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ABSTRACT
In this paper, we explore salient questions about user interests, con-
versations and friendships in the Facebook social network, using a
novel latent space model that integrates several data types. A key
challenge of studying Facebook’s data is the wide range of data
modalities such as text, network links, and categorical labels. Our
latent space model seamlessly combines all three data modalities
over millions of users, allowing us to study the interplay between
user friendships, interests, and higher-order network-wide social
trends on Facebook. The recovered insights not only answer our
initial questions, but also reveal surprising facts about user interests
in the context of Facebook’s ecosystem. We also confirm that our
results are significant with respect to evidential information from
the study subjects.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; G.3 [Probability and Statis-
tics]

General Terms
Algorithms, Experimentation

Keywords
Facebook data, user interest visualization, multi-view model, topic
model, network model

1. INTRODUCTION
From blogs to social networks to video-sharing sites and still oth-
ers, online social media have grown dramatically over the past half-
decade. These media host and aggregate information for hundreds
of millions of users, and this has sired an unprecedented opportu-
nity to study people on an incredible scale, and over a broad spec-
trum of open problems. In particular, the study of user interests,
conversations and friendships is of special value to the health of a
social network ecosystem. As a classic example, if we had a good
guess as to what a user likes (say, from explicit labels or conver-
sations), we could serve her more appropriate content, which may
increase her engagement with the media, and potentially help to
obtain more structured data about her interests. Moreover, by pro-
viding content that is relevant to the user and her friends, the social

network can increase engagement beyond mere individual content
consumption — witness the explosive success of social games, in
which players are rewarded for engaging in game activities with
friends, as opposed to solitary play.

These examples illustrate how social networks depend on the inter-
play between user interests, conversations and friendships. In light
of this, we seek to answer several questions about Facebook:

• How does Facebook’s social (friendship) graph interact with its interest
graph and conversational content? Are they correlated?

• What friendship patterns occur between users with similar interests?
• Do users with similar interests talk about the same things?
• How do different interests (say, camping and movies) compare? Do

groups of users with distinct interests also exhibit different friendship
and conversational patterns?

To answer these questions on the scales dictated by Facebook, it is
vital to develop tools that can visualize and summarize user infor-
mation in a salient and aggregated way over large and diverse pop-
ulations of users. In particular, it is critical that these tools enable
macroscopic-level study of social network phenomena, for there
are simply too many individuals to study at fine detail. Through the
lens of these tools, we can gain an understanding of how user inter-
ests, conversations and friendships make a social network unique,
and how they make it function. In turn, this can shape policies
aimed at retaining the special character of the network, or at en-
abling novel utilities to drive growth.

1.1 Key Challenges
Much research has been invested in user interest prediction [6, 4,
17, 13, 3], particularly methods that predict user interests by look-
ing at similar users. However, existing works are mostly built on an
incomplete view of the social media data, often solely restricted to
user texts. In particular, the network itself acts a conduit for infor-
mation flow among users, and we cannot attain a complete view of
the social media by ignoring it. Thus, a deep, holistic understand-
ing of user interests and of the network as a whole requires a per-
spective over diverse data modalities (views) such as text, network
links and categorical labels. To the best of our knowledge, a princi-
pled approach that enables such capability has yet to be developed.
Hence, our goal is to produce such a system for understanding the
relationships between user interests, conversations and friendships.

In developing this system, at least two challenges must be properly
addressed. For one, the data scale is unprecedented — Facebook
has hundreds of millions of active users, with diverse modalities of
information associated their profiles: textual status updates, com-
ments on other user’s pages, pictures, and friendships, to name a
few. Any method that does not scale linearly in the amount of data
is bound to fail. The other challenge is the presence of complex



structure in Facebook’s data; its information is not presented as
a simple feature vector, but as a cornucopia of structured inputs,
multimodal in the sense that text, networks, and label data each
seemingly requires a different approach to learning. Even the text
alone cannot be treated as a simple bag of words, for it is separated
into many comments and posts, with potentially sharp changes of
topics and intents. One cannot fully model this rich structure with
methods that require user data to be input as flat feature vectors, or
that require a similarity function between them.

1.2 Solutions
With these challenges in mind, we present a scalable machine learn-
ing system that we use to visualize and explore the interests of mil-
lions of users on Facebook, and that potentially scales to tens or
hundreds of millions of users. The key to this system is a uni-
fied latent space model jointly over text, network and label data,
where some of its building blocks have been inspired by earlier suc-
cessful attempts on certain modalities, such as the supervised La-
tent Dirichlet Allocation model over text and labels [6], the Mixed
Membership Stochastic Blockmodel over networks [1], and the joint
text/citation topic models of Nallapati et al. [18]. We call our model
the Supervised Multi-view Mixed Membership Model (SM4), which
surmounts the multimodal data challenge by transforming user text,
network and label data into an integrated latent feature vector for
each user, and overcomes the scalability challenge by first training
model parameters on a smaller subset of data, after which it infers
millions of user feature vectors in parallel. Both the initial training
phase and the integrated feature vector inference phase require only
linear time and a single pass through the data.

Our system’s most important function is visualization and explo-
ration, which is achieved by deriving other kinds of information
from the data in a principled, statistical manner. For instance, we
can summarize the textual data as collections of related words,
known as topics in the topic modeling literature [6, 5]. Usually,
these topics will be coherent enough that we can assign them an in-
tuitive description, e.g. a topic with the words “basketball", “foot-
ball" and “baseball" is best described as a “sports" topic. Next,
similar to Blei et al. [6], we can also report the correlation between
each topic and the label under study — for instance, if we are study-
ing the label “I vote Democratic", we would expect topics contain-
ing the words “liberal" and “welfare" to be positively correlated
with said label. The value of this lies in finding unexpected top-
ics that are correlated with the label. In fact, we will show that on
Facebook, certain well-known brands are positively correlated with
generic interests such as movies and cooking, while social gaming
by contrast is negatively correlated. Finally, we can explain each
friendship in the social network in terms of two topics, one asso-
ciated with each friend. The motivation behind this last feature is
simple: if we have two friends who mostly talk about sports, we
would naturally guess that their friendship is due to mutual interest
in sports. In particular, interests with a high degree of mutual in-
terest friendships are valuable from a friendship recommendation
perspective. As an example, perhaps “sports" is highly associated
with mutual interest friendships, but not “driving". When rank-
ing potential friends for a user who likes sports and driving, we
should prefer friends that like sports over friends that like driving,
as friendships could be more likely to form over sports.

