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Abstract 
This paper proposes and develops a new 
graph-based semi-supervised learning method.  
Different from previous graph-based methods that 
are based on discriminative models, our method is 
essentially a generative model in that the class 
conditional probabilities are estimated by graph 
propagation and the class priors are estimated by 
linear regression.  Experimental results on various 
datasets show that the proposed method is superior 
to existing graph-based semi-supervised learning 
methods, especially when the labeled subset alone 
proves insufficient to estimate meaningful class 
priors. 

1 Introduction 
In many real world classification tasks, the number of labeled 
instances is very few due to the prohibitive cost of manually 
labeling every single data point, while the number of 
unlabeled data can be very large since they are easy to obtain.  
Traditional classification algorithms, known as supervised 
learning, only make use of the labeled data, therefore prove 
insufficient in these situations.  To address this problem, 
semi-supervised learning has been developed, which makes 
use of unlabeled data to boost the performance of supervised 
learning.  In particular, graph-based semi-supervised 
learning algorithms have proved to be effective in many 
applications, such as hand-written digit classification [Zhu et 
al., 2003; Zhu et al., 2005], medical image segmentation 
[Grady and Funka-Lea, 2004], word sense disambiguation 
[Niu, Ji and Tan, 2005], image retrieval [He et al., 2004], etc. 
 Compared with other semi-supervised learning methods, 
such as TSVM [Joachims, 1999], which finds the hyperplane 
that separates both the labeled and unlabeled data with the 
maximum margin, graph-based semi-supervised learning 
methods make better use of the data distribution revealed by 
unlabeled data.  In graph-based semi-supervised learning, a 
weighted graph is first constructed in which both the labeled 
and unlabeled data are represented as vertices.  Then many of 
these methods can be viewed as estimating a function on the 
graph [Zhu, 2005].  Based on the assumption that nearby 
points in the feature space are likely to have the same label, 
the function is defined to be locally smooth and consistent 

with the labeled data.  Finally, the classification labels are 
obtained by comparing the function value and a pre-specified 
threshold.  For example, in the Gaussian random fields and 
harmonic function method, the learning problem is 
formulated in terms of a Gaussian random field on the graph, 
and the mean of the field serves as the function [Zhu et al., 
2003].  Another example is the local and global consistency 
method, in which the function at each point is iteratively 
determined by both the information propagated from its 
neighbors and its initial label [Zhou et al., 2004].  Yet another 
example is the graph mincut method whose function 
corresponds to partitioning the graph in a way that roughly 
minimizes the number of similar pairs of examples that are 
given different labels [Blum and Chawla, 2001].  In the 
mincut method, the function can only take binary values. 
 Up till now, graph-based semi-supervised learning 
methods are generally approached from the discriminative 
perspective [Zhu, 2005] in that the function on the graph 
corresponds to posterior probabilities in one way or another.  
In the discriminative setting, however, the use of unlabeled 
data does not necessarily guarantee better decision 
boundaries.  In addition, there is no clear explanation why the 
function on the graph should correspond to posterior 
probabilities from statistics point of view. 
 In this paper, we propose a new graph-based 
semi-supervised learning method from the generative model 
perspective.  Specifically, the class conditional probabilities 
and the class priors are estimated from the weighted graph.  
The potential advantages involve several aspects: first, it can 
be theoretically justified that in the ideal cases where the two 
classes are separable, the output functions in terms of certain 
eigenvectors of the graph Laplacian converge to the class 
conditional probabilities as the number of training data goes 
to infinity.  In non-ideal cases, our functions still provide a 
good estimate of the class conditional probabilities.  Finally, 
the estimated class priors make use of both the labeled and 
unlabeled data, which compensate for the lack of label 
information in many practical situations.  Experimental 
results show that our approach leads to better performance 
than other existing graph-based methods on a variety of 
datasets.  Hence we can claim both stronger theoretical 
justification and better empirical results. 
 Compared with previous theoretical work on graph-based 
semi-supervised learning, such as [Hein et al., 2007], in 
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which the authors determined the pointwise limit of three 
different graph Laplacians used in the literature as the sample 
size increases and the neighborhood size approaches zero, 
and [Niyogi, 2008], in which the author exposed the natural 
structure of a class of problems on which manifold 
regularization methods are helpful, the major theoretical 
contribution of this paper is to relate the eigenvectors of the 
graph Laplacian to the class conditional probabilities. As far 
as we know, this is the first attempt in this line of research. 
 The rest of the paper is organized as follows.  In Section 2 
and Section 3, we introduce how to estimate the class 
conditional probabilities and the class priors respectively.  
Section 4 deals with the out-of-sample problem, followed by 
an outline of the algorithm in Section 5.  Then the 
experimental results are shown in Section 6.  Finally, we give 
conclusion and hint on future work in Section 7. 

