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Abstract

Stochastic networks are a plausible representation of the relational in-
formation among entities in dynamic systems such as living cells or social
communities. While there is a rich literature in estimating a static or
temporally invariant network from observation data, little has been done
towards estimating time-varying networks from time series of entity at-
tributes. In this paper, we present two new machine learning methods
for estimating time-varying networks, which both build on a temporally
smoothed l1-regularized logistic regression formalism that can be cast as
standard convex-optimization problem and solved efficiently using generic
solvers scalable to large networks. We report promising results on recov-
ering simulated time-varying networks. For real datasets, we reverse engi-
neer the latent sequence of temporally rewiring political networks between
Senators from the US Senate voting records and the latent evolving reg-
ulatory networks underlying 588 genes across the life cycle of Drosophila
melanogaster from microarray time course. We provide some theoretical
guarantees for the proposed methods.

∗This work was done under supervision of my advisor Eric Xing. A part of this work is
going to appear in Annals of Applied Statistics (Kolar, Song, Ahmed, Xing. Estimating Time-
varying Networks). I am very grateful for multiple discussions I had with Larry Wasserman
and John Lafferty.
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1 Introduction

Consider the following real world problems:

• Analysis of gene regulatory networks. Suppose that we have a set of n
microarray measurements of gene expression levels, obtained at different
stages during the development of an organism or at different times dur-
ing the cell cycle. Given this data, biologists would like to get insight
into dynamic relationships between different genes and how these rela-
tions change at different stages of development. The problem is that at
each time point there is only one or at most a few measurements of the
gene expressions; and a naive approach to estimating the gene regulatory
network, which uses only the data at the time point in question to infer
the network, would fail. To obtain a good estimate of the regulatory net-
work at any time point, we need to leverage the data collected at other
time points and extract some information from them.

• Analysis of stock market. In a finance setting, we have values of different
stocks at each time point. Suppose, for simplicity, that we only measure
whether the value of a particular stock is going up or down. We would
like to find the underlying transient relational patterns between different
stocks from these measurements and get insight into how do these patterns
change over time. Again, we only have one measurement at each time point
and we need to leverage information from the data obtained at nearby time
points.

• Understanding social networks. There are 100 Senators in the U.S. Senate
and each can cast a vote on different bills. Suppose that we are given
n voting records over some period of time. How can one infer the latent
political liaisons and coalitions among different senators and the way these
relationships change with respect to time and with respect to different
issues raised in bills just from the voting records?

What is common to the above described problems is that they all concern
with estimating a sequence of time-specific latent relational structures between
a fixed set of entities (i.e., variables), from a time series of observation data
of entities states; and the relational structures between the entities are time
evolving, rather than being invariant throughout the data collection period as
commonly assumed in nearly all previous work on structure estimation such
as [3, 21, 24, 23]. Typically, the available data for the problem are very scarce,
with only one or at most a few measurements per time point corresponding to
any particular latent structure; and the data are very high-dimensional, with the
total number of observations small compared to the total number of potential
relations, which make the problem of structure estimation even more challenging
than the static case studied recently by [23].

A popular model for the relational structure over a fixed set of entities that
is widely studied is the Markov random field (MRF) [31, 12]. Let G = (V,E)
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represent a graph, of which V denotes the set of vertices, and E denotes the set
of edges over vertices. Depending on the specific application of interest, a node
u ∈ V can represent a gene, a stock, or a social actor, and an edge (u, v) ∈ E can
represent a relationship (e.g., correlation, influence, friendship) between actors
u and v. Let X = (X1, . . . , Xp)′, where p = |V |, be a random vector of nodal
states following a probability distribution indexed by θ ∈ Θ. Under a MRF, the
nodal states Xu’s are assumed to be discrete, i.e., Xu ∈ X ≡ {s1, . . . , sk}, and
the edge set E ⊆ V × V encodes certain conditional independence assumptions
among components of the random vector X, for example, the random variable
Xu is conditionally independent of the random variable Xv given the rest of the
variables if (u, v) 6∈ E. Under the special case of binary nodal states, e.g., Xu ∈
X ≡ {−1, 1}, and assuming pairwise potential weighted by θuv for all (u, v) ∈ E
and θuv = 0 for all (u, v) 6∈ E, the joint probability of X = x can be expressed by
a simple exponential family model: Pθ(x) = 1

Z exp{
∑
u<v θuvxuxv}, also known

as the Ising model, where Z denotes the partition that is usually intractable to
compute. A number of recent papers have studied in depth how to estimate
this model from data that are assumed to be i.i.d. samples from the model, and
the asymptotic guarantee of the estimator [23, 3]. In particular, an important
focus has been on the problem of structure estimation of the graph topology
represented by E. It has been shown that under certain variable conditions,
it is possible to obtain an estimator of the edge set E that achieve a property
known as sparsistency [23], which refers to the case where a consistent estimator
of E can be attained when the true degree (i.e., number of neighbors) of each
node is much smaller than the size of the graph p.

In this paper, we are interested in learning the graph structures of MRFs
from observational data, but under a more demanding scenario where the data
{xt} are not i.i.d. samples from a time-invariant MRF, but from a series of
time-evolving MRFs {Pθt(·)}t∈Tn , where Tn = {1/n, 2/n, . . . , 1} is the time in-
dex set; and our goal is to estimate the sequence of graphs {Gt}t∈Tn underlying
each observation xt ∼ Pθt in the time series, rather than a single static graph
G underlying Pθ over all time points. Under the traditional assumption of data
sampled i.i.d. from an invariant Pθ, structural estimation of a MRF can be cast
as a neighborhood selection problem for each node in the graph based on a `1-
norm regularized regression procedure, of which the theoretical guarantees have
been recently thoroughly studied [23], as we review shortly. We instead focus on
estimating the graph structures from a set of n independent, high-dimensional
observations which are NOT identically distributed, which is arguably a more
realistic characteristic of the data. Because of this more general problem we are
near the extremum of the high-p/low-n scenario for high-dimensional inference
in the traditional sense, (i.e., n is approaching 1, corresponding to as few as 1
instance of x per time-specific MRF), it is intriguing to ask, can we reliably es-
timate the changing graph structure and, if so, under what conditions? It might
seem that the problem is ill-defined, since for any time point we have at most
one observation; however, as we will show shortly, under a set of suitable as-
sumptions the problem is indeed well defined and the series of underlying graph
structures can be estimated. For example, we may assume that the probability
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distributions are changing smoothly over time, or there exist a partition of the
interval [0, 1] into segments where the graph structure within each segment is
invariant.

It is noteworthy that the problem of the graph structure estimation is quite
different from the problem of (value-) consistent estimation of the unknown
parameter θ that indexes the distribution. In general, the graph structure
estimation requires a more stringent assumptions on the underlying distribution
and the parameter values. For example, observe that a consistent estimator of θ
in the Euclidean distance does not guarantee a consistent estimation of the graph
structure, encoded by the non-zero patter of the estimator. In the motivating
problems that we started with, the main goal is to understand the interactions
between different actors. These interactions are more easily interpreted by a
domain expert than the numerical values of the parameter vector θ and have
potential to reveal more information about the underlying process of interest.
This is especially true in situations where there is little or no domain knowledge
and one is interested in obtaining casual, preliminary information. Furthermore,
the problem of dynamic structure estimation is of high importance in domains
that lack prior knowledge or measurement techniques about the interactions
between different actors; and such estimates can provide desirable information
about the details of relational changes in a complex system.

1.1 Related work

A large body of literature has focused on estimation of the time-invariant graph
structure from the i.i.d. sample. Assume that Dn = {xi = (xi1, . . . , x

i
p)}ni=1

are n i.i.d. samples from Pθ. Furthermore, under the assumption that Pθ

is a multivariate normal distribution with mean vector µ and covariance ma-
trix Σ, estimation of the graph structure is equivalent to the estimation of
zeros in the concentration matrix Ω ≡ Σ−1 [19]. [5] proposed a method that
tests if partial correlations are different from zero, which can be applied when
the number of dimensions p is small in comparison to the sample size n. In
the recent years, research has been directed towards methods that can handle
datasets with relatively few high-dimensional samples, which are common if a
number of domains, e.g., microarray measurement experiments, fMRI datasets
and astronomical measurements. These “large p, small n” datasets pose a dif-
ficult estimation problem, but under the assumption that the underlying graph
structure is sparse, several methods can be employed successfully for structure
recovery. [21] proposed a procedure based on neighborhood selection of each
node via the `1 penalized regression. This procedure uses a pseudo-likelihood,
which decomposes across different nodes, to estimate graph edges and, although
the estimated parameters are not consistent, the procedure recovers the graph
structure consistently under a set of suitable conditions. A related approach
is proposed in [22] who consider a different neighborhood selection procedure
for the structure estimation in which they estimate all neighborhoods jointly
and as a result obtain a global estimate of the graph structure that empirically
improves the performance on a number of networks. These neighborhood selec-
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tion procedures are suitable for large-scale problems due to availability of fast
solvers to `1 penalized problems [7, 10].

Another popular approach to the graph structure estimation is the `1 penal-
ized likelihood maximization, which simultaneously estimates the graph struc-
ture and the elements of the covariance matrix, however, at a price of computa-
tional efficiency. The penalized likelihood approach involves solving a semidef-
inite program (SDP) and a number of authors have worked on efficient solvers
that exploit the special structure of the problem [2, 33, 11, 6, 26]. Of these
methods, it seems that the graphical lasso [11] is the most computationally ef-
ficient. Some authors have proposed to use a non-concave penalty instead of
the `1 penalty, which tries to remedy the bias that the `1 penalty introduces
[16, 8, 35].

When the random variable X is discrete, the problem of structure estimation
becomes even more difficult since the likelihood cannot be optimized efficiently
due to the intractability of evaluation of the log-partition function. [23] use a
pseudo-likelihood approach, based on the local conditional likelihood at each
node, to estimate the neighborhood of each node, and show that this procedure
estimates the graph structure consistently.

All of the aforementioned work analyzes estimation of a time-invariant graph
structure from an i.i.d. sample. On the other hand, with few exceptions [15,
27, 14, 34], much less has been done on modeling dynamical processes that
guide topological rewiring and semantic evolution of networks over time. In
particular, very little has been done towards estimating the time-varying graph
topologies from observed nodal states, which represent attributes of entities
forming a network. [15] introduced a new class of models to capture dynamics of
networks evolving over discrete time steps, called temporal Exponential Random
Graph Models (tERGMs). This class of models uses a number of statistics
defined on time-adjacent graphs, e.g., “edge-stability,” “reciprocity,” “density,”
“transitivity,” etc., to construct a log-linear graph transition model P (Gt|Gt−1)
that captures dynamics of topological changes. [14] incorporate a hidden Markov
process into the tERGMs, which imposes stochastic constraints on topological
changes in graphs, and, in principle, show how to infer a time-specific graph
structure from the posterior distribution of Gt, given the time series of node
attributes. Unfortunately, even though this class of model is very expressive,
the sampling algorithm for posterior inference scales only to small graphs with
tens of nodes.

The work of [34] is the most relevant to our work and we briefly describe
it below. The authors develop a nonparametric method for estimation of time-
varying Gaussian graphical model, under the assumption that the observations
xt ∼ N (0,Σt) are independent, but not identically distributed, realizations
of a multivariate distribution whose covariance matrix changes smoothly over
time. The time-varying Gaussian graphical model is a continuous counterpart
of the discrete Ising model considered in this paper. In [34], the authors address
the issue of consistent, in the Frobenius norm, estimation of the covariance
and concentration matrix, however, the problem of consistent estimation of the
non-zero pattern in the concentration matrix, which corresponds to the graph
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structure estimation, is not addressed there. Note that the consistency of the
graph structure recovery does not immediately follow from the consistency of
the concentration matrix.

The paper is organized as follows. In Section 2 we describe the proposed
models for estimation of the time varying graphical structures and the algo-
rithms for obtaining the estimators. In Section 3, the performance of the meth-
ods is demonstrated through simulation studies. In Section 4, the methods are
applied to some real world data sets. In Section 5, we give theoretical properties
of the algorithms. Discussion is given in Section 6.

2 Methods

Let Dn = {xt ∼ Pθt |t ∈ Tn} be an independent sample of n observation from a
time series, obtained at discrete time steps indexed by Tn = {1/n, 2/n, . . . , 1}
(for simplicity we assume that the observations are equidistant in time). Each
sample point comes from a different discrete time step and is distributed ac-
cording to a distribution Pθt indexed by θt ∈ Θ. In particular, we will assume
that Xt is a p-dimensional random variable taking values from {−1, 1}p with a
distribution of the following form:

Pθt(x) =
1

Z(θt)
exp

 ∑
(u,v)∈Et

θtuvxuxv

 , (1)

where Z(θt) is the partition function, θt ∈ R(p2) is the parameter vector and
Gt = (V,Et) is an undirected graph representing conditional independence as-
sumptions among subsets of the p-dimensional random vector Xt. Recall that
V = {1, . . . , p} is the node set and each node corresponds with one component
of the vector Xt. In the paper we are addressing the problem of graph structure
estimation from the observational data which we now formally define: given any
time point τ ∈ [0, 1] estimate the graph structure associated with Pθt , given the
observations Dn. To obtain insight into the dynamics of changes in the graph
structure one only needs to estimate graph structure for multiple time-point,
e.g., for every τ ∈ Tn.

