hidden Markov
models. In Proceedings of the Thirteenth International Conference on Artificial In-
telligence and Statistics (AISTATS-2010), 2010.

[20] L. Song, B. Boots, S. M. Siddiqi, G. J. Gordon, and A. J. Smola. Hilbert space
embeddings of hidden Markov models. In Proc. 27th Intl. Conf. on Machine Learning
(ICML), 2010.

[21] Le Song, Jonathan Huang, Alexander J. Smola, and Kenji Fukumizu. Hilbert space
embeddings of conditional distributions with applications to dynamical systems. In
Proceedings of the 26th Annual International Conference on Machine Learning,
ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009, pages 961–968, 2009.

[22] J.H. Stock and M.W. Watson. Introduction to Econometrics. Addison-Wesley series
in economics. Addison-Wesley, 2011.

[23] Dawn M. Taylor, Stephen I. Helms Tillery, and Andrew B. Schwartz. Direct cortical
control of 3d neuroprosthetic devices. Science, pages 1829–1832, 2002.

[24] Joel A. Tropp. User-friendly tools for random matrices: An introduction. NIPS
Tutorial, 2012.

[25] P. van Overschee and L.R. de Moor. Subspace identification for linear systems: the-
ory, implementation, applications. Number Volume 1. Kluwer Academic Publishers,
1996.

Appendix A. Spectral and HSE Dynamical System Learning as
Regression

In this section we provide examples of mapping some of the successful dynamical system
learning algorithms to our framework.

A.1 HMM

In this section we show that we can use instrumental regression framework to reproduce
the spectral learning algorithm for learning HMM [10]. We consider 1-observable models
but the argument applies to k-observable models. In this case we use ψt = eot and ξt =
eot:t+1 = eot ⊗k eot+1 , where ⊗k denotes the kronecker product. We start with the (very

19

restrictive) case where P1,2 is invertible. Given samples of h1 = o1, ψ2 = o2 and ξ2 = o2:3,
in S1 regression we learn two matrices:

Ŵ2,1 = Σ̂o2o1Σ̂
−1
o1

= P̂2,1P̂
−1
1,1 (A.1)

Ŵ2:3,1 = Σ̂o2:3o1Σ̂
−1
o1

= P̂2:3,1P̂
−1
1,1 (A.2)

In S2 regression we learn the matrix

Ŵ = Ŵ2:3,1Ê[eo1e
>
o1

]Ŵ>
2,1

(
Ŵ2,1Ê[eo1e

>
o1

]Ŵ>
2,1

)−1

=
(
P̂2:3,1P

−1
1,1 P̂

>
2,1

)(
P̂2,1P

−1
1,1 P̂

>
2,1

)−1

= P̂2:3,1

(
P̂2,1

)−1

(A.3)

For a given value x of o2, define

Bx = u>x Ŵ = u>x P̂2:3,1

(
P̂>2,1

)−1

, (A.4)

where ux is an |O| × |O|2 matrix which selects a block of rows in P̂2:3,1 corresponding to
o2 = x. Specifically, ux = δx ⊗k I|O|. This gives

Qt+1 = Ê[eot+1|o1:t] ∝ u>otÊ[eot:t+1|o1:t−1]

= u>otÊ[ξt|o1:t−1] = BotQt

with a normalization constant given by

1

1>BotQt

(A.5)

In a realistic setting, we have rank(P2,1) = m < |O|. Therefore we project the predic-
tive state using a matrix U that preserves the dynamics, by requiring that U>O (i.e. U is an
independent set of columns spanning the range of the observation matrix O).

It can be shown [10] that R(O) = R(P2,1) = R(P2,1P
−1
1,1). Therefore, we can use

the leading m left singular vectors of Ŵ2,1 , which corresponds to replacing the linear
regression in S1A with a reduced rank regression. However, for the sake of our discussion
will use the singular vectors of P2,1. In more detail, let [U, S, V] be the rank-m SVD
decomposition of P2,1. We use ψt = U>eot and ξt = eot ⊗k U>ot+1. S1 weights are then
given by Ŵ rr

2,1 = U>Ŵ2,1 and Ŵ rr
2:3,1 = U>Ŵ2:3,1 and S2 weights are given by

Ŵ rr = U>Ŵ2:3,1Ê[eo1e
>
o1

]Ŵ>
2,1U

(
U>Ŵ2,1Ê[eo1e

>
o1

]Ŵ>
2,1U

)−1

= U>P̂2:3,1P̂
−1
1,1 V S

(
SV >P̂−1

1,1 V S
)−1

= U>P̂2:3,1P̂
−1
1,1 V

(
V >P̂−1

1,1 V
)−1

S−1 (A.6)