From this latent topical model, we can construct visualizations like
Figure 3 that summarize all text, network and label data in a sin-
gle diagram. Using this visualization, we proceed with the main
application of this paper, a cross-study of four general user inter-
ests, namely “camping", “cooking", “movies", and “sports". Our

goal is to answer the questions posed earlier about user interests,
conversations and friendships in Facebook, and thus glean insight
into what makes Facebook unique, and how it functions. We also
justify our analyses with quantitative results: by training a linear
classifier [9] on the four interest labels and our system’s user fea-
ture vectors, we demonstrate a statistically significant improvement
in prediction accuracy over a bag-of-words baseline.

2. ALGORITHM OVERVIEW
Our goal is to analyze Facebook user data in the context of a gen-
eral concept, such as “movies" or “cooking". Each Facebook user
is associated with three types of data: text such as (but not limited
to) user “status updates", network links between users based on
friendships, and binary labels denoting interest in the concept (“I
like movies") or lack thereof (“I don’t like movies"). Intuitively,
we want to capture the relationship between concepts, user text and
friendships: for a given concept, we seek words correlated with in-
terest in that concept (e.g. talking about actors may be correlated
with interest in movies), as well as words that are most frequently
associated with each friendship (e.g. we might find two friends that
often talk about actors). By learning and visualizing such relation-
ships between the input text, network and label data (see Figure 1),
we can glean insight into the nature of Facebook’s social structure.

Combining text and network data poses special challenges: while
text is organized into multiple documents per user, networks are
instead relational and therefore incompatible with feature-based
learning algorithms. We solve this using an algorithm that learns
a latent feature space over text, network and label data, which we
call SM4. The SM4 algorithm involves the following stages:

1. Train the SM4 probabilistic model on a subset of user text, network
and label data. This learns parameters for a K-dimensional latent
feature space over text, network and labels, where each feature di-
mension represents a “topic".

2. With these parameters, we find the best feature space representations
of all users’ text, network and label data. For each user, we infer
a K-dimensional feature vector, representing her tendency towards
each of the K topics.

3. The inferred user features have many uses, such as (1) finding which
topics are most associated with friendships, and (2) training a classi-
fier for predicting user labels.

The feature space consists of K topics, representing concepts and
communities that anchor user conversations, friendships and inter-
ests. Each topic has three components: a vector of word probabili-
ties, a vector of friendship probabilities to each of theK topics, and
a scalar correlation w.r.t the user labels. As an example, we might
have a topic with the frequent words “baseball" and “basketball",
where this topic has a high self-friendship probability, as well as a
high correlation with the positive user label “I like sports". Based
on this topic’s most frequent words, we might give it the name
“American sports"; thus, we say that users who often talk about
“baseball" and “basketball" are talking about “American sports".
In addition, the high self-friendship probability of the “American
sports" topic implies that such users are likely to be friends, while
the high label correlation implies that such users like sports in gen-
eral. Note that topics can have high friendship probabilities to
other topics, e.g. we might find that “American sports" has a high
friendship probability with a “Restaurants and bars" topic contain-
ing words such as “beer", “grill" and “television".

3. SUPERVISED MULTI-VIEW MIXED MEM-
BERSHIP MODEL (SM4)

Formally, SM4 can be described in terms of a probabilistic gener-
ative process, whose dependencies are summarized in a graphical
model representation (Figure 2). Let P be the number of users, V



User A: Likes movies 
Status Update: Hey the hour is late, talk later. 
Status Update: He has a tendency to laugh at inappropriate times. 
Like Page: Slurpee 
Like Page: Twilight 
… 

Topic 1: +0.8 Movies 

don care  talk stop 

person mean friend stupid mad 
say ... laugh times … 

Topic 2: -0.4 Movies 

girl boy guy boyfriend 

ugly treat girlfriend cute beauty 
text … hey … 

Topic 3: -1.0 Movies 

kiss hand pull bite 

pant adore dorito smile lip cute 
… tendency inappropriate … 

Topic 4: +1.0 Movies 
twilight starbucks basketball 
disney movie nicki_minaj 
subway harry_potter drake … 

slurpee voldemort … 

4.0% 

1.1% of 

normalized 
friendships 

0.8% 0.4% 

0.2% 

User B: Dislikes movies 
Status Update: I guess my mother hates it. 
Like Page: I’ve lived in 4 decades, 2 centuries 
and 2 millenniums… and I’m in my 20s! 
… 

User C: Likes movies 
Status Update: What about Voldemort’s 
nose? Or Harry’s parents? 
Like Page: Cabela 
… 

A is friends with C 

Output: Latent Topic Space 

Input: User Data 

Topic 5: -0.5 Movies 

song live sing favorite 

hear listen part dear memory 
car … decade century millennium … 0.2% 

Learn 
topics 

Assign 
topics to 

words and 
friendships 

Figure 1: From user data to latent topic space, and back (best viewed in color). User data in the form of text (status updates and like page titles),
friendships and interest labels (e.g. likes/dislikes movies) is used to learn a latent space of topics. Topics are characterized by a set of weighted
keywords, a positive or negative correlation with the interest (e.g +1.0 Movies), and topic-topic friendship probabilities (expressed as the percentage
of observed friendships, normalized by topic popularity). After learning the topics, we can assign the most probable topic to each user word, as well
as the most probable topic-pair to each friendship — these assignments are represented by word and link colors. Observe that users with lots of
green/orange words/friendships are likely to be interested in movies, as the corresponding topics (1,4) are detected as positive for movies.

the text vocabulary size, and K the desired number of topics. Also
let Di be the number of documents for user i, and Wik the num-
ber of words in user i’s k-th document. The generative details are
described below:

• Topic parameters:

• For the background vocabulary βback , draw:

• V -dim. word distribution βback ∼ Dirichlet(η)

• For each topic a ∈ {1, . . . ,K}, draw:

• V -dim. topic word distribution βa· ∼ Dirichlet(η)