The graph structure Gτ is encoded by the locations of the non-zero elements
of the parameter vector θτ , which we refer to as the non-zero pattern of the
parameter θτ . Components of the vector θτ are indexed by distinct pairs of
nodes and a component of the vector θτuv is non-zero if and only if the corre-
sponding edge (u, v) ∈ Eτ . Throughout the rest of the paper we will focus on
estimation of the non-zero pattern of the vector θτ as a way to estimate the
graph structure. Let θτu be the (p− 1)-dimensional subvector of parameters

θτu := {θτuv | v ∈ V \u}

associated with each node u ∈ V , and let Sτ (u) be the set of edges adjacent to
a node u at a time point τ :

Sτ (u) := {(u, v) ∈ V × V | θτuv 6= 0}.
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Observe that the graph structure Gτ can be recovered from the local information
on neighboring edges Sτ (u), for each node u ∈ V , which can be obtained from
the non-zero pattern of the subvector θτu alone. The main focus of this section
is on obtaining node-wise estimators θ̂τu of the non-zero pattern of the subvector
θτu, which are then used to create estimates

Ŝτ (u) := {(u, v) ∈ V × V | θ̂τuv 6= 0}, u ∈ V. (2)

Note that the estimated non-zero pattern might be asymmetric, e.g., θ̂τuv = 0,
but θ̂τvu 6= 0. We consider using the min and max operations to combine the
estimators θ̂τuv and θ̂τvu. Let θ̃τ denote the combined estimator. The estimator
combined using the min operation has the following form:

θ̃uv =
{
θ̂uv if |θ̂uv| < |θ̂vu|
θ̂vu if |θ̂uv| ≥ |θ̂vu|

“min symmetrization”, (3)

which means that the edge (u, v) is included in the graph estimate only if it
appears in both estimates Ŝτ (u) and Ŝτ (v). Using the max operation, the
combined estimator can be expressed as:

θ̃uv =
{
θ̂uv if |θ̂uv| > |θ̂vu|
θ̂vu if |θ̂uv| ≤ |θ̂vu|

“max symmetrization”, (4)

and as a result the edge (u, v) is included in the graph estimate if it appears in
at least one of the estimate Ŝτ (u) or Ŝτ (v).

An estimator θ̂τu is obtained through the use of pseudo-likelihood based on
the conditional distribution of Xτ

u given the other of variables Xτ
\u = {Xτ

v | v ∈
V \u}. Although the use of pseudo-likelihood fails in certain scenarios, e.g.,
estimation of Exponential Random Graphs (see [30] for a recent study), the
graph structure of an Ising model can be recovered from an i.i.d. sample using
the pseudo-likelihood, as shown in [23]. Under the model (1), the conditional
distribution of Xτ

u given the other variables Xτ
\u takes the form:

Pθτu
(xτu|Xτ

\u = xτ\u) =
exp(xτu〈θτu,xτ\u〉)

exp(xτu〈θτu,xτ\u〉) + exp(−xτu〈θτu,xτ\u〉)
, (5)

where 〈a,b〉 = a′b denotes the dot product. For simplicity, we will write
Pθτu

(xτu|Xτ
\u = xτ\u) as Pθτu

(xτu|xτ\u). Observe that the model given in Eq. (5) can
be viewed as expressing Xτ

u as the response variable in the generalized varying-
coefficient models with Xτ

\u playing the role of covariates. Under the model
given in Eq. (5), the conditional log-likelihood, for the node u at the time point
t ∈ Tn, can be written in the following form:

γ(θu; xt) = log Pθu(xtu|xt\u)

= xtu〈θu,xt\u〉 − log
(

exp(〈θu,xt\u〉) + exp(−〈θu,xt\u〉)
)
.

(6)
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The non-zero pattern of θτu can be estimated by maximizing the conditional
log-likelihood given in Eq. (6). What is left to show is how to combine the
information across different time points, which will depend on the assumptions
that are made on the unknown vector θt.

The primary focus is to develop methods applicable to datasets with the
total number of observations n small compared to the dimensionality p = pn.
Without assuming anything about θt, the estimation problem is ill-posed, since
there can be more parameters than samples. A common way to deal with the
estimation problem is to assume that the graphs {Gt}t∈Tn are sparse, i.e., the
parameter vectors {θt}t∈Tn have only few non-zero elements. In particular,
we assume that each node u has a small number of neighbors, i.e., there exist
a number s � p such that it upper bounds the number of edges |Sτ (u)| for
all u ∈ V and τ ∈ Tn. In many real data sets the sparsity assumption holds
quite well. For example, in a genetic network, rarely a regulator gene would
control more than a handful of regulatees under a specific condition [4]. Fur-
thermore, we will assume that the parameter vector θt behave “nicely” as a
function of time. Intuitively, without any assumptions about the parameter θt

it is impossible to aggregate information from observations even close in time,
because the underlying probability distributions for observations from different
time points might be completely different. In the paper we will consider two
ways of constraining the parameter vector θt as a function of time:

• Smooth changes in parameters. We first consider that the distribution
generating the observation changes smoothly over the time, i.e., the pa-
rameter vector θt is a smooth function of time. Formally, we assume that
there exists a constant M > 0 such that it upper bounds the following
quantities:

max
u,v∈V×V

sup
t∈[0,1]

| ∂
∂t
θtuv| < M, max

u,v∈V×V
sup
t∈[0,1]

| ∂
2

∂t2
θtuv| < M.

Under this assumption, as we get more and more data (i.e. we collect data
in higher and higher temporal resolution within interval [0, 1]), parameters,
and graph structures, corresponding to any two adjacent time points will
differ less and less.

• Piecewise constant with abrupt structural changes in parameters. Next, we
consider that there are a number of change points at which the distribution
generating samples changes abruptly. Formally, we assume that for each
node u, there is a partition Bu = {0 = Bu,0 < Bu,1 < . . . < Bu,ku = 1}
of the interval [0, 1], such that each element of θtu is constant on each
segment of the partition. At change points some of the elements of the
vector θtu may become zero, while some others may become non-zero,
which corresponds to a change in the graph structure. If the number of
change points is small, i.e., the graph structure changes infrequently, then
there will be enough samples at a segment of the partition to estimate the
non-zero pattern of the vector θτ .
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In the following two subsections we propose two estimation methods, each suit-
able for one of the assumptions discussed above.

2.1 Smooth changes in parameters

Under the assumption that the elements of θt are smooth functions of time,
as described in the previous section, we use a kernel smoothing approach to
estimate the non-zero pattern of θτu at the time point of interest τ ∈ [0, 1], for
each node u ∈ V . These node-wise estimators are then combined using either
Eq. (3) or Eq. (4) to obtain the estimator of the non-zero pattern of θτ . The
estimator θ̂τu is defined as a minimizer of the following objective:

θ̂τu := min
θu∈Rp−1

{l (θu;Dn) + λ1||θu||1} (7)

where
l(θu;Dn) = −

∑
t∈Tn

wτt γ(θu; xt) (8)

is a weighted log-likelihood, with weights defined as wτt = Kh(t−τ)P
t′∈Tn Kh(t′−τ) and

Kh(·) = K(·/h) is a symmetric, nonnegative kernel function. We will refer to
this approach of obtaining an estimator as smooth. The `1 norm of the param-
eter is used to regularize the solution and as a result the estimated parameter
has a lot of zeros. The number of the non-zero elements of θ̂τu is controlled by
the user-specified regularization parameter λ1 ≥ 0. The bandwidth parameter
h is also a user defined parameter that effectively controls the number of obser-
vations around τ used to obtain θ̂τu. In Section 2.4 we discuss how to choose
the parameters λ1 and h.

The optimization problem (7) is the well known objective of the `1 penal-
ized logistic regression and there are many ways of solving it, e.g., the interior
point method of [17], the projected subgradient descent method of [6] or the
fast coordinate-wise descent method of [9]. From our limited experience, the
specialized first order methods work faster than the interior point methods and
we briefly describe the iterative coordinate-wise descent method:

1. Set initial values: θ̂τ,0u ← 0

2. For each v ∈ V \u, set the current estimate θ̂τ,iter+1
uv as a solution to the

following optimization procedure:

min
θ∈R

{ ∑
t∈Tn γ

(
θ̂τ,iter+1
u,1 , . . . , θ̂τ,iter+1

u,v−1 , θ, θ̂τ,iteru,v+1, . . . , θ̂
τ,iter
u,p−1; xt

)
+λ1|θ|

}
.

(9)

3. Repeat step 2 until convergence

For efficient way of solving (9) refer to [9]. In our experiments, we find that
the neighborhood of each node can be estimated in a few seconds even when
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the number of covariates is up to a thousand. A nice property of our algorithm
is that the overall estimation procedure decouples to a collection of separate
neighborhood estimation problems, which can be trivially parallelized. If we
treat the neighborhood estimation as an atomic operation, the overall algorithm
scales linearly as a product of the number of covariates p and the number of time
points n, i.e. O(pn). For instance, the Drosophila data set in the application
section contains 588 genes and 66 time points. The method smooth can estimate
the neighborhood of one node, for all points in a regularization plane, in less
than 1.5 hour.1

2.2 Structural changes in parameters

In this section, we give the estimation procedure of the non-zero pattern of
{θt}t∈Tn under the assumption that the elements of θtu is a piecewise constant
function, with pieces defined by the partition Bu. Again, the estimation is
performed node-wise and the estimators are combined using either Eq. (3) or
Eq. (4). As opposed to the kernel smoothing estimator defined in Eq. (7),
which gives the estimate at one time point τ , the procedure described below
simultaneously estimates {θ̂tu}t∈Tn . The estimators {θ̂tu}t∈Tn are defined as a
minimizer of the following convex optimization objective:

argmin
θtu∈Rp−1, t∈Tn

{
∑
t∈Tn

γ(θtu; xt)+λ1

∑
t∈Tn

||θtu||1+λTV

∑
v∈V \u

TV({θtuv}t∈Tn)}, (10)

where TV({θtuv}t∈Tn) :=
∑n
i=2 |θ

i/n
uv − θ(i−1)/n

uv | is the total variation penalty.
We will refer to this approach of obtaining an estimator as TV. The penalty is
structured as a combination of two terms. As mentioned before, the `1 norm
of the parameters is used to regularize the solution towards estimators with
lots of zeros and the regularization parameter λ1 controls the number of non-
zero elements. The second term penalizes the difference between parameters
that are adjacent in time and, as a result, the estimated parameters have in-
frequent changes across time. This composite penalty, known as the “fused”
Lasso penalty, was successfully applied in a slightly different setting of signal
denoising (e.g., [25]) where it creates an estimate of the signal that is piecewise
constant.

The optimization problem given in Eq. (10) is convex and can be solved
using off-the-shelf interior point solver (e.g., the CVX package by [13]). However,
for large scale problems (i.e., both p and n are large), interior point method
can be computationally expensive, and we do not know of any specialized al-
gorithm that can be used to solve (10) efficiently. Therefore, we propose a
block-coordinate descent procedure which is much more efficient than the exist-
ing off-the-shelf solvers for large scale problems. Observe that the loss function
can be decomposed as L({θtu}t∈Tn) = f1({θtu}t∈Tn) +

∑
v∈V \u f2({θtuv}t∈Tn) for

a smooth differentiable convex function f1({θtu}t∈Tn) =
∑
t∈Tn γ(θtu; xt) and a

1We have used a server with dual core 2.6GHz processor and 2GB RAM.
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convex function f2({θtuv}t∈Tn) = λ1

∑
t∈Tn |θ

t
uv| + λTV TV({θtuv}t∈Tn). [29] es-

tablished that the block-coordinate descent converges for loss functions with
such structure. Based on this observation we propose the following algorithm:

1. Set initial values: θ̂t,0u ← 0, ∀t ∈ Tn

2. For each v ∈ V \u, set the current estimates {θ̂t,iter+1
uv }t∈Tn as a solution

to the following optimization procedure:

min
{θt∈R}t∈Tn

{ ∑
t∈Tn γ

(
θ̂t,iter+1
u,1 , . . . , θ̂t,iter+1

u,v−1 , θt, θ̂t,iteru,v+1, . . . , θ̂
t,iter
u,p−1; xt

)
+λ1

∑
t∈T n |θt|+ λTV TV({θt}t∈Tn)

}
(11)

3. Repeat step 2 until convergence

Using the proposed block-coordinate descent algorithm, we solve a sequence
of optimization problems each with only n variables given in Eq. (11), instead of
solving one big optimization problem with n(n− 1) variables given in Eq. (10).
In our experiments, we find that the optimization in Eq. (10) can be estimated
in an hour when the number of covariates is up to few hundreds and when the
number of time points is also in hundreds. Here, the bottleneck is the number
of time points. Observe that the dimensionality of the problem in Eq. (11)
grows linearly with the number of time points. Again, the overall estimation
procedure decouples to a collection of smaller problems which can be trivially
parallelized. If we treat the optimization in Eq. (10) as an atomic operation,
the overall algorithm scales linearly as a function of the number of covariates p,
i.e. O(p). For instance, the Senate data set in the application section contains
100 Senators and 542 time points. It took about a day to solve the optimization
problem in Eq. (10) for all points in the regularization plane.

2.3 Multiple observations

In the discussion so far, it is assumed that at any time point in Tn only one
observation is available. There are situations with multiple observations at each
time point, e.g., in a controlled repeated microarray experiment two samples
obtained at a certain time point could be regarded as independent and iden-
tically distributed, and we discuss below how to incorporate such observations
into our estimation procedures. Later, in Section 3 we empirically show how the
estimation procedures benefit from additional observations at each time point.

For the estimation procedure given in Eq. (7) there are no modifications
needed to accommodate multiple observations at a time point. Each additional
sample will be assigned the same weight through the kernel function Kh(·).
On the other hand, we need a small change in Eq. (10) to allow for multiple
observations. The estimators {θ̂tu}t∈Tn are defined as follows:

argmin
θtu∈Rp−1, t∈Tn

{
∑
t∈Tn

∑
x∈Dtn

γ(θtu; x) + λ1

∑
t∈Tn

||θtu||1 + λTV

∑
v∈V \u

TV({θtuv}t∈Tn)},

(12)
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where the set Dtn denotes elements from the sample Dn observed at a time point
t.