20

In the limit of infinite data, V spans range(O) = rowspace(P2:3,1) and hence P2:3,1 =
P2:3,1V V

>. Substituting in (A.6) gives

W rr = U>P2:3,1V S
−1 = U>P2:3,1

(
U>P2,1

)+

Similar to the full-rank case we define, for each observation x an m× |O|2 selector matrix
ux = δx ⊗k Im and an observation operator

Bx = u>x Ŵ
rr → U>P3,x,1

(
U>P2,1

)+
(A.7)

This is exactly the observation operator obtained in [10]. However, instead of using A.6,
they use A.7 with P3,x,1 and P2,1 replaced by their empirical estimates.

Note that for a state bt = E[ξt|o1:t−1],Bxbt = P (ot|o1:t−1)E[ξt+1|o1:t] = P (ot|o1:t−1)bt+1.
To get bt+1, the normalization constant becomes 1

P (ot|o1:t−1)
= 1

b>∞Bxbt
, where b>∞b = 1 for

any valid predictive state b. To estimate b∞ we solve the aforementioned condition for
states estimated from all possible values of history features ht. This gives,

b>∞Ŵ
rr
2,1I|O| = b>∞U

>P̂2,1P̂
−1
1,1 I|O| = 1>|O|,

where the columns of I|O| represent all possible values of ht. This in turn gives

b>∞ = 1>|O|P̂1,1(U>P̂2,1)+

= P̂>1 (U>P̂2,1)+,

the same estimator proposed in [10].

A.2 Stationary Kalman Filter

A Kalman filter is given by

st = Ost−1 + νt

ot = Tst + εt

νt ∼ N (0,Σs)

εt ∼ N (0,Σo)

We consider the case of a stationary filter where Σt ≡ E[sts
>
t] is independent of t. We

choose our statistics

ht = ot−H:t−1

ψt = ot:t+F−1

ξt = ot:t+F

21

It can be shown [2, 25] that

E[xt|ht] = Σs,hΣ
−1
h,hht

and it follows that

E[ψt|ht] = ΓΣs,hΣ
−1
h,hht = W1ht

E[ξt|ht] = Γ+Σs,hΣ
−1
h,hht = W2ht

where Γ is the extended observation operator

Γ ≡


O
OT

...
OT F

 ,Γ+ ≡


O
OT

...
OT F+1


It follows that F and H must be large enough to have rank(W) = n. Let U ∈ RmF×n

be the matrix of left singular values ofW1 corresponding to non-zero singular values. Then
U>Γ is invertible and we can write

E[ψt|ht] = UU>ΓΣs,hΣ
−1
h,hht = W1ht

E[ξt|ht] = Γ+Σs,hΣ
−1
h,hht = W2ht

E[ξt|ht] = Γ+(U>Γ)−1U>
(
UU>ΓΣs,hΣ

−1
h,hht

)
= WE[ψt|ht]

which matches the instrumental regression framework. For the steady-state case (constant
Kalman gain), one can estimate Σξ from the data. E[ξt+1|ht] and Σξ then specify a joint
Gaussian distribution where marginalization and conditioning can be easily performed.

A.3 HSE-PSR

We define a class of non-parametric two-stage instrumental regression models. By using
conditional mean embedding [21] as S1 regression model, we recover a single-action vari-
ant of HSE-PSR [5]. Assume ψt ∈ X with a reproducing kernel kX and that ξt is defined as
the tuple (ot⊗ot, ψt+1⊗ot). Let Ψ ∈ X ×RN , Ξ ∈ Y×RN and H ∈ Z×RN be operators
that represent training data. Specifically, ψs, ξs, ht are the sth ”columns” in Ψ and Ξ and
H respectively. It is possible to implement S1 using a non-parametric regression method
that takes the form of a linear smoother. In such case the training data for S2 regression

22

take the form

Ê[ψt | ht] =
N∑
s=1

βs|htψs

Ê[ξt | ht] =
N∑
s=1

γs|htξs,

where βs and γs depend on ht. This produces the following training operators for S2
regression:

Ψ̃ = ΨB

Ξ̃ = ΞΓ,

where Bst = βs|ht and Γst = γs|ht . With this data, S2 regression uses a Gram matrix
formulation to estimate the operator

W = ΞΓ(B>GX ,XB + λIN)−1B>Ψ∗ (A.8)

Note that we can use an arbitrary method to estimate B. Using conditional mean maps,
the weight matrix B is computed using kernel ridge regression

B = (GZ,Z + λIN)−1GZ,Z (A.9)

HSE-PSR learning is similar to this setting, with ψt being a conditional expectation
operator of test observations given test actions. For this reason, kernel ridge regression is
replaced by application of kernel Bayes rule [9].