• For each topic pair (a, b) ∈ {1, . . . ,K}2, a ≤ b, draw:

• Topic-topic link probability Φab ∼ Beta(λ1, λ0)

• User features: For each user i ∈ {1, . . . , P}, draw:

• User feature vector θi ∼ Dirichlet(α)

• Text: For each user document (i, k) ∈ {1, . . . , P} × {1, . . . , Di}:
• Draw document topic zik ∼ Discrete(θi)

• For each word ` ∈ {1, . . . ,Wik}, draw:

• Foreground-background indicator fik` ∼ Bernoulli(δ)

• Word wik` ∼ Discrete((βzik )fik` (βback)1−fik` )

• Friendship Links: For each (i, j) ∈ EdgeList, i < j, draw:

• User i’s topic when befriending user j, sij ∼ Discrete(θi)

• User j’s topic when befriending user i, sji ∼ Discrete(θj)

• Link eij∼Bernoulli(Φsij ,sji ) if sij≤sji, else eij∼Bern.(Φsji,sij )

• Labels: For each user i ∈ {1, . . . , P}, draw:

• Label yi ∼ Normal(θ̂>i ν, σ
2), where θ̂i =

∑
k zik+

∑
j sij

Di+|Neighbors(i)|

While this generative process may seem complicated at first glance,
we shall argue that each component is necessary for proper model-
ing of the text, network and label data. Additionally, the model’s
complexity does not entail a high runtime — in fact, our SM4 algo-
rithm runs in linear time with respect to the data, as we will show.

Topics and user data. Each user i has 3 data types: text data
wi, network links eij , and interest labels yi ∈ {+1,−1}. In or-
der to learn salient facts about all 3 datatypes seamlessly, we in-
troduce a latent space feature vector for each user i, denoted by
θi = (θi1, . . . , θiK). Briefly, a high value of θia indicates that user
i’s text wi, friendship patterns ei and label yi are similar to topic a.

Every topic a ∈ {1, . . . ,K} is associated with 3 objects: (1) a V -
dim. word probability vector βa, (2) link formation probabilities
Φab ∈ [0, 1] to each of the K topics b, and (3) a coefficient νa
that models the linear dependence of labels yi with topic a. The
vector βa shows which words are most salient for the topic, e.g.
a “US politics" topic should have high probabilities on the words
“Republican" and “Democrat". The link probabilities Φab repre-
sent how likely users talking about topic a are friends with users
talking about topic b, e.g. “American sports" having many friend-
ships with “Restaurants and bars". Finally, the coefficients νa show
the correlation between topic a and the user interest labels yi.

Text model. We partition user text data wi into Di documents
{wi,1, . . . , wi,Di}, where each doc ik is a vector of Wik words
(wik,1, . . . , wik,Wik ). Each document represents a “status update"
by the user, or the title of a page she “likes". Compared to other
forms of textual data like blogs, Facebook documents are very short.
Hence, we assume each document corresponds to exactly one topic
zik, and draw all its words wik` from the topic word distribution
βzik — a notable departure from most topic models [6, 8], which
are tailored for longer documents such as academic papers.

Moreover, Facebook documents contain many keywords irrelevant
to the main topic. For example, the message “I’m watching foot-
ball with Jim, enjoying it" is about sports, but the words “watching"
and “with" are not sports-related. To prevent such generic words
from influencing topic word distributions βa, we introduce per-
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θi 

zik sij 

wikl 

P users 

Di docs 

Wik tokens 

eij 

M positive edges 

K topics 

K topics 

η βa 

Φab 

fikl δ 

βback 

λ0,λ1 

yi 

ν,σ2 

Qi neighbors 

User latent 
feature vector θi 

User 
text wikl 

User 
label yi 

User friendships eij 

Figure 2: Graphical model representation of SM4. Tuning param-
eters are diamonds, latent variables are hollow circles, and observed
variables are filled circles. Variables pertaining to labels yi are shown
in red.

word foreground-background boolean indicators fik` ∼ Bernoulli(δ),
such that we draw wik` from βzik as usual when fik` = 1, other-
wise we draw wik` from a “background" distribution βback. By
relegating irrelevant words to a background distribution, we can
assign topics to entire documents without diluting the topic word
distributions with generic words. More generally, the idea of hav-
ing separate classes of word distributions was explored in [20, 12].

Network model. Let Neighbors(i) denote user i’s friends, and
let EdgeList denote all friendships (i, j) for i < j. Also, let
eij ∈ {0, 1} be the adjacency matrix of friendships, where eij = 1
implies (i, j) ∈ Edgelist. In our model, friendships arise as fol-
lows: first, users i, j draw topics sij and sji from their feature
vectors θi, θj . Then, the friendship outcome eij is generated from
sij , sji — this is in contrast to words wik`, which are generated
from only one topic zik. Specifically, eij is drawn from a upper-
triangular K ×K matrix of Bernoulli parameters Φ; we draw eij
from Φsij ,sji if sij < sji, otherwise we draw from Φsji,sij . Es-
sentially, Φ describes friendship probabilities between topics.

Because the Facebook network is sparse, we only model positive
links; the variables sij , sji, eij exist if and only if eij = 1. The
zero links eij = 0 are used in a Bayesian fashion: we put a Beta(λ1, λ0)
prior on each element of Φ, and set λ0 = ln(#[zero links]/K2)
and λ1 = 0.1, where #[zero links] = P (P − 1)/2− |EdgeList|.
Thus, we account for evidence from zero links without explicitly
modeling them, which saves a tremendous amount of computation.

Label model. We extract labels yi∈{+1,−1} from users’ “liked"
pages, e.g. “music" and “cooking". By including labels, we can
learn which topics are positively/negatively correlated with user in-
terests. Similar to sLDA [6], we draw user labels yi∼Normal(θ̂>i ν, σ

2),
where θ̂i is the average over user i’s text topic indicators zik and
network indicators sij (represented as indicator vectors). Put sim-
ply, a user’s label is a linear regression over her topic vector θi.