2.4 Choosing tuning parameters

Estimation procedures discussed in Section 2.1 and 2.2, smooth and TV respec-
tively, require a choice of tuning parameters. These tuning parameters control
sparsity of estimated graphs and the way the graph structure changes over time.
The tuning parameter λ1, for both smooth and TV, controls the sparsity of the
graph structure. Large values of the parameter λ1 result in estimates with lots
of zeros, corresponding to sparse graphs, while small values result in dense mod-
els. Dense models will have a higher pseudo-likelihood score, but will also have
more degrees of freedom. A good choice of the tuning parameters is essential in
obtaining a good estimator that does not overfit the data, and balances between
the pseudo-likelihood and the degrees of freedom. The bandwidth parameter
h and the penalty parameter λTV control how similar are estimated networks
that are close in time. Intuitively, the bandwidth parameter controls the size
of a window around time point τ from which observations are used to estimate
the graph Gτ . Small values of the bandwidth result in estimates that change
often with time, while large values produce estimates that are almost time in-
variant. The penalty parameter λTV biases the estimates {θ̂tu}t∈Tn that are
close in time to have similar values; large values of the penalty result in graphs
whose structure changes slowly, while small values allow for more changes in
estimates.

First, we discuss how to choose the penalty parameters λ1 and λTV for the
method TV. Observe that γ(θtu; xt) represents a logistic regression loss function
when regressing a node u onto the other nodes V \u. Hence, problems defined in
Eq. (7) and Eq. (10) can be regarded as supervised classification problems, for
which a number of techniques can be used to select the tuning parameters, e.g.,
cross-validation or held-out datasets can be used when enough data is available,
otherwise, the BIC score can be employed. In this paper, we focus on the BIC
score defined for {θtu}t∈Tn as:

BIC({θtu}t∈Tn) :=
∑
t∈Tn

γ(θtu; xt)− log n
2

Dim({θtu}t∈Tn), (13)

where Dim(·) denotes the degrees of freedom of the estimated model. Similar
to [28], we adopt the following approximation to the degrees of freedom:

Dim({θtu}t∈Tn) =
∑
t∈Tn

∑
v∈V \u

1I
[
sign(θtuv) 6= sign(θt−1

uv )
]
× 1I

[
sign(θtuv) 6= 0

]
,

(14)
which counts the number of blocks on which the parameters are constant and
not equal to zero. In practice, we average the BIC scores from all nodes and
choose models according to the average.

Next, we address the way to choose the bandwidth h and the penalty param-
eter λ1 for the method smooth. As mentioned earlier, the tuning of bandwidth
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parameter h should trade off the smoothness of the network changes and the
coverage of samples used to estimate the network. Using a wider bandwidth pa-
rameter provides more samples to estimate the network, but this risks missing
sharper changes in the network; using a narrower bandwidth parameter makes
the estimate more sensitive to sharper changes, but this also makes the estimate
subject to larger variance due to the reduced effective sample size. In this paper,
we adopt a heuristic for tuning the inital scale of the bandwidth parameter: we
set it to be the median of the distance between pairs of time points. That is, we
first form a matrix (dij) with its entries dij := (ti − tj)2 (ti, tj ∈ Tn). Then the
scale of the bandwidth parameter is set to the median of the entries in (dij).
In our later simulation experiments, we find that this heuristic provides a good
initial guess for h, and it is quite close to the value obtained via exhaustive grid
search. For the method smooth, the BIC score for {θtu}t∈Tn is defined as:

BIC({θtu}t∈Tn) :=
∑
τ∈Tn

∑
t∈Tn

wτt γ(θτu; xt)− log n
2

Dim({θtu}t∈Tn), (15)

where Dim(·) is defined in Eq. (14).

3 Simulation studies

We have conducted a small empirical study of the performance of methods
smooth and TV. Our idea was to choose parameter vectors {θt}t∈Tn , generate
data according to the model in Eq. (1) using Gibbs sampling and try to recover
the non-zero pattern of θt for each t ∈ Tn. Parameters {θt}t∈Tn are considered
to be evaluations of the function θt at Tn and we study two scenarios, as dis-
cussed in Section 2: θt is a smooth function, θt is a piecewise constant function.
In addition to the methods smooth and TV, we will use the method of [23] to
estimate a time-invariant graph structure, which we refer to as static. All the
three methods estimate the graph based on node-wise neighborhood estimation,
which, as discussed in Section 2, may produce asymmetric estimates. Solutions
combined with the min operation in Eq. (3) are denoted as ****.MIN, while
those combined with the max operation in Eq. (4) are denoted as ****.MAX.

We took the number of nodes p = 20, the maximum node degree s = 4, the
number of edges e = 25 and the sample size n = 500. The parameter vectors
{θt}t∈Tn and observation sequences are generated as follows:

1. Generate a random graph G̃0 with 20 nodes and 15 edges: edges are
added, one at a time, between random pairs of nodes that have the node
degree less than 4. Next, randomly add 10 edges and remove 10 edges
from G̃0, taking care that the maximum node degree is still 4, to obtain
G̃1. Repeat the process of adding and removing edges from G̃1 to obtain
G̃2, . . . , G̃5. We refer to these 6 graphs as the anchor graphs. We will ran-
domly generate the prototype parameter vectors θ̃0, . . . , θ̃5, corresponding
to the anchor graphs, and then interpolate between them to obtain the
parameters {θt}t∈Tn .

14



2. Generate a prototype parameter vector θ̃i for each anchor graph G̃i, i ∈
{0, . . . , 5}, by sampling non-zero elements of the vector independently from
Unif([0.5, 1]). Then generate {θt}t∈Tn according to one of the following
two cases:

• Smooth function: The parameters {θt}t∈((i−1)/5,i/5]∩Tn are obtained
by linearly interpolating 100 points between θ̃i−1 and θ̃i, i ∈ {1, . . . , 5}.

• Piecewise constant function: The parameters {θt}t∈((i−1)/5,i/5]∩Tn
are set to be equal to (θ̃i−1 + θ̃i)/2, i ∈ {1, . . . , 5}.

Observe that after interpolating between the prototype parameters, a
graph corresponding to θt has 25 edges and the maximum node degree is
4.

3. Generate 10 independent samples at each t ∈ Tn according to Pθt , given
in Eq. (1), using Gibbs sampling.

We estimate Ĝt for each t ∈ Tn with our smooth and TV methods, using k ∈
{1, . . . , 10} samples at each time point. The results are expressed in terms of
the precision (Pre) and the recall (Rec) and F1 score, which is the harmonic
mean of precision and recall, i.e., F1 := 2 ∗ Pre ∗ Rec/(Pre + Rec). Let Êt

denote the estimated edge set of Ĝt, then the precision is calculated as Pre :=
1/n

∑
t∈Tn |Ê

t ∩ Et|/|Êt| and the recall as Rec := 1/n
∑
t∈Tn |Ê

t ∩ Et|/|Et|.
Furthermore, we report results averaged over 20 independent runs.

The tuning parameters h and λ1 for smooth, and λ1 and λTV for TV are
chosen by maximizing the average BIC score,

BICavg := 1/p
∑
u∈V

BIC({θtu}t∈Tn),

over a grid of parameters. The bandwidth parameter h is searched over {0.05, 0.1, . . . , 0.45, 0.5}
and the penalty parameter λTV over 10 points, equidistant on the log-scale,
from the interval [0.05, 0.3]. The penalty parameter is searched over 100 points,
equidistant on the log-scale, from the interval [0.01, 0.3] for both smooth and
TV. The same range is used to select the penalty parameter λ for the method
static that estimates a time-invariant network. In our experiments, we use the
Epanechnikov kernel K(z) = 3/4∗ (1− z2) 1I{|z| ≤ 1} and we remind our reader
that Kh(·) = K(·/h). For illustrative purposes, in Figure 1 we plot the BICavg

score over the grid of tuning parameters.
First, we discuss the estimation results when the underlying parameter vec-

tor changes smoothly. See Figure 2 for results. It can be seen that as the
number of the i.i.d. observations at each time point increases, the performance
of both methods smooth and TV increases. On the other hand, the performance
of the method static does not benefit from additional i.i.d. observations. This
observation should not be surprising as the time-varying network models bet-
ter fit the data generating process. When the underlying parameter vector θt

is a smooth function of time we expect that the method smooth would have
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(a) Average BIC score (b) Average BIC score

Figure 1: Plot of the BICavg score over the regularization plane. The parameter
vector θt is a smooth function of time and at each time point there is one
observation. (a) The graph structure recovered using the method smooth. (b)
The graph structure recovered using the method TV.

a faster convergence and better performance, which can be seen in Figure 2.
There are some differences between the estimates obtained through MIN and
MAX symmetrization. In our limited numerical experience, we have seen that
MAX symmetrization outperforms MIN symmetrization. MIN symmetrization is
more conservative in including edges to the graph and seems to be more sus-
ceptible to noise.

Next, we discuss the estimation results when then the underlying parameter
vector is piecewise constant function. See Figure 3 for results. Again, both
performance of the method smooth and of the method TV improve as there are
more independent samples at different time points, as opposed to the method
static. It is worth noting that the empirical performance of smooth and TV is
very similar in the setting when θt is a piecewise constant function of time, with
the method TV performing marginally better. This may be a consequence of the
way we present results, averaged over all time points in Tn. A closer inspection
of the estimated graphs shows that the method smooth poorly estimates graph
structure close to time point at which the parameter vector changes abruptly
(results not shown).

We have decided to perform simulation studies on Erdös-Rényi graphs, while
real-world graphs are likely to have different properties, such as a scale-free
network with a long tail in its degree distribution. From a theoretical perspective
(see Section 5), our method can still recover the true structure of these networks
regardless of the degree distribution, although for a more complicated model,
we may need more samples in order to achieve this. [22] proposed a joint
sparse regression model, which performs better than the neighborhood selection
method when estimating networks with hubs (nodes with very high degree) and
scale-free networks. For such networks, we can extended their model to our
time-varying setting, and potentially make more efficient use of the samples,
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(a) Precision (b) Recall (c) F1 score

(d) Precision (e) Recall (f) F1 score

Figure 2: Results of estimation when the underlying parameter {θt}t∈Tn
changes smoothly with time. The upper row consists of results when the graph
is estimated combining the neighborhoods using the min operation, while the
lower row consists of results when the max operation is used to combine neigh-
borhoods. Precision, recall and F1 score are plotted as the number of i.i.d.
samples k at each time point increases from 1 to 10. The solid, dashed, and
dotted lines denote results for smooth, TV, and static, respectively.

(a) Precision (b) Recall (c) F1 score

(d) Precision (e) Recall (f) F1 score

Figure 3: Results of estimation when the underlying parameter {θt}t∈Tn is a
piecewise constant function of time. The upper row consists of results when the
graph is estimated combining the neighborhoods using the min operation, while
the lower row consists of results when the max operation is used to combine
neighborhoods. Precision, recall and F1 score are plotted as the number of
i.i.d. samples k at each time point increases from 1 to 10. The solid, dashed,
and dotted lines denote results for smooth, TV, and static, respectively.
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however, we do not pursue this direction here.

4 Applications to real data

In this section we present the analysis of two real data sets using the algorithms
presented in Section 2. First, we present the analysis of the senate data con-
sisting of Senators’ votes on bills during the 109th Congress. The second data
set consists of expression levels of more than 4000 genes from the life cycle of
Drosophila melanogaster.

4.1 Senate Voting Records Data

The US senate data consists of voting records from 109th congress (2005 -
2006)2. There are 100 senators whose votes were recorded on the 542 bills.
Each senator corresponds to a variable, while the votes are samples recorded as
-1 for no and 1 for yes. This data set was analyzed in [2], where a static network
was estimated. Here, we analyze this data set in a time varying framework in
order to discover how the relationship between senators changes over time.

This data set has many missing values, corresponding to votes that were
not cast. We follow the approach of [2] and fill those missing values with (-
1). Bills were mapped onto the [0, 1] interval, with 0 representing Jan 1st,
2005 and 1 representing Dec 31st, 2006. We use the Epanechnikov kernel for
the method smooth. The tuning parameters are chosen optimizing the average
BIC score over the same range as used for the simulations in Section 3. For
the method smooth, the bandwidth parameter was selected as h = 0.174 and
the penalty parameter λ1 = 0.195, while penalty parameters λ1 = 0.24 and
λTV = 0.28 were selected for the method TV. In the figures in this section, we
use pink square nodes to represent republican Senators and blue circle nodes to
represent democrat Senators.

A first question is whether the learned network reflect the political division
between Republicans and Democrats. Indeed, at any time point t, the estimated
network contains few clusters of nodes. These clusters consist of either Repub-
licans or Democrats connected to each others, see Figure 4. Furthermore there
are very few links connecting different clusters. We observe that most Senators
vote similarly to other members of their party. Links connecting different clus-
ters usually go through senators that are members of one party, but have views
more similar to the other party, e.g. Senator Ben Nelson or Senator Chafee.
Note that we do not necessarily need to estimate a time evolving network to
discover this pattern of political division, as they can also be observed from a
time-invariant network, e.g. see [2].

Therefore, what is more interesting is whether there is any time evolving
pattern. To show this, we examine neighborhoods of Senators Jon Corzine and
Bob Menendez. Senator Corzine stepped down from the Senate at the end of
the 1st Session in the 109th Congress to become the Governor of New Jersey.