2 Estimating Class Conditional Probabilities 

2.1 Notation 
In a binary classification problem, suppose that we are given 
a set of n  training examples: .  The first  
examples are labeled, including  positive 
( ) and  negative 
( ) examples.  The remaining 
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iy  is predicted to be 1 iff ( )1| 0.5i iP y x= ≥ .  In our 
generative model, in order to calculate , we need to 

estimate both 

( |i iP y x )
( )i iP x y  and ( )P y .  In this section, we focus 

on estimating the class conditional probability ( )i iP x y , and 
the estimation of ( )P y  will be discussed in the next section. 
 We first form an affinity matrix n nW ×∈\  with 

( ),ij i jW x xϕ= , where ( ),i jx xϕ  is a non-negative function 
measuring the direct similarity between ix  and jx .  Then 
define  as the diagonal matrix, where 
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f +  and f −  as two -dimensional vectors.  The element of n
f +  ( f − ) is set to 1 iff the corresponding point is a positive 

(negative) labeled one. 

2.2 The Ideal Case 
To start with, let us first consider the ideal case where the two 
classes are far apart.  In this case, we have the following 
equation: 
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where xy  is the observed class label of data point x . 
 Based on this assumption, if ix  and jx  are from two 
different classes, the corresponding .  Therefore if we 
knew the labels of all the examples and put together the 
examples from the same class, the affinity matrix W , and 
thus the symmetric matrix S  would be block-diagonal.  To 
be specific, let 
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where  and  represent the sub-matrices corresponding 
to the positive and negative examples respectively, and 0 
represents zero matrix.  If the total number of positive 
(negative) examples in the training set is  ( ),  ( ) is 
an 
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1 1n n×  ( 0n n0× ) square matrix.  Let  and  be two 
diagonal matrices, the diagonal elements of which are the 
row sums of  and .  Then  can be written as 
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 The following theorem connects the class conditional 
probabilities with the diagonal elements of . D
Theorem 1. If ( ) ( )( ) ( ), d

i j i j n nx x x xϕ φ σ σ= − , where nσ  is 

a positive parameter and the function ( )φ ⋅  satisfies the 

following conditions: ( ) 0uφ ≥ , , ( ) 1u duφ =∫ ( )sup
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number of examples  goes to infinity, n
iii yD n  converges to 

( )i iP x y . 
 The proof of the theorem is straightforward and therefore 
we put it in the appendix.  Notice that this theorem is similar 
to a result in kernel density estimation.  The difference is that 
in kernel density estimation, we only have labeled data from 
a single class; while in our situation, we have both labeled 
and unlabeled data, and we could estimate the class 
conditional distributions of the two classes at the same time. 
 Suppose that the labeled data are noise-free.  According to 
Theorem 1, we can use  to approximate the class 
conditional probability of 

iiD

ix  given the observed label .  
However, for the unlabeled points, we do not know if  
corresponds to 

iy

iiD

( )1i iP x y =  or ( 0i iP x y = ) .  To address this 
problem, we can make use of the eigenvectors of . S
 It is easy to show that the largest eigenvalue of  and  
is 1, and if  and  form a connected graph respectively, 
the corresponding eigenvectors would be 
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 [Chung, 1997].  Based on  and , we can 
construct two eigenvectors of  with eigenvalue 1: 
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where  is a zero vector.  Notice that if we square v0
G