3.1 Training Algorithm
Our SM4 system proceeds in two phases: a training phase to esti-
mate the latent space topic parameters β,Φ, ν, σ2 from a smaller
subset of users, followed by a parallel prediction phase to esti-
mate user feature vectors θi and friendship topic-pair assignments
sij , sji for each friendship eij = 1. In particular, the sij , sji
provide the most likely “explanation" for each friendship, and this
forms a cornerstone of our data analysis in Section 6.

Right now, we shall focus on the details of the training algorithm.
Our first step is to simplify the training problem by reducing the
number of latent variables, through analytic integration of user fea-
ture vectors θ and topic word/link parameters β,Φ via Dirichlet-
Multinomial and Beta-Binomial conjugacy. Hence, the only ran-
dom variables that remain to be inferred are z, f , s (which now
depend on the tuning parameters α, η, δ). Once z, f , s have been
inferred, we can recover the topic parameters β,Φ from their val-
ues. We also show that our algorithm runs in linear time w.r.t the
amount of data, ensuring scalability.

Training Algorithm (1) alternates between Gibbs sampling on z, f , s,
Metropolis-Hastings on tuning parameters α, η, δ, and direct max-
imization of ν, σ2. This hybrid approach is motivated by simplic-
ity — Gibbs samplers for models like ours [11] are easier to de-
rive and implement than alternatives such as variational inference,
while α, η, δ are easily optimized through the Metropolis-Hastings
algorithm. As for the Gaussian parameters ν, σ2, the high dimen-
sionality of ν makes MCMC convergence difficult, so we resort to
a direct maximization strategy similar to sLDA [6].

3.1.1 Gibbs sampler for latent variables z, f , s

Document topic indicators z. A Gibbs sampler samples ev-
ery latent variable, conditioned on the current values of all other
varibles. We start by deriving the conditional distribution of zik:

P(zik = m | z−ik, f ,w, s, e,y) (1)
∝ P(yi | zik = m, zi,−k, si)P(wik· | zik = m, z−ik, fik·,w−ik·)

× P(zik = m | zi,−k, si)

∝ exp

{
−

(yi − θ̂>i ν)2

2σ2

}
Γ(V η +

∑V
v=1 Av)∏V

v=1 Γ(η +Av)

∏V
v=1 Γ(η +Bv +Av)

Γ(V η +
∑V

v=1Bv +Av)

×
(
#[{zi,−k, si} = m] + α

)
,

where we use the fact that P(wik` | zik = m, fik` = 0, z−ik,w−ik·)
is independent of zik, and where we define

Av = |{(x, y, u) | (x, y) 6= (i, k) ∧ fxyu = 1 ∧ zxy = m ∧ wxyu = v}|,
Bv = |{u | fiku = 1 ∧ wiku = v}|,

whereAv is the number of non-background words w = v assigned
to topic m and not belonging to user i and document k, and Bv is
similar but for words belonging to user/document ik. Note that θ̂i
in the exp is a function of zik, and was defined in Section 3.

The distribution of zik is composed of a prior term for zik = m
and two posterior terms, one for user i’s label yi, and one for doc-
ument ik’s words wik·. The posterior term for yi is a Gaussian,
while the posterior term forwik· is a Dirichlet Compound Multino-
mial (DCM) distribution, which results from integrating the word
distribution βm. Notice that background words, i.e. wik` such that
fik` = 0, do not show up in this posterior term. Finally, the zik
prior term is the DCM from integrating the feature vector θi.

Importantly, the counts Av, Bv can be cached and updated in con-
stant time for each zik being sampled, and therefore Eq. (1) can be



computed in constant time w.r.t. the number of documents. Hence,
sampling all z takes linear time in the number of documents.

Word foreground-background indicators f . The conditional
distribution of fik` is

P(fik` = 1 | z, f−ik`,w, s, e,y) (2)
= P(wik` | z, fik` = 1, f−ik`,w−ik`)P(fik` = 1)

× [P(wik` | z, fik` = 1, f−ik`,w−ik`)P(fik` = 1)

+ P(wik` | z, fik` = 0, f−ik`,w−ik`)P(fik` = 0)]−1

=

(
(η + Ewik` )δ

V η +
∑V

v=1 Ev

)(
(η + Ewik` )δ

V η +
∑V

v=1 Ev

+
(η + Fwik` )(1− δ)
V η +

∑V
v=1 Fv

)−1

,

where Ev = |{(x, y, u) | (x, y, u) 6= (i, k, `) ∧ fxyu = 1

∧ zxy = zik ∧ wxyu = v}|,
and Fv = |{(x, y, u) | (x, y, u) 6= (i, k, `) ∧ fxyu = 0 ∧ wxyu = v}|.

Ev is the number of non-background words w = v assigned to
topic zik, excluding wik`. Fv is similar, but for background words
(regardless of topic indicator z).

Ignoring the normalizer, the distribution of fikl contains a poste-
rior term for wik` and a prior term for fikl. Again, the wik` term
is a DCM; this DCM comes from integrating βzik if fik` = 1, oth-
erwise it comes from integrating the background word distribution
βback. The fik` prior is a simple Bernoulli(δ). As with Eq. (1),
the counts Ev, Fv can be cached with constant time updates per
fik`, thus sampling all f is linear time in the number of words w.

Link topic indicators s. Recall that we only model sij , sji, eij
for positive links eij = 1. For convenience, let eji = eij for all
i < j. The resulting conditional distribution of sij is

P(sij = m | z, f ,w, s−ij , eij = 1, e−ij ,y) (3)
∝ P(yi | zi, sij = m, si,−j)P(eij = 1 | sij = m, sji, s−{ij,ji}, e−ij)

× P(sij = m | zi, si,−j)

∝ exp

{
−

(yi − θ̂>i ν)2

2σ2

}
λ1 + C

λ1 + λ0 + C
(#[{zi, si,−j} = m] + α) ,

C =


|{(x, y) ∈ EdgeList | (x, y) 6= (i, j) ∧ [(sxy , syx) = (m, sji)

∨(sxy , syx) = (sji,m)]}| if i < j

|{(y, x) ∈ EdgeList | (x, y) 6= (i, j) ∧ [(sxy , syx) = (m, sji)

∨(sxy , syx) = (sji,m)]}| if i > j.