2The data can be obtain from the U.S. Senate web page http://www.senate.gov
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His place in the Senate was filled by Senator Menendez. This dynamic change
of interactions can be well captured by the time-varying network (Figure 5).
Interestingly, we can see that Senator Lautenberg who used to interact with
Senator Corzine switch to Senator Menendez in response to this event.

Another interesting question is whether we can discover senators with sway-
ing political stance based on time evolving networks. We discover that Senator
Ben Nelson and Lincoln Chafee fall into this category. Although, Senator Ben
Nelson is a Democrat from Nebraska, he is considered as one of the most con-
servative Democrats in the Senate. Figure 6 presents neighbors at distance two
or less of Senator Ben Nelson at two time points, one during the 1st Session and
one during the 2nd Session. As a conservative Democrat, he is connected to
both Democrats and Republicans since he shares views with both parties. This
observation is supported by Figure 6(a) which presents his neighbors during
the 1st Session. It is also interesting to note that during the second session,
his views drifted more towards the Republicans (Figure 6(b)). For instance, he
voted against abortion and withdrawal of most combat troops from Iraq, which
are both Republican views.

In contrast, although Senator Lincoln Chafee is a Republican, his political
view grew increasingly Democratic. Figure 7 presents neighbors of Senator
Chafee at three time points during the 109th Congress. We observe that his
neighborhood includes an increasing amount of Democrats as time progresses
during the 109th Congress. Actually, Senator Chafee later left the Republican
Party and became an independent in 2007. Also, his view on abortion, gay
rights and environmental policies are strongly aligned with those of Democrats,
which is also consistently reflected in the estimated network. We emphasize
that these patterns about Senator Nelson and Chafee could not be observed in
a static network.

4.2 Gene Regulatory Networks of Drosophila Melanogaster

In this section, we used the kernel reweighting approach to reverse engineer
the gene regulatory networks of Drosophila melanogaster from a time series of
gene expression data measured during its full life cycle. Over the developmen-
tal course of Drosophila melanogaster, there exist multiple underlying “themes”
that determine the functionalities of each gene and their relationships to each
other, and such themes are dynamical and stochastic. As a result, the gene
regulatory networks at each time point are context-dependent and can undergo
systematic rewiring, rather than being invariant over time. In a seminal study
by [20], it was shown that the “active regulatory paths” in the gene regulatory
networks of Saccharomyces cerevisiae exhibit topological changes and hub tran-
sience during a temporal cellular process, or in response to diverse stimuli. We
expect similar properties can also be observed for the gene regulatory networks
of Drosophila melanogaster.

We used microarray gene expression measurements from [1] as our input
data. In such an experiment, the expression levels of 4028 genes are simultane-
ously measured at various developmental stages. Particularly, 66 time points are
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Figure 4: 109th Congress, Connections between Senators in April 2005.
Democrats are represented with blue circles, Republicans with pink squares
and the red circle represent independent Senator Jeffords.

(a) March 2005 (b) August 2005 (c) March 2006 (d) August 2006

Figure 5: Direct neighbors of the node that represents Senator Corzine and
Senator Menendez at four different time points. Senator Corzine stepped down
at the end of the 1st Session and his place was taken by Senator Menendez,
which is reflected in the graph structure.
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(a) May 2005 (b) August 2006

Figure 6: Neighbors of Senator Ben Nelson (distance two or lower) at the be-
ginning of 109th Congress and at the end of 109th Congress. Democrats are
represented with blue circles, Republicans with pink squares. The estimated
neighborhood in August 2006 consists only of Republicans, which may be due
to the type of bills passed around that time on which Senator Ben Nelson had
similar view as other Republicans.

(a) February 2005 (b) October 2005 (c) July 2006

Figure 7: Neighbors of Senator Chafee (distance two or lower) at different time
points during 109th Congress. Democrats are represented with blue circles,
Republicans with pink squares and the red circle represent independent Senator
Jeffords.
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chosen during the full developmental cycle of Drosophila melanogaster, spanning
across four different stages, i.e. embryonic (1–30 time point), larval (31–40 time
point), pupal (41–58 time points) and adult stages (59–66 time points). In this
study, we focused on 588 genes that are known to be related to developmental
process based on their gene ontologies.

Usually, the samples prepared for microarray experiments are a mixture of
tissues with possibly different expression levels. This means that microarray
experiments only provide rough estimates of the average expression levels of
the mixture. Other sources of noise can also be introduced into the microarray
measurements during, for instance, the stage of hybridization and digitization.
Therefore, microarray measurements are far from the exact values of the ex-
pression levels, and it will be more robust if we only consider the binary state
of the the gene expression: either being up-regulated or down-regulated. For
this reason, we binarize the gene expression levels into {−1, 1} (-1 for down-
regulated and 1 for up-regulated). We learned a sequence of binary MRFs from
these time series.

First, we study the global pattern of the time evolving regulatory networks.
In Figure 8(a), we plotted two different statistics of the reversed engineered
gene regulatory networks as a function of the developmental time point (1–66).
The first statistic is the network size as measured by the number of edges; and
the second is the average local clustering coefficient as defined by [32]. For
comparison, we normalized both statistics to the range between [0, 1]. It can
be seen that the network size and its local clustering coefficient follow very
different trajectories during the developmental cycle. The network size exhibits
a wave structure featuring two peaks at mid-embryonic stage and the beginning
of pupal stage. Similar pattern of gene activity has also been observed by [1].
In contrast, the clustering coefficients of the dynamic networks drop sharply
after the mid-embryonic stage, and they stay low until the start of the adult
stage. One explanation is that at the beginning of the development process,
genes have a more fixed and localized function, and they mainly interact with
other genes with similar functions; however, after mid-embryonic stage, genes
become more versatile and involved in more diverse roles to serve the need of
rapid development; as the organism turns into an adult, its growth slows down
and each gene is restored to its more specialized role. To illustrate how the
network properties change over time, we visualized two networks from mid-
embryonic stage (time point 15) and mid-pupal stage (time point 45) using
spring layout algorithm in Figure 8(b) and 8(c) respectively. Although the size
of the two networks are comparable, tight local clusters of interacting genes
are more visible during mid-embryonic stage than mid-pupal stage, which is
consistent with the evolution local clustering coefficient in Figure 8(a).

To judge whether the learned networks make sense biologically, we zoom
into three groups of genes functionally related to different stages of develop-
ment process. In particular, the first group (30 genes) is related to embryonic
development based on their functional ontologies; the second group (27 genes)
is related to post-embryonic development; and the third group (25 genes) is
related to muscle development. For each group, we use the number of within
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group connections plus all its outgoing connections to describe the activitiy of
each group of genes (for short, we call it interactivity). In Figure 9, we plotted
the time courses of interactivity for the three groups respectively. For compari-
son, we normalize all scores to the range of [0, 1]. We see that the time courses
have a nice correspondence with their supposed roles. For instance, embryonic
development genes have the highest interactivity during embryonic stage, and
post-embryonic genes increase their interacativity during larval and pupal stage.
The muscle development genes are less specific to certain developmental stages,
since they are needed across the developmental cycle. However, we see its in-
creased activity when the organism approaches its adult stage where muscle
development becomes increasingly important.

The estimated networks also recover many known interactions between genes.
In recovering these known interactions, the dynamic networks also provide ad-
ditional information as to when interactions occur during development. In Fig-
ure 10, we listed these recovered known interactions and the precise time when
they occur. This also provides a way to check whether the learned networks
are biologically plausible given the prior knowledge of the actual occurence of
gene interactions. For instance, the interaction between genes msn and dock is
related to the regulation of embryonic cell shape, correct targeting of photore-
ceptor axons. This is very consistent with the timeline provided by the dynamic
networks. A second example is the interaction between genes sno and Dl which
is related to the development of compound eyes of Drosophila. A third example
is between genes caps and Chi which are related to wing development during
pupal stage. What is most interesting is that the dynamic networks provide
timelines for many other gene interactions that have not yet been verified ex-
perimentally. This information will be a useful guide for future experiments.

We further studied the relations between 130 transcriptional factors (TF).
The network contains several cluster of transcriptional cascades, and we will
present the detail of the largest transcriptional factor cascade involving 36 tran-
scriptional factors (Figure 11). This cascade of TFs is functionally very coherent,
and many TFs in this network play important roles in the nervous system and
eye development. For example, Zn finger homeodomain 1 (zhf1), brinker (brk),
charlatan (chn), decapentaplegic (dpp), invected (inv), forkhead box, subgroup
0 (foxo), Optix, eagle (eg), prospero (pros), pointed (pnt), thickveins (tkv),
extra macrochaetae (emc), lilliputian (lilli), doublesex (dsx) are all involved in
nervous and eye development. Besides functional coherence, the networks also
reveals the dynamic nature of gene regulation: some relations are persistent
across the full developmental cycle while many others are transient and specific
to certain stages of development. For instance, five transcriptional factors, brk-
pnt-zfh1-pros-dpp, form a long cascade of regulatory relations which are active
across the full developmental cycle. Another example is gene Optix which are
active across the full developmental cycle and serves as a hub for many other
regulatory relations. As for transience of the regulatory relations, TFs to the
right of Optix hub reduced in their activity as development proceeds to later
stage. Furthermore, Optix connects two disjoint cascade of gene regulations to
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(a) Network statistics (b) Mid-embryonic stage (c) Mid-pupal stage

Figure 8: Characteristic of the dynamic networks estimated for the genes related
to developmental process. (a) Plot of two network statistics as functions of
development time line. Network size ranges between 1712 and 2061 over time,
while local clustering coefficient ranges between 0.23 and 0.53 over time; To
focus on relative activity over time, both statistics are normalized to the range
between 0 and 1. (b) and (c) visualization of two example of networks from
different time point. We can see that network size can evolve in a very different
way from the local clustering coefficient.

(a) (b) (c)

Figure 9: Interactivity of 3 groups of genes related to (a) embryonic develop-
ment (ranging between 169 and 241); (b) post-embryonic development (ranging
between 120 and 210) and (c) muscle development (ranging between 29 and 89).
To focus on the relative activity over time, we normalize the score to [0, 1]. The
higher the interactivity, the more active the group of genes. The interactivities
of these three groups are very consistent with their functional annotations.
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Figure 10: Timeline of 45 known gene interactions. Each cell in the plot corre-
sponds to one gene pair of gene interaction at one specific time point. The cells
in each row are ordered according to their time point, ranging from embryonic
stage (E) to larval stage (L), to pupal stage (P), and to adult stage (A). Cells
colored blue indicate the corresponding interaction listed in the right column is
present in the estimated network; blank color indicates the interaction is absent.
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(a) Summary network

(b) Time point 15 (mid-embryonic stage) (c) Time point 35 (mid-larval stage)

(d) Time point 49 (mid-pupal stage) (e) Time point 62 (mid-adult stage)

Figure 11: The largest transcriptional factors (TF) cascade involving 36 tran-
scriptional factors. (a) The summary network is obtained by summing the
networks from all time points. Each node in the network represents a tran-
scriptional factor, and each edge represents an interaction between them. On
different stages of the development, the networks are different, (b,c,d,e) shows
representative networks for the embryonic, larval, pupal and adult stage of the
development respectively.
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its left and right side after embryonic stage.
The dynamic networks also provide an overview of the interactions between

genes from different functional groups. In Figure 12, we grouped genes according
to 58 ontologies and visualized the connectivity between groups. We can see that
large topological changes and network rewiring occur between functional groups.
Besides expected interactions, the figure also reveals many seemingly unexpected
interactions. For instance, during the transition from pupa stage to adult stage,
Drosophila is undergoing a huge metamorphosis. One major feature of this
metamorphosis is the development of the wing. As can be seen from Figure 12(r)
and 12(s), genes related to metamorphosis, wing margin morphogenesis, wing
vein morphogenesis and apposition of wing surfaces are among the most active
group of genes, and they carry their activity into adult stage. Actually, many
of these genes are also very active during early embryonic stage (for example,
Figure 12(b) and 12(c)); the difference is though they interact with different
groups of genes. On one hand, the abundance of the transcripts from these
genes at embryonic stage is likely due to maternal deposit [1]; on the other
hand, this can also be due to the diverse functionalities of these genes. For
instance, two genes related to wing development, held out wings (how) and
tolloid (td), also play roles in embryonic development.

5 Some properties of the algorithms

In this section we discuss some theoretical guarantees of the proposed algo-
rithms. The most challenging aspect in estimating time-varying graphs is that
the dimension of the data p can be much larger than the size of the sample n
(p � n), and there is usually only one sample per time point. For example, in
a genome-wide reverse engineering task, the number of genes can be well over
ten thousand (p > 10, 000), while the total number of microarray measurements
is only in hundreds (n ∼ 100) and the measurements are collected at different
developmental stages. Then, the question is, what are the sufficient conditions
under which our algorithms recovers the sequence of unknown graphs {Gt}t∈Tn
correctly.

5.1 Recovery under smooth changes

For convenience, we restate the estimation problem from Section 2. Recall that
Dn = {xt ∼ Pθt |t ∈ Tn} denotes a sample of n data points, which are sampled
independently from Pθt at discrete time steps indexed by Tn, where Pθt is given
in Eq. (1). The problem of the graph structure estimation associated with the
distribution Pθτ , at any given time point τ ∈ [0, 1], is cast as the problem
of estimating the non-zero pattern of the vector θτ , i.e., locations of non-zero
elements of θτ . A stronger notion of structure estimation is that of signed edge
recovery; for a given graphical model Gτ with parameter θτ , we define the signed
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(a) Average network. Each color patch denotes an ontological
group, and the position of these ontological groups remain
the same from (a) to (u). The annotation in the outer rim
indicates the function of each group.