+  and 
 by elements to get  and ( , and then add them up, 
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 Obviously, (  and (  correspond to )2
v+ )2

v− ( )1i iP x y =  and 

( 0i iP x y = )  respectively, and their non-zero elements are 
equal to . iiD

 To get v  and , we perform + v− f S f+ +← ⋅  and 
f S f− ← ⋅ −  until convergence.  Since the initial value of f +  

is not orthogonal to v  (the elements of + f +  and  are 
non-negative), 

1v

f +  will converge to v .  Similarly, + f −  will 

converge to .  Therefore, upon convergence, v− ( )2
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is in proportion to the class conditional probability of the 
positive (negative) class.  After normalizing ( )2

if
+  ( ( )2

if
− ) 

so that it sums to 1, we have an empirical estimation of 
( )1i iP x y =  ( ( 0i iP x y = ) ), which converges to its true value 

as  goes to infinity. n
 Figure 1 gives an example of density estimation in the 
ideal case.  Figure 1(a) shows the training data, where the two 
moons represent two classes, and each class has one labeled 
example marked as star.  Figure 1(b) and 1(c) show the 
estimated class conditional distributions of the two classes. 
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(a) 

(b) (c) 
Figure 1. Density Estimation in the Ideal Case. (a): training data; (b) 
and (c) class conditional distributions 

2.3 The General Case 
In the general cases, the two classes are not far apart, and we 
have the following theorem. 
Theorem 2. If ( ),i jx xϕ  satisfies the conditions in Theorem 1, 
as the number of examples n  goes to infinity, iiD n  
converges to ( ) ( ) ( ) ( )1 1 0 0i i i iP x y P y P x y P y= = + = =  

The proof to this theorem is quite similar to Theorem 1.  So 
we omit the details here.  It can be seen easily that Theorem 1 
is a special case of Theorem 2 when the two classes are far 
apart, i.e. 
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 Equation (7), together with the fact that ( )1lim 1
n

n n P y
→∞

= = , 
leads to Theorem 1. 
 In the general cases,  tends to form one connected graph 
instead of two, and S  only has one eigenvector that 
corresponds to eigenvalue 1.  If we still iterate 

W

f S f+ +← ⋅  
and f S f− −← ⋅  until convergence, both f +  and f −  will 
converge to the same eigenvector.  On the other hand, the 
operation of f S f+ +⋅  and f S f− ← ⋅← −  can be seen as the 
labeled data gradually spreading their information to nearby 
points.  If the iteration steps are unlimited, every data point 
will be equally influenced by the positive and negative 
labeled data, leading to the same value of f +  and f − . 
 To solve this problem, in our algorithm, we have designed 
a stopping criterion, and the iteration process is stopped once 
the criterion is satisfied.  To be more specific, when 
estimating the class conditional probabilities of the positive 
class, we could get an estimate of ( )1i iP x y =  in each 

iteration step (by normalizing ( )2

if
+  so that it sums to 1).  By 

summing up this probability for negative labeled examples, 
we have the average likelihood of these examples in the 
positive class: ( )( )1

1ln
i ii n

L P x y
+

n+ −= +
= =∑ .  We stop the 

iteration when the second derivative of  with respect to the 
iteration steps crosses 0.  This criterion can be justified as 
follows: in the initial iteration steps, only a few negative data 
get positive score from their nearby positive labeled points, 
so the rate at which 

L+

L+  increases is very low; as the iteration 
proceeds, those negative data have accumulated high scores 
and propagate to the majority of negative points, so the rate 
gradually increases; finally, as f +  begins to converge, its 
value at each data point becomes stable, so the rate decreases 
until it reaches 0.  If we plot the curve of L  with respect to 
the number of iteration steps, the shape would be convex first, 
and then concave until convergence (Figure 2(b)).  Notice 
that in the initial iteration steps, the positive points, which are 
far away from the positive labeled points but connected to 
them via some kind of manifold, cannot get positive scores.  
If the algorithm stops at this stage, it may not fully explore 
the data distribution and cause misclassification on certain 
clusters of data.  Therefore we choose the transition point 
between convex and concave as the stopping point in order to 
trade off between prematurity and excessive propagation.  
The stopping criterion for the negative class can be derived 
similarly, i.e. 