C is the number of positive links e \ eij whose topic indicators
(sxy, syx) are identical to the topics (sij , sji) of eij . The OR
clauses simply take care of situations where sxy > syx and/or
sij > sji. The distribution of sij contains a prior term for sij = m
(the DCM from integrating θi), a Gaussian posterior term for yi,
and a link posterior term for eij (the Beta Compound Bernoulli
distribution from integrating out the link probability Φm,sji ).

Like Eq. (1,2), C can be cached using constant time updates per
sij , thus sampling all s is linear in the number of friendships |EdgeList|.
Combined with the constant time sampling for Eq. (1,2), we see
that the SM4 algorithm requires linear time in the amount of data.

3.1.2 Learning tuning parameters α, η, δ and ν, σ2

We automatically learn the best tuning parameters α, η, δ using
Independence Chain Metropolis-Hastings, by assuming α, η are
drawn from Exponential(1), while δ is drawn from Beta(1, 1).
For ν, σ2, we take a Stochastic Expectation-Maximization [10] ap-
proach, in which we maximize the log-likelihood with respect to
ν, σ2 based on the current Gibbs sampler values of z, s. The maxi-

Algorithm 1 SM4 Training Algorithm
1: Input: Training user text data w, links e and labels y
2: Randomly initialize z, f , s and parameters α, η, δ, ν, σ2

3: Set λ1, λ0 according to Section 3, Network Model
4: repeat
5: Gibbs sample all z, f , s using Eqs. (1,2,3)
6: Run Metropolis-Hastings on tuning parameters α, η, δ
7: Maximize parameters ν, σ2 using Eq. (4)
8: until Iteration limit or convergence
9: Output: Sufficient statistics for z, f , s, and all parameters
α, η, δ, λ1, λ0, ν, σ

2

Algorithm 2 SM4 Parallelizable Prediction Algorithm

1: Input: Parameters β,Φ, α, δ, ν, σ2 from training phase
2: Input: Test user p’s text data wp

3: Randomly initialize zp, fp for the test user
4: repeat
5: Gibbs sample zp using Eq. (1), and fp using Eq. (2)
6: until Iteration limit or convergence
7: Estimate test user’s feature vector θp from his zp
8: Use θp to predict spj , sjp for all friends j
9: Output: Test user’s θp, spj , sjp

mization has a closed-form solution similar to sLDA [6], but with-
out the expectations:

ν ←
(
A>A

)−1

A>b, σ2 ← 1

P

[
b>b− b>Aν

]
(4)

where A is a P × K matrix whose i-th row is the current Gibbs
sample of θ̂i, and b is a P -vector of user labels yi.

Updating all parameters α, η, δ, ν, σ2 requires linear time in the
amount of data, so we update them once per Gibbs sampler sweep
over all latent variables z, f , s. This ensures that every iteration
(Gibbs sweep plus parameter update) takes linear time.

3.2 Parallelizable Prediction Algorithm
Our training algorithms learns topic parameters β,Φ, ν, so that we
can use our Prediction Algorithm (2) to predict feature vectors θp
and friendship topic-pair assignments spj , sjp for all users p. For
each user p independently and in parallel, we Gibbs sample her
text latent variables zp·, fp·· based on her observed documents wp··
and the learnt parameters β,Φ, ν, σ2. Then, using the definition
of our SM4 generative process, we estimate p’s feature vector θp
by averaging over her zp·. Finally, we use θp and the learnt topic
parameters Φ to predict p’s most likely friendship topic-pair assign-
ments s∗pj , s

∗
jp to each of her friends j, using this equation:

(s∗pj , s
∗
jp) = arg max

(a,b) s.t. a<b
θp,aΦa,bθj,b. (5)

We use these assignments to discover the topics that friendships
are most frequently associated with. Like the training algorithm,
the Prediction Algorithm also runs in linear time.

4. EXPERIMENTAL SETTING
Our goal is to analyze Facebook users in the context of their in-
terests, friendships and conversations. Facebook users typically
express interests such as “movies" or “cooking" by establishing a
“like" relation with the corresponding Facebook pages, and our ex-
periments focus on four popular user interests in Facebook: camp-
ing, cooking, movies and sports. We selected these concepts be-
cause of their broad scope: not only are they generic concepts, but
each of their pages was associated with more than 5 million likes



as of May 2011, ensuring a sufficiently large user base for data
collection. For each interest C, we collected our data as follows:

1. Construct the complete data collection S(C) by randomly selecting
1 million users who like interest C (yi = +1), and 1 million who
do not explicitly mention liking C (yi = −1).

2. For each user i ∈ S(C), collect the following data1:

• User text documentswik·: The text documents for user i contain
all of her “status updates" from March 1st to 7th, 2011 (each status
update is one document), as well as titles of Facebook pages that
she likes by March 7th 2011 (each page title is one document)2.
We preprocessed all documents using typical NLP techniques,
such as stopword removal, stemming, and collocation identifica-
tion [14].

• User-to-user friendships: We obtained these symmetric friend-
ships using the friend lists of user i recorded on March 7th 2011.

3. Randomly sample 2% of S(C) to construct a 40,000-user train-
ing collection S̄(C). Across the four concepts, S̄(C) contained
340,128 to 385,091 unique words, 6,650,335 to 8,771,298 docu-
ments, 16,421,601 to 22,521,507 words, and 1,292 to 2,514 links3.

We first trained the SM4 model using the training collection S̄(C)
and K = 50 latent features (topics), stopping our Gibbs sampler
at the 100th iteration because 1) the per-iteration increase in log-
likelihood was < 1% of the cumulative increase, and 2) more iter-
ations had negligible impact on our validation experiments. This
process required 24 hours for each concept, using one computa-
tional thread. We note that one could subsample larger training col-
lections S̄(C), thus increasing the accuracy of parameter learning
at the expense of increased training time. A recently introduced al-
ternative is to apply approximate parallel inference techniques such
as distributed Gibbs sampling [16, 2], but these introduce synchro-
nization and convergence issues that are not fully understood yet.

After learning topic parameters from the training collection S̄(C),
we invoke Algorithm 2 on all users p ∈ S(C) to obtain their pre-
dicted feature vectors θp, and the friendship topic-pair “explana-
tions" spj , sjp for each of p’s friends j. Note that Algorithm 2 is
parallelizable over every user in S(C), and we observe that it only
requires a few minutes per user; a sufficiently large cluster finishes
all 2M users in a single day — in fact, given enough computing
power, it is possible to scale our prediction to all of Facebook. In
the following sections, we shall apply the predicted θp, spj , sjp to
various analyses of Facebook’s data.