For each t, S1 regression will produce a denoised prediction Ê[ξt | ht] as a linear
combination of training feature maps

Ê[ξt | ht] = Ξαt =
N∑
s=1

αt,sξs

This corresponds to the covariance operators

Σ̂ψt+1ot|ht =
N∑
s=1

αt,sψs+1 ⊗ os = Ψ′diag(αt)O
∗

Σ̂otot|ht =
N∑
s=1

αt,sos ⊗ os = Odiag(αt)O
∗

Where, Ψ′ is the shifted future training operator satisfying Ψ′et = ψt+1 Given these two
covariance operators, we can use kernel Bayes rule [9] to condition on ot which gives

Qt+1 = Ê[ψt+1 | ht] = Σ̂ψt+1ot|ht(Σ̂otot|ht + λI)−1ot. (A.10)

23

Replacing ot in (A.10) with its conditional expectation
∑N

s=1 αsos corresponds to marginal-
izing over ot (i.e. prediction). A stable Gram matrix formulation for (A.10) is given by [9]

Qt+1

= Ψ′diag(αt)GO,O((diag(αt)GO,O)2 + λNI)−1

.diag(αt)O
∗ot+1

= Ψ′α̃t+1, (A.11)

which is the state update equation in HSE-PSR. Given α̃t+1 we perform S2 regression to
estimate

P̂t+1 = Ê[ξt+1 | o1:t+1] = Ξαt+1 = WΨ′α̃t+1,

where W is defined in (A.8).

Appendix B. Proofs
B.1 Proof of Main Theorem

In this section we provide a proof for theorem 2. We provide finite sample analysis of
S1, covariance estimation and regularization effects. The asymptotic statement becomes a
natural consequence.

We will make use of matrix Brenestein’s inequality stated below:

Lemma B.1 (Matrix Bernestein’s Inequality [12]) Let A be a random square symmetric
matrix, and r > 0, v > 0 and k > 0 be such that, almost surely,

E[A] = 0, λmax[A] ≤ r,

λmax[E[A2]] ≤ v, tr(E[A2]) ≤ k.

If A(1), A(2), . . . , At are independent copies of A, then for any t > 0,

Pr

[
λmax

[
1

N

N∑
t=1

An

]
>

√
2vt

N
+

rt

3N

]
≤ kt

v
(et − t− 1)−1. (B.1)

If t ≥ 2.6, then t(Et − t− 1)−1 ≤ e−t/2.

Recall that we have four sources of error: first, the error due to the input xtest not being
inR(Σx̄x̄); second, error in S1 regression causes the input to S2 regression procedure (x̂, ŷ)
to be perturbed version of the true (x̄, ȳ); third, the covariance operators are estimated
from a finite sample of size N ; and fourth, there is the effect of regularization. In the

24

proof, we characterize the effect of each source of error. To do so, we define the following
intermediate quantities:

Wλ = Σȳx̄ (Σx̄x̄ + λI)−1 (B.2)

W̄λ = Σ̂ȳx̄

(
Σ̂x̄x̄ + λI

)−1

, (B.3)

where

Σ̂ȳx̄ ≡
1

N

N∑
t=1

ȳt ⊗ x̄t

and Σ̂x̄x̄ is defined similarly. Basically, Wλ captures only the effect of regularization and
W̄λ captures in addition the effect of finite sample estimate of the covariance. W̄λ is the
result of regression if x̄ and ȳ were observed instead of x̂ and ŷ. It is important to note
that Σ̂x̄ȳ and Σ̂x̄x̄ are not observable quantities since they depend on the true expectations
x̄ and ȳ. We will use λxi and λyy denote the eigenvalues of Σx̄x̄ and Σȳȳ respectively, in
descending order and will use ‖.‖ to denote the operator norm.