+

( )( )1
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0ln
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= =∑ .  A key point in our 

algorithm is that the estimation of the class conditional 
probabilities of the two classes is independent, i.e. the 



numbers of iteration steps when the two stopping criterions 
are satisfied are not necessarily the same1. 
 Figure 2 gives an example of density estimation in the 
general case showing the effectiveness of our criterion.  This 
example is quite similar to the one shown in Figure 1 except 
that the two classes are not far apart.  Figure 2(b) shows the 
value of L+  (the upper curve) and L−  (the lower curve) in 
each iteration step.  The arrows point to the positions in the 
curves where the two criterions are satisfied.  Figure 2(c) and 
2(d) show the estimated class conditional distributions of the 
two classes.  Although there are small gaps in the middle of 
the distributions, the moon structure is recovered fairly well. 
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Figure 2. Density Estimation in the Generation Case. (a): training 
data; (b): L+  and L−  in each iteration; (c) and (d): class conditional 
distributions. 
 Note that the stopping criterion discussed above is based 
on simple heuristics.  Currently we are trying to design a 
stopping criterion in a more principled manner. 

3 Estimating Class Priors 
In this section, we focus on estimating the class prior ( )P y .  
Existing graph-based semi-supervised learning methods only 
use the labeled set to estimate the class priors, either 
explicitly [Zhu et al., 2003] or implicitly [Zhou et al., 2004].  
Obviously, in real applications, the proportion of positive and 
negative labeled data is often far from the true class priors. 
 In our algorithm, we use both the labeled and unlabeled 
data to estimate the class priors.  According to Theorem 2, 
once we have estimated the class conditional probability 
( )i iP x y , we can feed them into the following equations and 

form a linear regression problem, the solution of which is 
equal to the least squares estimate of ( )1P y = . 

                                                 
1 We have also tried other stopping criterions, such as the one 

that stops when the first derivative of L+  ( L− ) crosses 0, the one 
that stops when L+  ( L− ) exceeds a certain threshold, etc. The 
current criterion performs the best among the different stopping 
criterions; hence it is used in our algorithm. 
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 However, when the number of labeled data is small, the 
estimated class conditional probabilities may not be very 
accurate, and thus p  is not very reliable.  To solve this 
problem, we use a beta distribution as the prior distribution 
for 

ˆ

( )1P y = , the parameters of which are  and 1p̂ p̂− .  Then 
the estimate of ( )1P y =  based on the labeled set: 
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which is equivalent to smoothing the proportion of the 
positive and negative examples in the labeled set.  When the 
number of labeled data is small, unlabeled data can be fully 
exploited to compensate for the proportion in the labeled set 
that is not the same as the class priors; when the number of 
labeled data is large, labeled data will dominate the 
estimation of the class priors. 

4 Prediction of New Testing Data 
To classify a data point  that is not present during the 
training stage, we first calculate its class conditional 
probabilities via the following formula: 

dx∈\
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 Based on the conditions in Theorem 1, we have 
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Therefore, ( )p x y  is a valid probability distribution. 
    Using these class conditional probabilities and the class 
priors obtained during the training stage, we can calculate the 
posterior probability and make a prediction. 

5 The Algorithm 
The procedures for estimating ( )yi ip x  and ( )P y  are 
summarized in Table 1 and Table 2 respectively. 

6 Experimental Results 
In this section, we present the comparative experimental 
results on two datasets: Cedar Buffalo binary digits database 
[Hull, 1994], and a document genre-classification dataset 
[Liu et al., 2003].  Our algorithm is compared with two other 
graph-based semi-supervised learning methods: Gaussian 
random fields [Zhu et al., 2003] and the local and global 
consistency method [Zhou et al., 2004].  We did not compare 
with supervised learning methods, such as one nearest 
neighbor, since they have been proved to be less effective 
than Gaussian random fields based on experimental results 
[Zhu et al., 2003]. 
 We have designed two kinds of experiments: balanced and 
unbalanced.  In the balanced case, the ratio of labeled points 
from each class is always the same as the class priors; in the 
unbalanced case, if not explained otherwise, we fix the total 
number  of labeled points, and perturb the number of ln



positive labeled points around 2ln  with a Gaussian 
distribution of mean 0 and standard deviation 10l .  In each 
experiment, we gradually increase the number of labeled data, 
perform 20 trials for each labeled data volume, and average 
the accuracy at each volume point. 

n

1. Form the affinity matrix , where n nW ×∈\
( ),ij i jW x xϕ= .  Calculate  and . D S

2. Initialize f +  and f − .  The element of f +  ( f − ) is set 
to 1 if the corresponding point is a positive (negative) 
labeled one, and 0 otherwise. 