4.1 Mapper Data Imbalance
Our cluster completed every 2M user experiment within 24 hours,
but there is more to performance than this number alone. In fact,
for every experiment, the first mapper (CPU) to complete sampling
its assigned users did so within a few hours, while the last mapper
took close to 24 hours (hence the total runtime).

We believe this runtime asymmetry is due to data imbalance; most
users only have a few documents (status updates and like pages),
but a few users have thousands of documents or even more. More-
over, not all documents have the same length; most contain just a

1We use only non-private user data for our experiments, e.g. chat
logs or user messages are never looked at.
2We remove the page title of concept C, because its distribution is
highly correlated with the labels.
3The relatively small number of links arises from unbiased random
sampling of users; more links can be obtained by starting with a
seed set of users and picking their friends, but this introduces bias.
Also, our method uses evidence from negative links, so the small
number of positive links is not necessarily a drawback.

few words, yet the occasional document has tens or hundreds of
words. As a result, the Hadoop scheduler fails to partition data
equally among mappers, thus some mappers receive several times
more data than others. Because the algorithm has to wait for the last
mapper to finish, this leads to a several-fold increase in runtime.

One solution would be to subsample data from the largest users
and documents, so as to limit the total number of words per user.
We expect subsampling from a user with large amounts of data to
have limited statistical impact on our model’s parameter and latent
variable estimates, while allowing the Hadoop scheduler to better
partition data across mappers. While we did not test this solution,
we expect its implementation to reduce our total runtime dramati-
cally.

5. VALIDATION
Before interpreting our results, we must validate the performance of
our SM4 model and algorithm. Because our model spans multiple
data modalities, there is arguably no single task or metric that can
evaluate all aspects of SM4. What we shall do is test how well the
SM4 latent space and feature vectors predict held-out user interest
labels yp from our data collections S(C). We believe this is the best
task for several reasons: for one, we are concerned with interpreting
user interests in the context of friendships and conversations, thus
we must show that the SM4 latent space accurately captures user
interests. For another, predicting user interests is a simple and well-
established task, and its results are therefore easier to interpret than
model goodness-of-fit measures such as perplexity (as used in [7]).

It is well-understood that textual latent space methods like Latent
Dirichlet Allocation (LDA), while useful for summarization and vi-
sualization, normally do not improve classification accuracy — in
fact, with large amounts of training data, they may actually perform
worse than a naive Bag-of-Words (BoW) representation [7]. This
stems from the fact that latent space methods are dimensionality
reduction techniques, and thus distort the data by necessity. In our
case, the picture is more complicated: the text aspect of our model
loses information with respect to BoW, yet some non-textual in-
formation comes into play from the friendship links and labels in
the small training collections S̄(C). We believe the best way to
use SM4 is to concatenate SM4 features to the BoW features —
this avoids the information loss from reducing the dimensionality
of the text, while allowing the network and label information to
come into play. We expect this to yield a modest (but statistically
significant) improvement in accuracy over a plain BoW baseline.

Our task setup is as follows: recall that for each interest C, we
obtained a 2M data collection S(C) with ground truth labels for all
user interests yp. The SM4 algorithm predicts feature vectors θp
for all users p ∈ S(C), which can be exploited to learn a linear
Support Vector Machine (SVM) classifier for the labels yp. More
specifically, we use θp concatenated with user p’s original BoW
as feature inputs to LIBLINEAR [9], and then performed 10-fold
cross-validation experiments on the labels yp. This was done for
each of the four data collections S(C), and each experiment took<
1 hour. As a baseline, we compare to LIBLINEAR trained on BoW
features only. The BoW features for user p are just the normalized
word frequencies over all her documents.

Table 1 summarizes our results. To determine if the improvement
from SM4 is statistically significant, we conducted a χ2-test (one
degree of freedom, 2M trials) against the BoW Baseline as a null
hypothesis. The p-values are far below 0.001, suggesting that the
improvement provided by SM4 features is statistically very signif-



Table 1: User interest classification accuracy (in percent) under a 10-
fold cross-validation setup, for a Bag-of-Words baseline, and BoW plus
SM4 feature vectors. Each experiment is performed over 2 million
users. We also report χ2-statistics and p-values (1 degree of freedom),
which show that adding SM4 features yields a highly significant im-
provement in accuracy.

Features Sports Movies Camping Cooking
BoW Baseline 78.91 78.51 79.85 77.22
Plus SM4 80.23 80.48 81.08 78.57
χ2-statistic 2.1× 105 4.6× 105 1.9× 105 2.1× 105

p-value � 0.001 � 0.001 � 0.001 � 0.001

icant. This confirms our hypothesis that the SM4 features improve
classification accuracy, by virtue of encoding network and label in-
formation from the small training collections S̄(C). We expect that
classification accuracy will only increase with larger training col-
lections S̄(C), albeit at the expense of more computation time.

6. UNDERSTANDING USER INTERESTS AND
FRIENDSHIPS IN FACEBOOK

In the introduction, we posed four questions about Facebook:

• How does Facebook’s social (friendship) graph interact with its interest
graph and conversational content? Are they correlated?

• What friendship patterns occur between users with similar interests?
• Do users with similar interests talk about the same things?
• How do different interests (say, camping and movies) compare? Do

groups of users with distinct interests also exhibit different friendship
and conversational patterns?

We shall answer these questions by analyzing our SM4 output over
the four user interests: camping, cooking, movies and sports. Such
analysis is not only useful for content recommendation, but can also
inform policies targeted at increasing connectivity (making more
friends) and interaction (having more conversations) within the so-
cial network. Through continuous study of user interests, conver-
sations and friendships, we hope to learn what makes the social
network unique, and what must be done to grow it.