Before we prove the main theorem, we define the quantities ζ x̄x̄δ,N and ζ x̄ȳδ,N which we
use to bound the effect of covariance estimation from finite data, as stated in the following
lemma:

Lemma B.2 (Covariance error bound) Let N be a positive integer and δ ∈ (0, 1) and
assume that ‖x̄‖, ‖ȳ‖ < c <∞ almost surely. Let ζ x̄ȳδ,N be defined as:

ζ x̄ȳδ,N =

√
2vt

N
+

rt

3N
, (B.4)

where

t = max(2.6, 2 log(2k/δv))

r = c2 + ‖Σx̄ȳ‖
v = c2 max(λy1, λx1) + ‖Σx̄ȳ‖2

k = 2c2
√

tr(Σx̄x̄)tr(Σȳȳ)

Similarly, let ζ x̄x̄δ,N be defined as:

ζ x̄x̄δ,N =

√
2v′t′

N
+
r′t′

3N
, (B.5)

where

t′ = max(2.6, 2 log(2k′/δv′))

r′ = c2 + λx1

v′ = c2λx1 + λ2
x1

k′ = c2tr(Σx̄x̄)

25

It follows that, with probability at least 1− δ/2,

‖Σ̂x̄x̄ − Σx̄x̄‖ < ζ x̄x̄δ,N

‖Σ̂ȳx̄ − Σȳx̄‖ < ζ x̄ȳδ,N .

Proof Lemma B.1 shows that in order to bound the probability of exceeding the bound to
be below δ/2, t can be set to max(2.6, 2k log(2/δv)). So, it remains to find suitable values
for r, v and k.

We start with ζ x̄x̄δ,N . By setting At = x̄t ⊗ x̄t − Σx̄x̄ we get

λmax[A] ≤ ‖x̄‖2 + ‖Σx̄x̄‖ ≤ c2 + λx1 = r′,

λmax[E[A2]] = λmax[E[‖x̄‖2(x̄⊗ x̄)

− (x̄⊗ x̄)Σx̄x̄ + Σx̄x̄(x̄⊗ x̄)− Σx̄x̄
2]

= λmax[E[‖x̄‖2(x̄⊗ x̄)− Σx̄x̄
2]

≤ c2λx1 + λ2
x1 = v′

tr[E[A2]] = tr[E[‖x̄‖2(x̄⊗ x̄)− Σx̄x̄
2]

≤ tr[E[‖x̄‖2(x̄⊗ x̄)] ≤ c2tr(Σx̄x̄) = k′

Now moving to ζ x̄ȳδ,N , we have Bt = ȳt ⊗ x̄t − Σȳx̄. Since Bt is not square, we use the
Hermitian dilation similar to [24]:

A = H (B) =

[
0 B
B∗ 0

]
Note that

λmax[A] = ‖B‖, A2 =

[
BB∗ 0

0 B∗B

]
therefore suffices to bound λmax[1

N

∑N
t=1 At] using an argument similar to that used in

ζδ,Nxx case.

To prove theorem 2, we write

‖Ŵλxtest −Wxtest‖Y ≤ ‖(Ŵλ − W̄λ)x̄test‖Y
+ ‖(W̄λ −Wλ)x̄test‖Y
+ ‖(Wλ −W)x̄test‖Y (B.6)

We will now present bounds on each term. We consider the case where x̄test ∈ R(Σx̄x̄).
Extension to R(Σx̄x̄) is a result of the assumed boundedness of W , which implies the
boundedness of Ŵλ −W .

26

Lemma B.3 (Error due to S1 Regression) Assume that ‖x̄‖, ‖ȳ‖ < c <∞ almost surely,
and let ηδ,N be as defined in Definition 1. The following holds with probability at least 1−δ

‖Ŵλ − W̄λ‖ ≤
√
λy1 + ζ ȳȳδ,N

(2cηδ,N + ηδ,N
2)

λ
3
2

+
(2cηδ,N + ηδ,N

2)

λ

= O

ηδ,N
1

λ
+

√
1 + log(1/δ)√

N

λ
3
2

 .

The asymptotic statement assumes ηδ,N → 0 as N →∞.