(b) t = 1
66

(c) t = 4
66

(d) t = 8
66

(e) t = 12
66

(f) t = 16
66

(g) t = 20
66

(h) t = 24
66

(i) t = 28
66

(j) t = 32
66

(k) t = 35
66

(l) t = 38
66

(m) t = 41
66

(n) t = 44
66

(o) t = 47
66

(p) t = 50
66

(q) t = 53
66

(r) t = 56
66

(s) t = 59
66

(t) t = 62
66

(u) t = 65
66

Figure 12: Interactions between gene ontological groups related to developmen-
tal process undergo dynamic rewiring. The weight of an edge between two
ontological groups is the total number of connection between genes in the two
groups. In the visualization, the width of an edge is proportional to its edge
weight. We thresholded the edge weight at 30 in (b)-(u) so that only those
interactions exceeding this number are displayed. The average network in (a)
is produced by averaging the networks underlying (b)-(u). In this case, the
threshold is set to 20 instead.
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edge vector SEτ ∈ R(p2) as:

SEτ =
{

sign(θτuv) if (u, v) ∈ Eτ
0 otherwise. (16)

In Section 2 we discussed the problem of graph recovery as recovering the vector
|SEτ | of absolute values. The guarantees we give here are stronger and address
estimation of the signed edge vector.

Let τ ∈ [0, 1] be any given time point for which we are interested in es-
timating the structure of the graph Gτ from the sample Dn. Typically, the
structure of the graph is estimated for every τ ∈ Tn. Observe the signed edge
vector SEτ of a graph Gτ can be recovered from the set of neighboring edges
Sτ (u) = {(u, v) : (u, v) ∈ Eτ} (u ∈ V ) and the correct signs sign(θτuv) for all
(u, v) ∈ Sτ (u). We define the set of signed neighboring edges as

Sτ±(u) := {(sign(θτuv), (u, v)) : (u, v) ∈ Sτ (u)}.

The set of signed neighboring edges Sτ±(u) can be determined from the signs of
elements of the (p− 1)-dimensional subvector of parameters

θτu := {θτuv : v ∈ V \u}

associated with vertex u. Under the model (1), the conditional distribution of
Xτ
u given other variables Xτ

\u := {Xτ
v : v ∈ V \u} is given in Eq. (5) and the

log-likelihood, for one data-point t ∈ Tn, has the form given in Eq. (6). For
an arbitrary point of interest τ ∈ [0, 1], this log-likelihood suggest an estimator
θ̂τu of the sign-pattern of the vector θτu as the solution to the following convex
program (already given in Eq. (7)):

θ̂τu = min
θu∈Rp−1

{` (θu;Dn) + λn||θu||1} (17)

where
`(θu;Dn) = −

∑
t∈Tn

wτt γ(θu; xt) (18)

and the weights are defined as

wτt =
Kh(t− τ)∑

t′∈Tn Kh(t′ − τ)

for a symmetric nonnegative kernel Kh(·) = K(·/h). Note that in the objective
given in (17) we approximate the function θtu : R 7→ Rp−1 around the point τ
with a constant θ̂τu ∈ Rp−1. The program (17) is convex, but not differentiable,
because of the `1 norm. The minimum over θu is always achieved, as the problem
can be cast as a constrained optimization problem over the ball ||θu||1 ≤ C(λn)
and the claim follows from the Weierstrass theorem.

Let θ̂τu be a minimizer of (17). The convex program (17) does not necessarily
have a unique optimum, but as we will prove shortly, in the regime of interest
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any two solutions will have non-zero elements in the same positions. Based on
the vector θ̂τu, we construct the estimate of the signed neighborhood:

Ŝτ±(u) :=
{

(sign(θ̂τuv), (u, v)) : v ∈ V \u, θ̂τuv 6= 0
}
. (19)

The structure of graph Gτ is consistently estimated if every signed neighborhood
is recovered, i.e. Ŝτ±(u) = Sτ±(u) for all u ∈ V .

5.1.1 Main theoretical result

In this section, we describe under which conditions the graph structure can
be recovered. We give the conditions under which the estimation procedure
estimates the unknown graph structure consistently. Using notation from the
last section, we give conditions under which the estimator ŜE

τ

n satisfies the
following

P[ŜE
τ

n = SEτ ]→ 1, as n→ +∞.
This property is known as sparsistency. We will mainly be interested in the
high-dimensional case, where the dimension p = pn is comparable or even larger
than the sample size n. It is of great interest to understand the performance
of the estimator under this assumption, since in many real world scenarios the
dimensionality of data is large. Our analysis is asymptotic and we consider the
model dimension p = pn to grow at a certain rate as the sample size grows. This
essentially allows us to consider more “complicated” models as we observe more
data points. Another quantity that will describe the complexity of the model
is the maximum node degree s = sn, which is also considered as a function of
the sample size. The main result describes the scaling of the triple (n, pn, sn)
under which the estimation procedure given in the previous section estimates
the graph structure consistently.

Since our main interest is in estimating the structure of a high-dimensional
graph from a small size sample, we assume that the true structure of the graph
is sparse, i.e., we assume that each node has a small number of adjacent edges.
The `1 regularization procedures have been proved very successful as model
selection techniques in a variety of problems, and, as we show here, our method
is successful in estimating the time-varying graph structure.

In order to estimate the non-zero pattern of the vector θτu for each node
u ∈ V we need to impose regularity conditions on the covariates in the model
(5). We express these conditions in terms of the Hessian of the log-likelihood
function as evaluated at the true model parameter, i.e., the Fisher information
matrix. The Fisher information matrix Qτ

u ∈ R(p−1)×(p−1) is a matrix defined
for each node u ∈ V as:

Qτ
u : = E[∇2 log Pθτu

[Xu|X\u]]
= E[η(X; θτu)X\uX′\u],

(20)

where

η(x; θu) :=
4 exp(2xu〈θu,x\u〉)

(exp(2xu〈θu,x\u〉) + 1)2
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is the variance function. We write Qτ := Qτ
u and assume that the following

assumptions hold for each node u ∈ V .

A1: Dependency condition There exist constants Cmin, Dmin, Dmax > 0 such
that

Λmin(Qτ
SS) ≥ Cmin

and
Λmin (Στ ) ≥ Dmin, Λmax (Στ ) ≤ Dmax,

where Στ = Eθτ [XτXτ ′ ]. Here Λmin(·) and Λmax(·) denote the minimum
and maximum eigenvalue of a matrix.

A2: Incoherence condition There exists an incoherence parameter α ∈ (0, 1]
such that

|||Qτ
ScS(Qτ

SS)−1|||∞ ≤ 1− α,

where, for a matrix A ∈ Ra×b, the `∞ matrix norm is defined as |||A|||∞ :=
maxi∈{1,...,a}

∑b
j=1 |aij |.

With some abuse of notation, when defining assumptions A1 and A2, we use
the index set S := Sτ (u) to denote nodes adjacent to the node u at time τ . For
example, if s = |S|, then Qτ

SS ∈ Rs×s denotes the sub-matrix of Qτ indexed by
S.

As in the structure estimation of the invariant MRF from an i.i.d. sam-
ple [23], the Fisher information matrix Qτ , associated with the local conditional
probability, plays very important role in determining success of the method. It
can also be regarded as a counterpart of the covariance matrix E[XτXτ ′ ] of
Gaussian graphical models. Note that the conditions A1 and A2 are symboli-
cally the same as for the i.i.d. case, when the graph is invariant over time [23],
with the difference that we assume that the conditions hold for the time point
of interest τ at which we want to recover the graph structure. Condition A1
assures that the relevant features are not too correlated. Condition A2 assures
that the irrelevant features do not have to strong effect onto the relevant fea-
tures. Similar type of condition has been proposed also in the case of the linear
regression (e.g. [21]).

Next, we assume that the distribution Pθt changes smoothly over time, which
we express in the following form, for every node u ∈ V .

A3: Smoothness conditions Let Σt = [σtuv]. There exists a constant M > 0
such that it upper bounds the following quantities:

max
u,v∈V×V

sup
t∈[0,1]

| ∂
∂t
σtuv| < M, max

u,v∈V×V
sup
t∈[0,1]

| ∂
2

∂t2
σtuv| < M

max
u,v∈V×V

sup
t∈[0,1]

| ∂
∂t
θtuv| < M, max

u,v∈V×V
sup
t∈[0,1]

| ∂
2

∂t2
θtuv| < M.
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The condition A3 captures our notion of the distribution that changes smoothly
over time. If we consider the elements of the covariance matrix and the elements
of the parameter vector as a function of time, then these functions have bounded
first and second derivatives. From these assumptions, it is not too hard to see
that elements of the Fisher information matrix are also smooth functions of
time.

A4: Kernel The kernel K : R 7→ R is a symmetric function, supported in
[−1, 1], and there exists a constant MK ≥ 1 which upper bounds the
quantities maxz∈R |K(z)| and maxz∈R K(z)2.

This condition, A4, gives some regularity conditions on the kernel used to
define the weights. For example, the assumption is satisfied by the box kernel
K(z) = 1

2 1I{z ∈ [−1, 1]}. Under the assumption A4, the kernel has the following
properties:

2
∫ 0

−1

zK(z)dz ≤ 2
∫ 0

−1

K(z)dz = 1

2
∫ 0

−1

z2K(z)dz ≤ 1.

With the assumptions made above, we are ready to state the theorem that
characterizes the consistency of the method given in the previous section for
recovering the unknown time-varying graph structure. An important quantity,
appearing in the statement, is the minimum value of the parameter vector that
is different from zero

θmin = min
(u,v)∈Eτ

|θτuv|.

Intuitively, the success of the recovery should depend on how hard it is to
distinguish the true non-zero parameters from noise.

Theorem 1. Assume that the dependency condition A1 holds with Cmin, Dmin

and Dmax, that for each node u ∈ V , the Fisher information matrix Qτ satisfies
the incoherence condition A2 with parameter α, the smoothness assumption A3
holds with parameter M , and that the kernel function used to define weights
satisfies assumption A4 with parameter MK . Let the regularization parameter
satisfy

λn ≥ C
√

log p
n1/3

for a constant C > 0 independent of (n, p, s). Furthermore, assume that the
following conditions hold:

1. h = O(n−
1
3 )

2. s = o(n1/3), s3 log p
n2/3 = o(1)

3. θmin = Ω(
√
s log p
n1/3 ).
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Then for any τ ∈ [0, 1], and in particular for τ ∈ Tn, the estimated graph Ĝτ (λn)
obtained through neighborhood selection satisfies

P
[
Ĝτ (λn) 6= Gτ

]
= O

(
exp

(
−Cn

2/3

s3
+ C ′ log p

))
→ 0, (21)

for some constants C ′, C ′′ independent of (n, p, s).

This theorem guarantees that the procedure asymptotically recovers the se-
quence of graphs underlying all the nodal-state measurements in a time series,
and the snapshot of the evolving graph at any time point during measurement
intervals, under appropriate regularization parameter λn as long as the ambi-
ent dimensionality p and the maximum node degree s are not too large, and
minimum θ values do not tend to zero too fast. This is a somewhat surpris-
ing result because it suggests that structure recovery is possible when only one
sample or even no sample exactly corresponding to the structure is available.
The key insight behind this possibility is the smoothness assumption on graph
evolution, which allows data points at, in theory, any time point (but in practice
nearby time points determined by the kernel bandwidth) to contribute to the
estimation of a graph at a particular time of interest.

Remarks:

1. The bandwidth parameter h is chosen so that it balances variance and
squared bias of estimation of the elements of the Fisher information ma-
trix.

2. Condition 2 requires that the size of the neighborhood of each node re-
mains smaller than the size of the samples. However, the model ambient
dimension p is allowed to grow exponentially in n.

3. Condition 3 is crucial to be able to distinguish true elements in the neigh-
borhood of a node. We require that the size of the minimum element of
the parameter vector stays bounded away from zero.

4. The rate of convergence is dictated by the rate of convergence of the
sample Fisher information matrix to the true Fisher information matrix,
as shown in Lemma 6. Using a local linear smoother, instead of the kernel
smoother, to estimate the coefficients in the model (5) one could get a
faster rate of convergence.

In the sequel, we set out to prove Theorem 1. The plan is to first show that
the empirical estimates of the Fisher information matrix and the covariance
matrix are close elementwise to their population versions. Next, we show that
the minimizer θ̂τu of (17) is unique under the assumptions given in Theorem 1.
Finally, we show that with high probability the estimator θ̂τu recovers the true
neighborhood of a node u. Repeating the procedure for all nodes u ∈ V we
obtain the result stated in Theorem 1.
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5.1.2 Large deviation inequalities

In this section we characterize the deviation of elements of the sample Fisher
information matrix Q̂τ := Q̂τ

u at time point τ , defined as

Q̂τ =
∑
t

wτt η(xt; θτu)xt\ux
t′

\u, (22)

and the sample covariance matrix Σ̂τ from their population versions Qτ and
Στ . As will be seen later, in the proof of the main theorem, consistency result
crucially depends on the bounds on the difference Q̂τ −Qτ and Σ̂τ − Στ . In
the following, we use C,C ′ and C ′′ as generic positive constants independent of
(n, p, s).

Sample Fisher information matrix

To bound the deviation between elements of Q̂τ = [q̂τvv′ ] and Qτ = [qτvv′ ],
v, v′ ∈ V \u, we will use the following decomposition:

|q̂τvv′ − qτvv′ | ≤ |
∑
t∈Tn

wτt η(xt; θτu)xtvx
t
v′ −

∑
t∈Tn

wτt η(xt; θtu)xtvx
t
v′ |

+ |
∑
t∈Tn

wτt η(xt; θtu)xtvx
t
v′ − E[

∑
t∈Tn

wτt η(xt; θtu)xtvx
t
v′ ]|

+ |E[
∑
t∈Tn

wτt η(xt; θtu)xtvx
t
v′ ]− qτvv′ |.