6.1 Visualization procedure
In Figure 3, we combine SM4’s output over all four user interests
into one holistic visualization, and the purpose of this section is to
describe how we constructed said visualization. First, recall that
for each interest C, our SM4 system learns topic parameters from a
training subset S̄(C) of user text documents, friendship links, and
labels. These parameters are then used to infer various facts about
the full user dataset S(C): (1) user feature vectors θp that give
their propensities towards various topics, and (2) each friendship’s
most likely topic-pair assignments sij , sji, which reveal the topics
a given pair of friends is most likely to talk about.

With these learnt parameters, we search for the 6 most strongly-
recurring topics across all four interests, as measured by cosine
similarity. These topics, shown in the middle of Figure 3, repre-
sent commonly-used words on Facebook, and provide a common
theme that unites the four user interests. Next, for each interest, we
search for the top 4 topic-pairs (including pairs of the same topic)
with the highest friendship counts (which come from the topic-
pair assignments sij , sji). Note that we first normalize each topic-
pair friendship count by the popularity4 of both topics, in order to
avoid selecting popular but low-friendship topics. We show these
4 topic-pairs in the corners of Figure 3, along with their normal-
ized friendship counts. These topic-pairs represent conversations
between friends; more importantly, if the topics are also positively
correlated with the user interest — say, camping — then they reveal
4The sum of a topic’s weight over all user feature vectors θp.

what friends who like camping actually talk about. This context-
specificity is especially valuable for separating generic chatter from
genuine conversation about an interest.

Figure 3 was constructed by these rules, but with one exception:
we include a Movies topic (heading Mo (0.6%) +1.64) that lacks
strong friendships, yet is positively correlated with interest in movies.
This anomaly demonstrates that interest-specific conversations do
not always occur between friends — in other words, the presence
of an interest-specific conversation does not imply the existence
of friendship, which is something that text-only systems may fail
to detect. In turn, this highlights the need for holistic models like
SM4 that consider interests, conversations and friendships jointly.

6.2 Observations and Analysis
Common Topics. Throughout these sections, we shall continu-
ally refer to Figure 3. The most striking observation about the four
interests (camping, cooking, moving, sports) is their shared topical
content, shown in the middle of the Figure. These topics represent
a common lingo that permeates throughout Facebook, and that can
be divided into two classes: “Facebook fanpages", consisting of
named entities that have pages on Facebook for users to like, and
"Informal conversation in status updates", which encompasses the
most common, casual words from user status updates.

We observe that the fanpage topic starting with “adam_sandler”
is dominant, with popularity > 10% across all four user interest
datasets. Additionally, this topic has a mild positive correlation
with all interests, meaning that users who have any of the four in-
terests are more likely to use this topic. In contrast, the fanpage
topic starting with “cash" only has average popularity (between
1 − 2%) and mild negative correlation with all interests. Observe
that this topic is dominated by social gaming words (“farmville",
“mafia_wars"), whereas the other, popular topic is rich in popu-
lar culture entities such as “Disney", “Dr Pepper", “Simpsons" and
“Starbucks". This data provides evidence that users who exhibit
any of the four interests tend to like pop culture pages over social
gaming pages. Notably, none of these four interests are related to
internet culture or gaming, which might explain this observation.

The informal conversation topics are more nuanced. Notice how
the topic starting with “buddy" is both popular and strongly corre-
lated with respect to cooking and movies, implying that the conver-
sations of cooking/movie lovers differ from camping/sports lovers.
Also, notice that the topic starting with “beauty" is dominated by
romantic words such as “boyfriend" and “girlfriend", and is popu-
lar/correlated only with sports — perhaps this lends some truth to
the stereotype that school athletes lead especially active romantic
lives. Finally, the topic starting with “annoy" and containing words
such as “dad", “mom" and “house" carries a slight negative senti-
ment for all interests (in addition to being unpopular). This seems
reasonable from the average teenager’s perspective, in which par-
ents normally have little connection with personal interests.

High-Friendship Topics. We turn to the high-friendship top-
ics in the corners of Figure 3. Some of these contain a high degree
of self-friendships, implying that friends usually converse about the
same topic, rather than different ones. To put it succinctly, in Face-
book, the interest graph is correlated with the social (friendship)
graph. In fact, the average proportion of same-topic friendships
ranges from 0.2% to 0.6% depending on interest, whereas the av-
erage proportion of inter-topic friendships is an order of magnitude
lower at 0.02% to 0.04%. Intuitively, this makes sense: any co-
herent dialogue between friends is necessarily about a single topic;
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Figure 3: A visual summary of the relationship between Facebook friendships, user conversations, and 4 types of user interests (best viewed in
color). Topics specific to a particular interest are found in the corners, while common topics are found in the middle, divided into topics containing
Facebook fanpage titles or status update lingo — note that we manually introduced this distinction for the sake of visualization; the SM4 algorithm
discovers all topics purely from the data. Thick borders highlight topics positively correlated with user interests, while dashed borders highlight
negative correlation. Font colors highlight information relevant to a specific interest: blue for camping (ca), red for cooking (co), green for movies
(mo), and purple for sports (sp). The colored heading in each topic describes its popularity, and its correlation with user interests: for example,
“Ca (4.9%) +2.48” means this topic accounts for 4.9% of user text in the camping dataset, and has a moderate positive correlation with interest in
camping. Finally, an edge between a pair of topics shows the proportion of friendships attributed to that pair (normalized by topic popularity).



multiple-topic conversations are hard to follow and thus rare.

One interpretation of inter-topic friendships is that they signify two
friends who rarely interact, hence their conversations on the whole
are topically distinct. In other words, inter-topic friendships may
represent socially weaker ties, compared to same-topic friendships.
As an example, consider the cooking topics starting with “art" and
“conservative" respectively. The former topic is about the visual
arts (“design", “photography", “studio"), whereas the latter topic
is about political conservatives in America (“military", “soldier",
“support"). It seems implausible that any conversation would be
about both topics, and yet there are friendships between people who
talk about either topic — though not necessarily with each other.