Proof Write Σ̂x̂x̂ = Σx̄x̄ + ∆x and Σ̂ŷx̂ = Σȳx̄ + ∆yx. We know that, with probability at
least 1− δ/2, the following is satisfied for all unit vectors φx ∈ X and φx ∈ Y

〈φy,∆yxφx〉Y =
1

N

N∑
t=1

〈φy, ŷt〉Y〈φx, x̂t〉X

− 〈φy, ŷt〉Y〈φx, x̄t〉X
+ 〈φy, ŷt〉Y〈φx, x̄t〉X − 〈φy, ȳt〉Y〈φx, x̄t〉X

=
1

N

∑
t

〈φy, ȳt + (ŷt − ȳt)〉Y〈φx, x̂t − x̄t〉X

+ 〈φy, ŷt − ȳt〉Y〈φx, x̄t〉X
≤ 2cηδ,N + η2

δ,N

Therefore,

‖∆yx‖ = sup
‖φx‖X≤1,‖φy‖Y≤1

〈φy,∆yxφx〉Y ≤ 2cηδ,N + η2
δ,N ,

and similarly

‖∆x‖ ≤ 2cηδ,N + ηδ,N
2,

with probability 1− δ/2. We can write

Ŵλ − W̄λ = Σ̂ȳx̄

(
(Σx̄x̄ + ∆x + λI)−1 − (Σ̂x̄x̄ + λI)−1

)
+ ∆yx(Σ̂x̄x̄ + ∆x + λI)−1

Using the fact that B−1−A−1 = B−1(A−B)A−1 for invertible operators A and B we get

Ŵλ − W̄λ = −Σ̂ȳx̄(Σ̂x̄x̄ + λI)−1∆x(Σ̂x̄x̄ + ∆x + λI)−1

+ ∆yx(Σ̂x̄x̄ + ∆x + λI)−1

27

we then use the decomposition Σ̂ȳx̄ = Σ̂
1
2
ȳȳV Σ̂

1
2
x̄x̄, where V is a correlation operator satisfy-

ing ‖V ‖ ≤ 1. This gives

Ŵλ − W̄λ =

− Σ̂
1
2
ȳȳV Σ̂

1
2
x̄x̄(Σ̂x̄x̄ + λI)−

1
2 (Σ̂x̄x̄ + λI)−

1
2

.∆x(Σ̂x̄x̄ + ∆x + λI)−1

+ ∆yx(Σ̂x̄x̄ + ∆x + λI)−1

Noting that ‖Σ̂
1
2
x̄x̄(Σ̂x̄x̄+λI)−

1
2‖ ≤ 1, the rest of the proof follows from triangular inequality

and the fact that ‖AB‖ ≤ ‖A‖‖B‖

Lemma B.4 (Error due to Covariance) Assuming that ‖x̄‖X , ‖ȳ‖Y < c < ∞ almost
surely, the following holds with probability at least 1− δ

2

‖W̄λ −Wλ‖ ≤
√
λy1ζ

x̄x̄
δ,Nλ

− 3
2 +

ζ x̄ȳδ,N
λ

, where ζ x̄x̄δ,N and ζ x̄ȳδ,N are as defined in Lemma B.2.

Proof Write Σ̂x̄x̄ = Σx̄x̄ + ∆x and Σ̂ȳx̄ = Σȳx̄ + ∆yx. Then we get

W̄λ −Wλ = Σȳx̄

(
(Σx̄x̄ + ∆x + λI)−1 − (Σx̄x̄ + λI)−1

)
+ ∆yx(Σx̄x̄ + ∆x + λI)−1

Using the fact that B−1−A−1 = B−1(A−B)A−1 for invertible operators A and B we get

W̄λ −Wλ = −Σȳx̄(Σx̄x̄ + λI)−1∆x(Σx̄x̄ + ∆x + λI)−1

+ ∆yx(Σx̄x̄ + ∆x + λI)−1

we then use the decomposition Σȳx̄ = Σȳȳ

1
2V Σx̄x̄

1
2 , where V is a correlation operator

satisfying ‖V ‖ ≤ 1. This gives

W̄λ −Wλ =

− Σȳȳ

1
2V Σx̄x̄

1
2 (Σx̄x̄ + λI)−

1
2 (Σx̄x̄ + λI)−

1
2

.∆x(Σx̄x̄ + ∆x + λI)−1

+ ∆yx(Σx̄x̄ + ∆x + λI)−1

Noting that ‖Σx̄x̄

1
2 (Σx̄x̄ + λI)−

1
2‖ ≤ 1, the rest of the proof follows from triangular in-

equality and the fact that ‖AB‖ ≤ ‖A‖‖B‖

28

Lemma B.5 (Error due to Regularization on inputs withinR(Σx̄x̄)) For any x ∈ R(Σx̄x̄)

s.t. ‖x‖X ≤ 1 and ‖Σx̄x̄
− 1

2x‖X ≤ C. The following holds

‖(Wλ −W)x‖Y ≤
1

2

√
λ‖W‖HSC

Proof Since x ∈ R(Σx̄x̄) ⊆ R(Σx̄x̄

1
2), we can write x = Σx̄x̄

1
2v for some v ∈ X s.t.