(23)

The following lemma gives us bounds on the terms in Eq. (23).

Lemma 2. Assume that the smoothness condition A3 is satisfied and that the
kernel function K(·) satisfies A4. Furthermore, assume

max
t∈[0,1]

|{v ∈ {1, . . . , p} : θtuv 6= 0}| < s,

i.e., the number of non-zero elements of the parameter vector is bounded by s.
There exist constants C,C ′, C ′′ > 0, depending on M and MK only, which are
the constants quantifying assumption A3 and A4, respectively , such that for
any τ ∈ [0, 1], we have

max
v,v′

|q̂τvv′ −
∑
t∈Tn

wτt η(xt; θtu)xtvx
t
v′ | = Csh (24)

max
v,v′

|E[
∑
t∈Tn

wτt η(xt; θtu)xtvx
t
v′ ]− qτvv′ | = C ′h. (25)

Furthermore,

|
∑
t∈Tn

(wτt η(xt; θtu)xtvx
t
v′ − E[wτt η(xt; θtu)Xt

vX
t
v′ ])| < ε (26)

with probability at least 1− 2 exp(−C ′′nhε2).
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Using results of Lemma 2 we can obtain the rate at which the element-wise
distance between the true and sample Fisher information matrix decays to zero
as a function of the bandwidth parameter h and the size of neighborhood s. In
the proof of the main theorem, the bandwidth parameter will be chosen so that
the bias and variance terms are balanced.
Sample covariance matrix

The deviation of the elements of the sample covariance matrix is bounded in
a similar way as the deviation of elements of the sample Fisher information
matrix, given in Lemma 2. Denoting the sample covariance matrix at time
point τ as

Σ̂τ =
∑
t

wτt x
txt
′
, (27)

and the difference between the elements of Σ̂τ and Στ can be bounded as

|σ̂τuv − στuv| = |
∑
t∈Tn

wτt x
t
ux

t
v − στuv|

≤ |
∑
t∈Tn

wτt x
t
ux

t
v − E[

∑
t∈Tn

wτt x
t
ux

t
v]|

+ |E[
∑
t∈Tn

wτt x
t
ux

t
v]− στuv|.

(28)

The following lemma gives us bounds on the terms in Eq. (28).

Lemma 3. Assume that the smoothness condition A3 is satisfied and that the
kernel function K(·) satisfies A4. There are constants C,C ′ > 0 depending on
M and MK only such that for any τ ∈ [0, 1], we have

max
u,v
|E[
∑
t∈Tn

wτt x
t
ux

t
v]− στuv| ≤ Ch. (29)

and
|
∑
t∈Tn

wτt x
t
ux

t
v − E[

∑
t∈Tn

wτt x
t
ux

t
v]| ≤ ε (30)

with probability at least 1− 2 exp(−C ′nhε2).

A similar result was established in [34] for the case where x is a multivariate
Normal distributed random variable.

5.1.3 Proof of Theorem 1

The proof is given through a sequence of technical lemmas. Note that in what
follows, we use C,C ′ and C ′′ to denote positive constants independent of (n, p, s)
and their value my change from line to line.

The main idea behind the proof is to characterize the minimum obtained in
Eq. (17) and show that the correct neighborhood of one node at an arbitrary
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time point can be recovered with high probability. Next, using the union bound
over the nodes of a graph, we can conclude that the whole graph is estimated
sparsistently at the time points of interest.

We first address the problem of uniqueness of the solution to (17). Note that
because the objective in Eq. (17) is not strictly convex it is necessary to show
that the non-zero pattern of the parameter vector is unique, since otherwise
the problem of sparsistent graph estimation would be meaningless. Under the
conditions of Theorem 1 we also have that the solution is unique, which we
prove in two steps.

Let us denote the set of all solution to (17) as Θ(λn). We define the objective
function in Eq. (17) by

F (θu) := −
∑
t∈Tn

wτt γ(θu; xt) + λn||θu||1 (31)

and we say that θu ∈ Rp−1 satisfies the system (S) when

∀v = 1, . . . , p− 1,
{ ∑

t∈Tn w
τ
t (∇γ(θu; xt))v = λn sign(θuv) if θuv 6= 0

|
∑
t∈Tn w

τ
t (∇γ(θu; xt))v| ≤ λn if θuv = 0,

(32)
where

∇γ(θu; xt) = xt\u
{
xtu + 1− 2Pθu [xtu = 1|xt\u]

}
(33)

is the score function. Eq. (32) is obtained by taking the sub-gradient of F (θ) and
equating it to zero. From the Karush-Kuhn-Tucker (KKT) conditions it follows
that θu ∈ Rp−1 belongs to Θ(λn) if and only if θu satisfies the system (S). The
following Lemma shows that any two solutions have the same non-zero pattern.

Lemma 4. Consider a node u ∈ V . If θ̄u ∈ Rp−1 and θ̃u ∈ Rp−1 both belong
to Θ(λn) then 〈xt\u, θ̄u〉 = 〈xt\u, θ̃u〉, t ∈ Tn. Furthermore, solutions θ̄u and θ̃u
have non-zero elements in the same positions.

We now use the result of Lemma 4 to show that with high probability the
minimizer in (7) is unique. We consider the following event:

Ω01 = {Dmin − δ ≤ y′Σ̂τ
SSy ≤ Dmax + δ : y ∈ Rs, ||y||2 = 1}.

Lemma 5. Consider a node u ∈ V . Assume that the conditions of Lemma 3
are satisfied. Assume also that the dependency condition A1 holds. There are
constants C,C ′, C ′′ > 0 depending on M and MK only, such that

P[Ω01] ≥ 1− 4 exp(−Cnh(
δ

s
− C ′h)2 + C ′′ log(s)).

Moreover, on the event Ω01, the minimizer of (7) is unique.

We have shown that the estimate θ̂τu is unique on the event Ω01, which
under the conditions of Theorem 1 happens with probability converging to 1
exponentially fast. To finish the proof of Theorem 1 we need to show that the
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estimate θ̂τu has the same non-zero pattern as the true parameter vector θτu. In
order to show that we consider a few “good” events, which happen with high
probability and on which the estimate θ̂τu has the desired properties. We start
by characterizing the sample version of the Fisher information matrix, defined
in Eq. (22). Consider the following events:

Ω02 := {Cmin − δ ≤ y′Q̂τ
SSy : y ∈ Rs, ||y||2 = 1}

and
Ω03 := {|||Q̂τ

ScS(Q̂τ
SS)−1|||∞ ≤ 1− α

2
}.

Lemma 6. Assume that the conditions of Lemma 3 are satisfied. Assume also
that the dependency condition A1 holds and the incoherence condition A2 holds
with the incoherence parameter α. There are constants C,C ′, C ′′ > 0 depending
on M , MK and α only, such that

P[Ω02] ≥ 1− 2 exp(−Cnhδ
2

s2
+ C ′ log(s))

and
P[Ω03] ≥ 1− exp(−Cnh

s3
+ C ′′ log(p)).

Lemma 6 guarantees that the sample Fisher information matrix satisfies
“good” properties with high probability, under the appropriate scaling of quan-
tities n, p, s and h. A similar result was obtained for the sample Fisher infor-
mation matrix in [23] for the model that does not change with time. Note that
the result in Lemma 6 is somewhat harder to obtain since it heavily relies on
the results of Lemma 2.

We are now ready to analyze the optimum to the convex program (7). To
that end we apply the mean-value theorem coordinate-wise to the gradient of
the weighted logloss

∑
t∈Tn w

τ
t∇γ(θu; xt) and obtain∑

t∈Tn

wτt (∇γ(θ̂τu; xt)−∇γ(θτu; xt)) = [
∑
t∈Tn

wτt∇2γ(θτu; xt)](θ̂τu−θτu) + ∆τ , (34)

where ∆τ ∈ Rp−1 is the remainder term of the form

∆τ
v = [

∑
t∈Tn

wτt (∇2γ(θ̄(v)
u ; xt)−∇2γ(θτu; xt))]′v(θ̂

τ
u − θτu) (35)

and θ̄
(v)
u is a point on the line between θτu and θ̂τu, and [·]′v denoting the v-th row

of the matrix. Recall that Q̂τ =
∑
t∈Tn w

τ
t∇2γ(θτu; xt). Using the expansion

(34), we write the KKT conditions given in Eq. (32) in the following form,
∀v = 1, . . . , p− 1,{

Q̂τ
v(θu − θτu) +

∑
t∈Tn w

τ
t (∇γ(θτu; xt))v + ∆τ

v = λn sign(θuv) if θuv 6= 0
|Q̂τ

v(θu − θτu) +
∑
t∈Tn w

τ
t (∇γ(θτu; xt))v + ∆τ

v | ≤ λn if θuv = 0.
(36)
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We consider the following events

Ω0 = Ω01 ∩ Ω02 ∩ Ω03,

Ω1 = {∀v ∈ S : |λn((Q̂τ
SS)−1 sign(θτS))v − ((Q̂τ

SS)−1Wτ
S)v| < |θτuv|}

and
Ω2 = {∀v ∈ Sc : |(Wτ

Sc − Q̂τ
ScS(Q̂τ

SS)−1Wτ
S)v| <

α

2
λn}

where
Wτ =

∑
t∈Tn

wτt∇γ(θτu; xt) + ∆τ .

We will work on the event Ω0 on which the minimum eigenvalue of Q̂τ
SS is

strictly positive and, so, Q̂τ
SS is regular and Ω0 ∩ Ω1 and Ω0 ∩ Ω2 are well

defined.

Proposition 7. Assume that the conditions of Lemma 6 are satisfied. The
event

{∀θ̂τu ∈ Rp−1 solution of (S), we have sign(θ̂τu) = sign(θτu)} ∩ Ω0

contains event Ω0 ∩ Ω1 ∩ Ω2.

Proof. We consider the following linear functional

G :
{

Rs → Rs
θ 7→ θ − θτS + (Q̂τ

SS)−1Wτ
S − λn(Q̂τ

SS)−1 sign(θτS).

For any two vectors y = (y1, . . . , ys)′ ∈ Rs and r = (r1, . . . , rs)′ ∈ Rs+, define
the following set centered at y as

B(y, r) =
s∏
i=1

(yi − ri, yi + ri).

Now, we have

G (B(θτS , |θτS |)) = B
(

(Q̂τ
SS)−1Wτ

S − λn(Q̂τ
SS)−1 sign(θτS), |θτS |

)
.

On the event Ω0 ∩ Ω1,

0 ∈ B
(

(Q̂τ
SS)−1Wτ

S − λn(Q̂τ
SS)−1 sign(θτS), |θτS |

)
,

which implies that there exists a vector θ̄τS ∈ B(θτS , |θτS |) such that G(θ̄τS) =
0. For θ̄τS it holds that θ̄τS = θτS + λn(Q̂τ

SS)−1 sign(θτS) − (Q̂τ
SS)−1Wτ

S and
|θ̄τS − θτS | < |θτS |. Thus, the vector θ̄τS satisfies

sign(θ̄τS) = sign(θτS)
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and
Q̂SS(θ̄τS − θτS) + Wτ

S = λn sign(θ̄τS). (37)

Next, we consider the vector θ̄τ =
(

θ̄τS
θ̄τSc

)
where θ̄τSc is the null vector of

Rp−1−s. On event Ω0, from Lemma 6 we know that |||Q̂τ
ScS(Q̂τ

SS)−1|||∞ ≤ 1− α
2 .

Now, on the event Ω0 ∩ Ω2 it holds

||Q̂τ
ScS(θ̄τS − θτS) + Wτ

Sc ||∞ =

|| − Q̂τ
ScS(Q̂τ

SS)−1Wτ
S + Wτ

Sc + λnQ̂τ
ScS(Q̂τ

SS)−1 sign(θ̄τS)||∞ < λn.
(38)

Note that for θ̄τ , equations (37) and (38) are equivalent to saying that θ̄τ

satisfies conditions (36) or (32), i.e., saying that θ̄τ satisfies the KKT conditions.
Since sign(θ̄τS) = sign(θτS), we have sign(θ̄τ ) = sign(θτu). Furthermore, because
of the uniqueness of the solution to (7) on the event Ω0 , we conclude that
θ̂τu = θ̄τ .

Proposition 7 implies Theorem 1 if we manage to show that the event Ω0 ∩
Ω1 ∩Ω2 occurs with high probability under the assumptions stated in Theorem
1. Proposition 8 characterizes the probability of that event, which concludes
the proof of Theorem 1.

Proposition 8. Assume that the conditions of Theorem 1 are satisfied. Then
there are constants C,C ′ > 0 depending on M , MK , Dmax, Cmin and α only,
such that the following holds:

P[Ω0 ∩ Ω1 ∩ Ω2] ≥ 1− 2 exp(−Cnh(λn − sh)2 + log(p)). (39)

Proof. We start the proof of the proposition by giving a technical lemma, which
characterizes the distance between vectors θ̂τu = θ̄τ and θτu under the assump-
tions of Theorem 1, where θ̄τ is constructed in the proof of Proposition 7. The
following lemma gives a bound on the distance between the vectors θ̂τS and θτS ,
which we use in the proof of the proposition. The proof of the lemma is given
in Appendix.

Lemma 9. Assume that the conditions of Theorem 1 are satisfied. There are
constants C,C ′ > 0 depending on M,MK , Dmax, Cmin and α only, such that

||θ̂τS − θτS ||2 ≤ C
√
s log p
n1/3

(40)

with probability at least 1− exp(−C ′ log p).