A second observation is that most interests have more than one pos-
itively correlated topic (with the exception of camping). A good ex-
ample is cooking: notice the topics starting with “beach" and “bea-
tles" respectively. The former topic has connotations of fine living,
with words like “city", “club", “travel" and “wine", whereas the lat-
ter is associated with entertainment culture, containing phrases like
“beatles", “family_guy", “pink_floyd" and “star_wars". Both top-
ics have statistically much in common: moderate popularity, posi-
tive interest correlation with cooking, and a significant proportion
of self-topic friendships. Yet they are semantically different, and
more importantly, do not have a significant proportion of friend-
ships between them. Hence, these two topics represent separate
communities of cooking lovers: one associated with the high life,
the other with pop culture. The fact that cooking lovers are not ho-
mogenous has significant implications for policy and advertising; a
one-size-fits-all strategy is unlikely to succeed.

Similar observations can be made about sports and movies: for
sports, both a television topic (“family_guy", “greys_anatomy",
"espn") and an actual sports topic (“basketball", “football", “soc-
cer") are positively correlated with interest in sports, yet users in the
former topic are likely watching sports rather than playing them.
As for movies, one topic is connected with restaurants and bars
(“bar", “food", “grill", “restaurant"), while the other is connected
with television (“family_guy", “simpsons", “south_park").

Our final observation concerns the “friendliness" of users in posi-
tive topics — notice that the users of some positively correlated top-
ics (“country_music" from camping, “ac_dc" from movies, “bea-
tles" from cooking") have plenty of within-topic friendships, yet
possess almost no friendships with other topics. In contrast, users
in topics like “beach" from cooking or “beatles" from sports are
highly gregarious, readily making friends with users in other top-
ics. The topic words themselves may explain why: notice that the
“beach" cooking topic has words like “club", “grill" and “travel"
that suggest highly social activities, while the “beatles" sports topic
contains television-related words such as “family_guy" and “espn",
and television viewing is often a social activity as well.

In closing, our analysis demonstrates how a multi-modal visual-
ization of Facebook’s data can lead to insights about network con-
nectivity and interaction. In particular, we have seen how fanpages
and casual speech serve as a common anchor to all conversations on
Facebook, how same-topic friendships are far more common (and
meaningful) than inter-topic friendships, and how users with com-
mon interests can be hetorogenous in terms of conversation topics.
We hope these observations can inform policy directed at growing
the social network, and increasing the engagement of its users.

7. RELATED WORK

The literature contains other topic models that combine several data
modalities; ours is distinguished by the assumptions it makes. In
particular, existing topic models of text and network data either
treat the network as an outcome of the text topics (RTM [8]), or de-
fine new topics for each link in the network (ART [15]). The Pair-
wise Link-LDA model of Nallapati et al. [18] is the most similar to
ours, except (1) it does not model labels, (2) it models asymmetric
links only, and crucially, (3) its inference algorithm is infeasible for
even P = 40, 000 users (the size of our training S̄(C)’s) because it
models all O(P 2) positive and zero links. Our model escapes this
complexity trap by only considering the positive links.

We also note that past work on Facebook’s data [19] used the net-
work implicitly, by summing features over neighboring users. In-
stead, we have taken a probabilistic perspective, borrowing from
the MMSB model [1] to cast links into the same latent topic space
as the text. Thus, links are neither a precursor to nor an outcome
of the text, but equals, resulting in an intuitive scheme where both
text and links derive from specific topics. The manner in which we
model the labels is borrowed from sLDA [6], except that our links
also influence the observed labels y.

8. FUTURE WORK
An open question raised by our work is how to efficiently com-
pute parameter estimates from very large networks, under a par-
ticular network model. In our SM4 model, which uses the Mixed-
Membership Stochastic Blockmodel (MMSB) as a sub-component,
the challenge is to infer topic assignments for every network edge
(whether 0 or 1). Because the total number of network edges is
O(P 2) (where P is the number of users), inference on every edge
is completely infeasible for large networks. Our solution was to in-
corporate evidence from the 0-edges directly into the prior, spread
evenly across all elements of the link probability matrix Φ. By us-
ing the 0-edge evidence in this manner, we only have to model the
1-edges, which are far less numerous than the 0-edges.

Another approach would be to subsample the edges — ideally,
we want at most O(P ) edges, resulting in an (amortized) con-
stant amount of work per user. Under a stochastic blockmodel,
if we knew the true topic-pair assignments of all edges — i.e., if
we knew which edges corresponded to which elements of the link-
probability matrix — then the obvious solution is to find, for all ele-
ments of the link-probability matrix, the set of edges corresponding
to that element, and then subsample O(P ) edges from that set. This
ensures that every matrix element gets O(P ) samples to use for es-
timation. Of course, we do not know the topic-pair assignments in
advance — the question to ask, then, is can we still construct a sam-
pling strategy with a lower bound on the number of edges picked
per matrix element, under “reasonable" assumptions about the true
blockmodel? The existence of such a strategy implies that we can
subsample the network, and still be confident in our estimate of the
link-probability matrix.

A third solution is to design a completely different network model,
one that relies on higher-order network motifs such as triangle re-
lationships between three nodes. Such motifs can be emitted by
a topic/admixture model, except that each motif is determined by
not one topic indicator, but several (just like how MMSB emits
edges using two topic indicators, one per participating node). By
restricting ourselves to just those interesting (but not too frequent)
motifs, we can design novel admixture network models that avoid
the 0-edge complexity trap that MMSB and other probabilistic net-
work models suffer from (this is because real networks have o(P 2)



1-edges, implying O(P 2) 0-edges). We are currently developing
such an admixture network model, and we expect its inference al-
gorithm runtime to scale better than MMSB w.r.t. the number of
users P .

9. CONCLUSION
In conclusion, we have tackled salient questions about user inter-
ests and friendships on Facebook, by way of a system that combines
text, network and label data to produce insightful visualizations of
the social structure generated by millions of Facebook users. Our
system’s key component is a latent space model (SM4) that learns
the aggregate relationships between user text, friendships, and in-
terests, and this allows us to study millions of users at a macro-
scopic level. The SM4 model is closely related to the supervised
text model of sLDA [6] and the network model of MMSB [1], and
combines features of both models to address our challenges. We en-
sure scalability by splitting our learning algorithm into two phases:
a training phase on a smaller user subset to learn model parameters,
and a parallel prediction phase that uses these parameters to predict
the most likely topic vectors θp for each user, as well as the most
likely friendship topic-pair assignments sij , sji for all friendships
eij = 1. Because the inference phase is trivially parallelizable, our
system potentially scales to all users in Facebook.
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