‖v‖X ≤ C. Then

(Wλ −W)x = Σȳx̄((Σx̄x̄ + λI)−1 − Σx̄x̄
−1)Σx̄x̄

1
2v

LetD = Σȳx̄((Σx̄x̄+λI)−1−Σx̄x̄
−1)Σx̄x̄

1
2 . We will bound the Hilbert-Schmidt norm of

D. Let ψxi ∈ X , ψyi ∈ Y denote the eigenvector corresponding to λxi and λyi respectively.
Define sij = |〈ψyj,Σx̄ȳψxi〉Y |. Then we have

|〈ψyj, Dψxi〉Y | = 〈ψyj,Σȳx̄
λ

(λxi + λ)
√
λxi

ψxi〉
Y

=
λsij

(λxi + λ)
√
λxi

=
sij√
λxi

1
1

λ/λxi
+ 1

≤ sij√
λxi

.
1

2

√
λ

λxi
=

1

2

√
λ
sij
λxi

=
1

2

√
λ|〈ψyj,Wψxi〉Y |,

where the inequality follows from the arithmetic-geometric-harmonic mean inequality.
This gives the following bound

‖D‖2
HS =

∑
i,j

〈ψyj, Dψxi〉2Y ≤
1

2

√
λ‖W‖2

HS

and hence

‖(Wλ −W)x‖Y ≤ ‖D‖‖v‖X ≤ ‖D‖HS‖v‖X

≤ 1

2

√
λ‖W‖HSC

Note that the additional assumption that ‖Σx̄x̄
− 1

2x‖X ≤ C is not required to obtain an
asymptotic O(

√
λ) rate for a given x. This assumption, however, allows us to uniformly

bound the constant. Theorem 2 is simply the result of plugging the bounds in Lemmata
B.3, B.4, and B.5 into (B.6) and using the union bound.

29

B.2 Proof of Lemma 5

for t = 1: Let I be an index set over training instances such that

Q̂test
1 =

1

|I|
∑
i∈I

Q̂i

Then

‖Q̂test
1 − Q̃test

1 ‖X =
1

|I|
∑
i∈I

‖Q̂i − Q̃i‖X ≤
1

|I|
∑
i∈I

‖Q̂i −Qi‖X ≤ ηδ,N

for t > 1: Let A denote a projection operator onR>(Σȳȳ)

‖Q̂test
t+1 − Q̃test

t+1‖X ≤ L‖P̂ test
t − P̃ test

t ‖Y ≤ L‖AŴλQ̂
test
t ‖Y

≤ L

∥∥∥∥∥∥ 1

N

(
N∑
i=1

AP̂i ⊗ Q̂i

)(
1

N

N∑
i=1

Q̂i ⊗ Q̂i + λI

)−1
∥∥∥∥∥∥
∥∥∥Q̂test

t

∥∥∥
X

≤ L

∥∥∥∥∥ 1

N

N∑
i=1

AP̂i ⊗ AP̂i

∥∥∥∥∥
1
2

1√
λ
‖Q̂test

t ‖X ≤ L
ηδ,N√
λ
‖Q̂test

t ‖X ,

where the second to last inequality follows from the decomposition similar to ΣY X =

Σ
1
2
Y V Σ

1
2
X , and the last inequality follows from the fact that ‖AP̂i‖Y ≤ ‖P̂i − P̄i‖Y . �

30

	Introduction
	Instrumental Regression for Dynamical Systems
	Related Work
	Theoretical Analysis
	Case Study I: Learning A Knowledge Tracing Model
	Data Description
	Model Description
	Evaluation Procedure and Results

	Case Study II: Neural Spike Data
	Data Description
	Model Description
	Evaluation Procedure and Results

	Conclusion
	Spectral and HSE Dynamical System Learning as Regression
	HMM
	Stationary Kalman Filter
	HSE-PSR

	Proofs
	Proof of Main Theorem
	Proof of Lemma 5