Using Lemma 9 we can prove Proposition 8. We start by studying the
probability of the event Ω2. We have

ΩC2 ⊂ ∪v∈Sc{Wv + (Q̂τ
ScS(Q̂τ

SS)−1Wτ
S)v ≥

α

2
λn}.
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Recall that Wτ =
∑
t∈Tn w

τ
t∇γ(θτu; xt) + ∆τ . Let us define the event

Ω3 = { max
1≤v≤p−1

|e′v
∑
t∈Tn

wτt∇γ(θτu; xt)| < αλn
4(2− α)

},

where ev ∈ Rp−1 is a unit vector with one at the position v and zeros elsewhere.
From the proof of Lemma 9 available in the appendix we have that P[Ω3] ≥
1− 2 exp(−C log(p)) and on that event the bound given in Eq. (40) holds.

On the event Ω3, we bound the remainder term ∆τ . Let g : R 7→ R be defined
as g(z) = 4 exp(2z)

(1+exp(2z))2 . Then η(x; θu) = g(xu〈θu,x\u〉). For v ∈ {1, . . . , p − 1},
using the mean value theorem it follows that

∆v = [
∑
t∈Tn

wτt (∇2γ(θ̄(v)
u ; xt)−∇2γ(θτu; xt))]′v(θ̂

τ
u − θτu)

=
∑
t∈Tn

wτt [η(xt; θ̄(v)
u )− η(xt; θτu)][xt\ux

t′

\u]′v[θ̂
τ
u − θτu]

=
∑
t∈Tn

wτt g
′(xtu〈¯̄θ(v)

u ,xt\u〉)[x
t
ux

t
\u]′[θ̄(v)

u − θτu][xtvx
t′

\u][θ̂τu − θτu]

=
∑
t∈Tn

wτt {g′(xtu〈¯̄θ(v)
u ,xt\u〉)x

t
ux

t
v}{[θ̄(v)

u − θτu]′xt\ux
t′

\u[θ̂τu − θτu]},

where ¯̄θ(v)
u is another point on the line joining θ̂τu and θτu. A simple calculation

shows that |g′(xtu〈¯̄θ
(v)
u ,xt\u〉)x

t
ux

t
v| ≤ 1, for all t ∈ Tn, so we have

|∆v| ≤ [θ̄(v)
u − θτu]′{

∑
t∈Tn

wτt x
t
\ux

t′

\u}[θ̂
τ
u − θτu]

≤ [θ̂τu − θτu]′{
∑
t∈Tn

wτt x
t
\ux

t′

\u}[θ̂
τ
u − θτu]

= [θ̂τS − θτS ]′{
∑
t∈Tn

wτt x
t
Sxt

′

S}[θ̂τS − θτS ]

≤ Dmax||θ̂τS − θτS ||22.

(41)

Combining the equations (41) and (40), we have that on the event Ω3

max
1≤v≤p−1

|∆v| ≤ Cλ2
ns <

λnα

4(2− α)

where C is a constant depending on Dmax and Cmin only.
On the event Ω0 ∩ Ω3, we have

W τ
v + (Q̂τ

ScS(Q̂τ
SS)−1Wτ

S)v <
αλn

2(2− α)
+ (1− α)

αλn
2(2− α)

≤ αλn
2

and we can conclude that P[Ω2] ≥ 1 − 2 exp(−C log(p)) for some constant C
depending on M,MK , Cmin, Dmax and α only.
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Next, we study the probability of the event Ω1. We have

ΩC1 ⊂ ∪v∈S{λn((Q̂τ
SS)−1 sign(θτS))v + ((Q̂τ

SS)−1W τ
S )v ≥ θτuv}. (42)

Again, we will consider the event Ω3. On the event Ω0 ∩ Ω3 we have that

λn((Q̂τ
SS)−1 sign(θτS))v + ((Q̂τ

SS)−1Wτ
S)v ≤

λn
√
s

Cmin
+

λn
2Cmin

≤ Cλn
√
s, (43)

for some constant C. When θmin > Cλn
√
s, we have that P[Ω1] ≥ 1 −

2 exp(−C log(p)) for some constant C that depends on M,MK , Cmin, Dmax and
α only.

In summary, under the assumptions of Theorem 1, the probability of event
Ω0 ∩Ω1 ∩Ω2 converges to one exponentially fast. On this event, we have shown
that the estimator θ̂τu is the unique minimizer of (17) and that it consistently
estimates the signed non-zero pattern of the true parameter vector θτu, i.e., it
consistently estimates the neighborhood of a node u. Applying the union bound
over all nodes u ∈ V , we can conclude that our estimation procedure consistently
estimates the graph structure at a time point τ .

5.2 Recovery under structural changes

Currently we do not have a consistency result for the estimator produced by the
method TV, however, we have obtained some insight on how to solve this problem
and plan to pursue it in our future research. The main difficulty seems to be
the presence of both the `1 and TV(·) regularization terms in Eq. (10), which
complicates the analysis. However, if we relate the method TV to the problem
of multiple change point detection, we can observe the following: the TV(·)
penalty biases the estimate {θ̂t}t∈Tn towards a piecewise constant solution, and
this effectively partitions the time interval [0, 1] into segments within which the
parameter is constant. If we can estimate the partition Bu correctly, then the
graph structure can also be estimated successfully if there are enough samples
on each segment of the partition. In fact, [25] observed that it is useful to
consider a two-stage procedure in which the first stage uses the total variation
penalty to estimate the partition, and the second stage then uses the `1 penalty
to determine non-zero parameters within each segment. Although his analysis is
restricted to the fused lasso [28], we believe that his techniques can be extended
for analyzing our method TV. Besides assumptions 1 to 4 which appeared in
method smooth, additional assumptions may be needed to assure the consistent
estimation of the partition Bu.

Partial results along this direction were presented in [18] for linear regression
model. Some additional work is needed to adapt the proof technique to the case
of logistic regression.
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6 Discussion

We have presented two algorithms for an important problem of structure esti-
mation of time varying networks. While the structure estimation of the static
networks is an important problem in itself, in certain cases static structures are
of limited use. More specifically, a static structure only shows connections and
interactions that are persistent throughout the whole time period, and there-
fore time varying structures are needed to describe dynamic interactions that
are transient in time. Although the algorithms presented in this paper for learn-
ing time varying networks are simple, they can already be used to discover some
patterns that would not be discovered using a method that estimates static net-
works. However, the ability to learn time varying networks comes at a price of
extra tuning parameters: the bandwidth parameter h or the penalty parameter
λTV.

Throughout the paper, we assume that the observations at different points in
time are independent. An important future direction is the analysis of the graph
structure estimation from a general time-series, with dependent observations.
In our opinion, this extension will be straightforward but with great practical
importance. Furthermore, we have worked with the assumption that the data
are binary, however, extending the procedure to work with multi-category data
is also straightforward. One possible approach is explained in [23] and can be
directly used here.

There are still ways to improve the methods presented here. For instance,
more principled ways of selecting tuning parameters are definitely needed. Se-
lecting the tuning parameters in neighborhood selection procedure for static
graphs is not an easy problem, and estimating time varying graphs makes the
problem more challenging. Furthermore, methods presented here do not allow
for the incorporation of existing knowledge on the network topology into the
algorithm. In some cases, the data are very scarce and we would like to incor-
porate as much prior knowledge as possible, so developing Bayesian methods
seems very important.

The method smooth and the method TV represent two different ends of the
spectrum: one algorithm is able to estimate smoothly changing networks, while
the other one is tailored towards estimation of structural changes in the model.
It is important to bring the two methods together in the future work. There
is a great amount of work on nonparametric estimation of change points and it
would be interesting to incorporate those methods for estimating time varying
networks.

7 Appendix

Note that in what follows, we use C,C ′ and C ′′ to denote positive constants
and their value may change from line to line.
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7.1 Proof of Lemma 2

We start the proof by bounding the difference |η(x; θt+δu )− η(x; θtu)| which will
be useful later on. By applying the mean value theorem to η(x; ·) and the Taylor
expansion on θtu we obtain:

|η(x; θt+δu )− η(x; θtu)| = |
p−1∑
v=1

(θt+δuv − θtuv)η′(x; θ̄(v)
u )|

(
θ̄

(v)
u is a point on the line
between θt+δu and θtu

)

≤
p−1∑
v=1

|θt+δuv − θtuv| ( |η′(x; ·)| ≤ 1 )

=
p−1∑
v=1

|δ ∂
∂t
θtuv +

δ2

2
∂2

∂t2
θtuv

∣∣∣
t=βv
|

(
βv is a point on the line

between t and t+ δ

)
Without loss of generality, let τ = 1. Using the above equation, and the

Riemann integral to approximate the sum, we have

|
∑
t∈Tn

wτt η(xt; θτu)xtvx
t
v′ −

∑
t∈Tn

wτt η(xt; θtu)xtvx
t
v′ |

≈ |
∫

2
h
K(

z − τ
h

)[η(xz; θτu)− η(xz; θzu)]xzvx
z
v′dz|

≤ 2
∫ 0

− 1
h

K(z′)|η(xτ+z
′h; θτu)− η(xτ+z

′h; θτ+z
′h

u )|dz′

≤ 2
∫ 0

−1

K(z′)[
p−1∑
v=1

|z′h ∂
∂t
θtuv

∣∣∣
t=τ

+
(z′h)2

2
∂2

∂t2
θtuv

∣∣∣
t=βv
|]dz′

≤ Csh,

for some constant C > 0 depending on M from A3 which bounds the derivatives
in the equation above, and MK from A4 which bounds the kernel. The last
inequality follows from the assumption that the number of non-zero components
of the vector θtu is bounded by s.

Next, we prove equation (25). Using the Taylor expansion, for any fixed
1 ≤ v, v′ ≤ p− 1 we have

|E[
∑
t∈Tn

wτt η(xt; θtu)xtvx
t
v′ ]− qτvv′ |

= |
∑
t∈Tn

wτt (qtvv′ − qτvv′)|

= |
∑
t∈Tn

wτt ((t− τ)
∂

∂t
qtvv′

∣∣∣
t=τ

+
(t− τ)2

2
∂2

∂t2
qtvv′

∣∣∣
t=ξ
|,

where ξ ∈ [t, τ ]. Since wτt = 0 for |t− τ | > h, we have

max
v,v′
|E[
∑
t∈Tn

wτt η(xt; θtu)xtvx
t
v′ ]− qτvv′ | ≤ C ′h
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for some constant C > 0 depending on M and MK only.
Finally, we prove equation (26). Observe that wτt η(xt; θtu)xtvx

t
v′ are inde-

pendent and bounded random variables [−wτt , wτt ]. The equation simply follows
from the Hoeffding’s inequality. �

7.2 Proof of Lemma 3

To obtain the Lemma, we follow the same proof strategy as in the proof of
Lemma 2. In particular, Eq. (29) is proved in the same way as Eq. (25) and
Eq. (30) in the same way as Eq. (26). The details of this derivation are omitted.
�

7.3 Proof of Lemma 4

The set of minima Θ(λn) of a convex function is convex. So, for two distinct
points of minima, θ̄u and θ̃u, every point on the line connecting two points
also belongs to minima, i.e. ξθ̄u + (1 − ξ)θ̃u ∈ Θ(λn), for any ξ ∈ (0, 1). Let
η = θ̄u − θ̃u and now any point on the line can be written as θ̃u + ξη. The
value of the objective at any point of minima is constant and we have

F (θ̃u + ξη) = c, ξ ∈ (0, 1),

where c is some constant. By taking the derivative with respect to ξ of F (θ̃u+ξη)
we obtain

∑
t∈Tn

wτt

[
−xtu +

exp(〈θ̃u + ξη,xt\u〉)− exp(−〈θ̃u + ξη,xt\u〉)

exp(〈θ̃u + ξη,xt\u〉) + exp(−〈θ̃u + ξη,xt\u〉)

]
〈η,xt\u〉

+ λn

p−1∑
v=1

ηv sign(θ̃uv + ξηv) = 0.

(44)

On a small neighborhood of ξ the sign of θ̃u+ξη is constant, for each component
v, since the function θ̃u + ξη is continuous in ξ. By taking the derivative with
respect to ξ of Eq. (44) and noting that the last term is constant on a small
neighborhood of ξ we have

4
∑
t∈Tn

wτt 〈η,xt\u〉
2

exp(−2〈θ̃u + ξη,xt\u〉)(
1 + exp(−2〈θ̃u + ξη,xt\u〉)

)2 = 0.

This implies that 〈η,xt\u〉 = 0 for every t ∈ Tn, which implies that 〈xt\u, θ̄u〉 =

〈xt\u, θ̃u〉, t ∈ Tn, for any two solutions θ̄u and θ̃u. Since θ̄u and θ̃u were two
arbitrary elements of Θ(λn) we can conclude that 〈xt\u,θu〉, t ∈ Tn is constant
for all elements θu ∈ Θ(λn).

Next, we need to show that the conclusion from above implies that any two
solutions have non-zero elements in the same position. From equation (32), it
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follows that the set of non-zero components of the solution is given by

S =

{
1 ≤ v ≤ p− 1 :

∣∣∣∣∣∑
t∈Tn

wτt (∇γ(θu; xt))v

∣∣∣∣∣ = λ

}
.