3. Update f S f+ +← ⋅ , f S f− −← ⋅ . 
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5. Calculate the average likelihood of negative (positive) 
labeled points in the positive (negative) class: 
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Go to step 4 unless one of the following conditions is 
satisfied: 
a. L  ( ) remains at 0, and + L− f +  ( f − ) has converged;
b. L  ( ) does not remain at 0, and the second 

derivative of L  ( ) with respect to the iteration 
steps crosses 0. 

+ L−

+ L−

6. Output ( )1i iP x y =  and ( )0i iP x y = . 

Table 1. Description of Estimation for ( )i ip x y  

1. Solve the following linear regression problem for the 
least squares estimator  of p̂ ( )1P y = : 

   ( ) ( ) ( )ˆ ˆ1 1 0 , 1, ,i i i i iip P x y p P x y D n i n⋅ = + − ⋅ = = = …  
2. Calculate the class priors as the smoothed proportion of 

the positive and negative examples in the labeled set 

( ) ( ) (1ˆ
1 , 0 1

1
l

l

p nP y P y P y
n

+
= = = = − =

+
)1  

Table 2. Description of Estimation for ( )P y  

6.1 Cedar Buffalo Binary Digits Database 
We first perform experiments on Cedar Buffalo binary digits 
database [Hull, 1994] including two classification tasks: 
classifying digits “1” vs “2”, with 1100 images in each class; 
and odd vs even digits, with 2000 images in each class (400 
images for each digit).  The data we use are the same as those 
used in [Zhu et al., 2003].  Here 

( ) ( ) ( )2 22, 2 exp 2
d

i j i jx x x x 2ϕ πσ σ
−

= − − , where σ  is the 

average distance between each data point and its 10 nearest 
neighbors. 
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Figure 3. Balanced Classification. (a): 1 vs 2; (b) odd vs even 
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Figure 4. Unbalanced Classification. (a): 1 vs 2; (b) odd vs even 
 Figure 3(a) and 3(b) show the results of the two 
classification tasks in the balanced case.  The performance of 
our algorithm is comparable with Gaussian random fields, 
and both of them are much better than the local and global 
consistency method.  Figure 4(a) and 4(b) show the results in 
the unbalanced case.  In this situation, the performance of 
Gaussian random fields is much worse than in the balanced 
case, while the performance of our algorithm is comparable 
to the balanced case.  This is because the class mass 
normalization procedure adopted in Gaussian random fields 
depends on the labeled set only to estimate the class priors; 
while our algorithm makes use of both the labeled and the 
unlabeled set to estimate the class priors.  Therefore, it is 
more robust against the perturbation in the proportion of the 
positive and negative data in the labeled set. 

6.2 Genre Dataset 
Genre classification is to classify the documents based on its 
writing styles, such as political articles and movie reviews.  
The genre dataset that we use consists of documents from 10 
genres, including biographies (b), interview scripts (is), 
movie reviews (mr), product reviews (pr), product press 
releases (ppr), product descriptions on store websites (pd), 
political articles on newspapers (pa), editorial papers on 
politics (ep), news (n), and search results from multiple 
search engines using 10 queries (sr).  We randomly select 
380 documents from each category to compose the whole 
dataset of 3800 documents.  Each document is processed into 
a “tf.idf” vector, which is generated based on the top 10,000 
most frequent words in this dataset after stemming, with the 
header and stop words removed.  Here 
( ) ( ) ( )( )( ), exp 1 0.0i j i j i jx x x x x xϕ = − − ⋅ 3 , which is 

borrowed from [Zhu et al., 2003] and roughly measures the 
similarity between documents.  The only difference is that we 
keep all the edges instead of keeping edges for only 10 