Using equation (33) we have that∑
t∈Tn

wτt (∇γ(θτu; xt))v =

∑
t∈Tn

wτt (xt\u{x
t
u + 1− 2

exp(2xtu〈θτu,xt\u〉)
exp(2xtu〈θτu,xτ\u〉) + 1

})v,

which is constant across different elements θu ∈ Θ(λn), since 〈xt\u,θu〉, t ∈ Tn
is constant for all θu ∈ Θ(λn). This implies that the set of non-zero components
is the same for all solutions. �

7.4 Proof of Lemma 5

Under the assumptions given in the Lemma, we can apply the result of Lemma
3. Let y ∈ Rs be a unit norm minimal eigenvector of Σ̂τ

SS . We have

Λmin(Στ
SS) = min

||x||2=1
x′Στ

SSx

= min
||x||2=1

{x′Σ̂τ
SSx + x′(Στ

SS − Σ̂τ
SS)x }

≤ y′Σ̂τ
SSy + y′(Στ

SS − Σ̂τ
SS)y,

which implies
Λmin(Σ̂τ

SS) ≥ Dmin − |||(Στ
SS − Σ̂τ

SS)|||2.

Let Στ = [στuv] and Σ̂τ = [σ̂τuv]. We have the following bound on the spectral
norm

|||Στ
SS − Σ̂τ

SS |||2 ≤

(
s∑

u=1

s∑
v=1

(σ̂τuv − στuv)2
)1/2

≤ δ,

with the probability at least 1− 2 exp(−Cnh( δs − C
′h)2 + C ′′ log(s)), for some

fixed constants C,C ′, C ′′ > 0 depending on M and MK only.
Similarly, we have that

Λmax(Σ̂τ
SS) ≤ Dmax + δ,

with probability at least 1− 2 exp(−Cnh( δs −C
′h)2 +C ′′ log(s)), for some fixed

constants C,C ′, C ′′ > 0 depending on M and MK only.
From Lemma 4, we know that any two solutions θ̄u, θ̃u ∈ Θ(λn) of the

optimization problem (17) have non-zero elements in the same position. So, for
any two solutions θ̄u, θ̃u ∈ Θ(λn), it holds

X\u(θ̄u − θ̃u) = X\u,S(θ̄u − θ̃u)S + X\u,Sc(θ̄u − θ̃u)Sc = X\u,S(θ̄u − θ̃u)S .
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Furthermore, from Lemma 4 we know that the two solutions are in the kernel
of X\u,S . On the event Ω01, kernel of X\u,S is {0}. Thus, the solution is unique
on Ω01. �

7.5 Proof of Lemma 6

We first analyze the probability of the event Ω02. Using the same argument to
those in the proof of Lemma 5, we obtain

Λmin(Q̂τ
SS) ≥ Cmin − |||Qτ

SS − Q̂τ
SS |||2.

Next, using results of Lemma 2, we have the following bound

|||Qτ
SS − Q̂τ

SS |||2 ≤

(
s∑

u=1

s∑
v=1

(q̂τuv − qτuv)2
)1/2

≤ δ, (45)

with probability at least 1− 2 exp(−C nhδ2

s2 + 2 log(s)), for some fixed constants
C,C ′ > 0 depending on M and MK only.

Next, we deal with the event Ω03. We are going to use the following decom-
position

Q̂τ
ScS(Q̂τ

SS)−1 = Qτ
ScS [(Q̂τ

SS)−1 − (Qτ
SS)−1]

+ [Q̂τ
ScS −Qτ

ScS ](Qτ
SS)−1

+ [Q̂τ
ScS −Qτ

ScS ][(Q̂τ
SS)−1 − (Qτ

SS)−1]

+ Qτ
ScS(Qτ

SS)−1

= T1 + T2 + T3 + T4.

Under the assumption A2, we have that |||T4|||∞ ≤ 1 − α. The lemma fol-
lows if we prove that for all the other terms we have ||| · |||∞ ≤ α

6 . Using the
submultiplicative property of the norm, we have for the first term:

|||T1|||∞ ≤ |||Qτ
ScS (Qτ

SS)−1 |||∞|||Q̂τ
SS −Qτ

SS |||∞|||(Q̂τ
SS)−1|||∞

≤ (1− α)|||Q̂τ
SS −Qτ

SS |||∞
√
s|||(Q̂τ

SS)−1|||2.
(46)

Using Eq. (45), we can bound the term |||
(
Q̂τ
SS

)−1

|||2 ≤ C ′′, for some constant

depending on Cmin only, with probability at least 1 − 2 exp(−C nh
s + 2 log(s)),

for some fixed constant C > 0. The bound on the term |||Q̂τ
SS −Qτ

SS |||∞ follows
from application of Lemma 2. Observe that

P[|||Q̂τ
SS −Qτ

SS |||∞ ≥ δ] = P[max
v∈S
{
∑
v′∈S
|q̂τvv′ − qτvv′ |} ≥ δ]

≤ 2 exp(−Cnh(
δ

s
− C ′sh)2 + 2 log(s)),

(47)
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for some fixed constants C,C ′ > 0. Combining all the elements, we obtain the
bound on the first term |||T1|||∞ ≤ α

6 , with probability at least 1−C exp(C ′ nhs3 +
C ′′ log(s)), for some constants C,C ′, C ′′ > 0.

Next, we analyze the second term. We have that

|||T2|||∞ ≤ |||Q̂τ
ScS −Qτ

ScS |||∞
√
s||| (Qτ

SS)−1 |||2

≤
√
s

Cmin
|||Q̂τ

ScS −Qτ
ScS |||∞.

(48)

The bound on the term |||Q̂τ
SS −Qτ

SS |||∞ follows in the same way as the bound
in Eq. (47) and we can conclude that |||T3|||∞ ≤ α

6 with probability at least
1− C exp(C ′ nhs3 + C ′′ log(p)), for some constants C,C ′, C ′′ > 0.

Finally, we bound the third term T3. We have the following decomposition

|||[Q̂τ
ScS −Qτ

ScS ][(Q̂τ
SS)−1 − (Qτ

SS)−1]|||∞
≤ |||Q̂τ

ScS −Qτ
ScS |||∞

√
s|||(Qτ

SS)−1[Qτ
SS − Q̂τ

SS ](Q̂τ
SS)−1|||2

≤
√
s

Cmin
|||Q̂τ

ScS −Qτ
ScS |||∞|||Qτ

SS − Q̂τ
SS |||2|||(Q̂τ

SS)−1|||2.

Bounding the remaining terms as in equations (48), (47) and (46), we obtain
that |||T3|||∞ ≤ α

6 with probability at least 1− C exp(C ′ nhs3 + C ′′ log(p)).
Bound on the probability of event Ω03 follows from combining the bounds

on all terms. �

7.6 Proof of Lemma 9

To prove this Lemma, we use a technique of Rothman et al. [26] applied to the
problem of consistency of the penalized covariance matrix estimator. Let us
define the following function

H :
{

Rp → R
D 7→ F (θτu + D)− F (θτu),

where the function F (·) is defined in equation (31). The function H(·) takes the
following form

H(D) =
∑
t∈Tn

wτt (γ(θτu; xt)− γ(θτu + D; xt))

+ λn(||θτu + D||1 − ||θτu||1).

Recall the minimizer of (7) constructed in the proof of Proposition 7, θ̂τu =
(θ̄′S , 0

′
Sc)
′. The minimizer of the function H(·) is D̂ = θ̂τu − θτu. Function H(·)

is convex and H(0) = 0 by construction. Therefor H(D̂) ≤ 0. If we show that
for some radius B > 0, and D ∈ Rp with ||D||2 = B and DSc = 0, we have
H(D) > 0, then we claim that ||D̂||2 ≤ B. This follows from the convexity of
H(·).
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We proceed to show strict positivity of H(·) on the boundary of the ball
with radius B = Kλn

√
s, where K > 0 is a parameter to be chosen wisely later.

Let D ∈ Rp be an arbitrary vector with ||D||2 = B and DSc = 0, then by the
Taylor expansion of γ(·; xt) we have

H(D) = −(
∑
t∈Tn

wτt∇γ(θτu; xt))′D

−D′[
∑
t∈Tn

wτt η(xt; θτu + αD)xt\ux
t′

\u]D

+ λn(||θτu + D||1 − ||θτu||1)
= (I) + (II) + (III),

(49)

for some α ∈ [0, 1].
We start from the term (I). Let ev ∈ Rp be a unit vector with one at the po-

sition v and zeros elsewhere. Then random variables −e′v
∑
t∈Tn w

τ
t∇γ(θτu; xt)

are bounded [− C
nh ,

C
nh ] for all 1 ≤ v ≤ p− 1, with constant C > 0 depending on

MK only. Using the Hoeffding inequality and the union bound, we have

max
1≤v≤p−1

|e′v(
∑
t∈Tn

wτt∇γ(θτu; xt)− E[
∑
t∈Tn

wτt∇γ(θτu; xt)])| ≤ δ,

with probability at least 1−2 exp(−Cnhδ2 + log(p)), where C > 0 is a constant
depending on MK only. Moreover, denoting

p(θtu) = Pθtu
[xtu = 1 | xt\u]

to simplify the notation, we have for all 1 ≤ v ≤ p− 1,

|E[e′v
∑
t∈Tn

wτt∇γ(θτu; xt) | {xt\u}t∈Tn ]|

= |E[
∑
t∈Tn

wτt x
t
v[x

t
u + 1− 2p(θτu)] | {xt\u}t∈Tn ]|

= |2
∑
t∈Tn

wτt x
t
v[p(θ

t
u)− p(θτu)]|

≤ 4
∫ 0

− 1
h

K(z)|p(θτ+zhu )− p(θτu)|dz.

(50)

Next, we apply the mean value theorem on p(·) and the Taylor’s theorem on
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θtu. Under the assumption A3, we have

|p(θτ+zhu )− p(θτu)|

≤
p−1∑
v=1

|θτ+zhuv − θτuv| (| p′(·)| ≤ 1 )

=
p−1∑
v=1

|zh ∂
∂t
θtuv

∣∣∣
t=τ

+
(zh)2

2
∂2

∂t2
θtuv

∣∣∣
t=αv
| ( αv ∈ [τ + zh, τ ] )

≤ Cs|zh+
(zh)2

2
|,

(51)

for some C > 0 depending only on M . Combining (51) and (50) we have that
|E[e′v

∑
t∈Tn w

τ
t∇γ(θτu; xt)| ≤ Csh for all 1 ≤ v ≤ p− 1. Thus, with probability

greater than 1 − 2 exp(−Cnh(λn − sh)2 + log(p)) for some constant C > 0
depending only on MK ,M and α, which under the conditions of Theorem 1
goes to 1 exponentially fast, we have

max
1≤v≤p−1

|e′v
∑
t∈Tn

wτt∇γ(θτu; xt)| ≤ αλn
4(2− α)

<
λn
4
.

On that event, using Hölder’s inequality, we have

|(
∑
t∈Tn

wτt∇γ(θτu; xt))′D| ≤ ||D||1 max
1≤v≤p−1

|e′v
∑
t∈Tn

wτt∇γ(θτu; xt)|

≤ λn
4
√
s||D||2 ≤ (λn

√
s)2

K

4
.

The triangle inequality applied to the term (III) of equation (49) yields:

λn(||θτu + D||1 − ||θτu||1) ≥ −λn||DS ||1
≥ −λn

√
s||DS ||2 ≥ −K(λn

√
s)2.

Finally, we bound the term (II) of equation (49). Observe that since DSc = 0,
we have

D′[
∑
t∈Tn

wτt η(xt; θτu + αD)xt\ux
t′

\u]D

= D′S [
∑
t∈Tn

wτt η(xt; θτu + αD)xtSxt
′

S ]DS

≥ K2Λmin(
∑
t∈Tn

wτt η(xt; θτu + αD)xtSxt
′

S )

Let g : R 7→ R be defined as g(z) = 4 exp(2z)
(1+exp(2z))2 . Now, η(x; θu) = g(xu〈θu,x\u〉)
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and we have

Λmin(
∑
t∈Tn

wτt η(xt; θτu + αD)xtSxt
′

S )

≥ min
α∈[0,1]

Λmin(
∑
t∈Tn

wtη(xt; θτu + αD)xtSxt
′

S )

≥ Λmin(
∑
t∈Tn

wτt η(xt; θτu)xtSxt
′

S )

− max
α∈[0,1]

|||
∑
t∈Tn

wτt g
′(xtu〈θτu + αD,xtS〉)(xtuD′SxtS)xtSxt

′

S |||2

≥ Cmin − max
α∈[0,1]

|||
∑
t∈Tn

wτt g
′(xtu〈θτu + αD,xtS〉)(xtuD′SxtS)xtSxt

′

S |||2

To bound the spectral norm, we observe that for any fixed α ∈ [0, 1] and y ∈
Rs, ||y||2 = 1 we have:

y′{
∑
t∈Tn

wτt g
′(xtu〈θτu + αD,xtS〉)(xtuD′SxtS)xtSxt

′

S}y

=
∑
t∈Tn

wτt g
′(xtu〈θτu + αD,xtS〉)(xtuD′SxtS)(xt

′

Sy)2

≤
∑
t∈Tn

wτt |g′(xtu〈θτu + αD,xtS〉)(xtuD′SxtS)|(xt
′

Sy)2

≤
√
s||D||2|||

∑
t

wτt x
t
Sxt

′

S |||2 ( |g′(·)| ≤ 1 )

≤ DmaxKλns ≤
Cmin

2
.

The last inequality follows as long as λns ≤ Cmin
2DmaxK

. We have shown that

Λmin(
∑
t∈Tn

wτt η(xt; θτu + αD)xtSxt
′

S ) ≥ Cmin

2
,

with high probability.
Putting the bounds on the three terms together, we have

H(D) ≥ (λn
√
s)2
{
−1

4
K +

Cmin

2
K2 −K

}
,

which is strictly positive for K = 5
Cmin

. For this choice of K, we have that

λns ≤ C2
min

10Dmax
, which holds under the conditions of Theorem 1 for n large

enough. �
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