nearest neighbors.  Next we perform experiments to compare 
the three algorithms.  The results are provided in Figure 5 and 
Figure 6 respectively. 
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Figure 5. Classification between Random Partitions. (a): balanced; 
(b): unbalanced 
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Figure 6. Unbalanced Classification. (a): pa vs other; (b) b vs other 
 For Figure 5, we randomly partition the 10 categories into 
two classes, i.e. pa, pr, sr, b, and is, vs mr, ppr, pd, ep and n.  
Figure 5(a) and 5(b) correspond to the balanced and 
unbalanced cases respectively.  In the balanced case, 
Gaussian random fields is better than our algorithm and the 
local and global consistency method.  This might be because 
the function ( ),i jx xϕ  does not have some of the nice 
properties required by Theorem 2.  However, in the 
unbalanced case, Gaussian random fields tends to suffer a lot.  
On the contrary, our algorithm is quite robust despite of the 
perturbation. 
 In Figure 6, we try to classify pa and b against all the other 
categories.  In these experiments, the class priors are 0.1 for 
the positive class and 0.9 for the negative class.  However, 
here we provide equal numbers of positive and negative 
points in the labeled set.  From the figures, we can see that the 
performance of our algorithm is rather stable, while the 
performance of both Gaussian random fields and the local 
and global consistency method is largely affected by the 
misleading labeled set, since they only depend on the labeled 
set to estimate the class priors, either explicitly or implicitly. 

7 Discussion 

7.1 Objective Function 
It can be shown that in the ideal case, the two functions f +  
and f −  maximize the following objective function with the 
constraints that 1f + =  and 1f − = . 

( ) ( )1, 1 1, 0
l

i

T Tn
ii y i y

where ∞  in front of the first and third terms means that they 
have arbitrarily large weights. However, it is not quite clear 
how this objective function is related to the outputs of our 
algorithm in Table 1 for the general case. Right now, we are 
working in this direction. 

7.2 Generalization to Multiple Classes 
The proposed algorithm can be easily generalized to multiple 
classes. In the binary case, as mentioned in subsection 2.3, 
the estimation of the class conditional probabilities of the two 
classes is independent. Following the same line of reasoning, 
when we have multiple classes, we can use the labeled data to 
estimate the class conditional probability for each class in the 
same way as in Table 1. On the other hand, to estimate the 
class priors, we can formulate a similar linear regression 
problem as in Section 3, and get the least squares estimates of 
the class priors in the same way as in Table 2. 

8 Conclusion and Future Work 
In this paper, we propose a novel graph-based 
semi-supervised learning method to estimate both the class 
conditional probabilities and the class priors.  It is a 
generative model, in contrast to existing graph-based 
methods, which are essentially discriminative.  In the ideal 
case, the estimated class conditional probabilities have been 
proved to converge to the true value.  In the general case, our 
algorithm can still output reasonable estimates of the class 
conditional probabilities.  For data points outside the training 
set, the class conditional probabilities are estimated via 
kernel regression.  When estimating the class priors, we 
effectively use the unlabeled data to make up for the labeled 
data with unrepresentative class prior distributions.  
Experimental results on two datasets demonstrate the 
superiority of our algorithm over recent existing graph-based 
semi-supervised learning methods, especially when the 
proportion in the labeled set is not the same as the class 
priors. 
 In our experiments, we notice that in some cases, adding 
even a single labeled point into the labeled set brings about 
significant improvement in classification accuracy; while in 
other cases, adding many labeled points into the labeled set 
does not help improve the performance.  Currently we are 
incorporating active learning into our framework.  
Particularly, we are interested in determining when to invoke 
active learning (not just which instances to label) in order to 
achieve the biggest gain while minimizing incremental 
labeling cost. 
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Appendix 
Proof of Theorem 1: suppose ix  is from the positive class: 
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 Equation (11) reduces the number of terms in the 
summation from n  to  since  if 1n 0ijW = jx  is from the 

negative class.  ( ),i jx xδ  is a delta function at i jx x= .  A 
corresponding proof applies if ix  is from the negative class. 


