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Abstract

Motivation: Expression databases, including the Gene Expression Omnibus (GEO) and ArrayEx-
press, have experienced significant growth over the last decade and now hold hundreds of thousands of
arrays from multiple species. Since most drugs are initially tested on model organisms, the ability to
compare expression experiments across species may help identify pathways that are activated in a simi-
lar way in humans and other organisms. However, while several methods exist for finding co-expressed
genes in the same species as a query gene, looking at co-expression of homologs or arbitrary genes in
other species is challenging. Unlike sequence, which is static, expression is dynamic and changes between
tissues, conditions and time. Thus, to carry out cross species analysis using these databases we need
methods that can match experiments in one species with experiments in another species.

Results: To facilitate queries in large databases we developed a new method for comparing expression
experiments from different species. We define a distance metric between the ranking of orthologous genes
in the two species. We show how to solve an optimization problem for learning the parameters of this
function using a training dataset of known similar expression experiments pairs. The function we learn
outperforms previous methods and simpler rank comparison methods that have been used in the past
for single species analysis. We used our method to compare millions of array pairs from mouse and
human expression experiments. The resulting matches can be used to find functionally related genes,
to hypothesize about biological response mechanisms and to highlight conditions and diseases that are
activating similar pathways in both species.

Availability: Supporting methods, results are available from http://sb.cs.cmu.edu/ExpQ/.

1 Introduction

Advances in sequencing technology have led to a remarkable growth in the size of sequence databases over
the last two decades. This has allowed researchers to study newly sequenced genes by utilizing knowledge
about their homologs in other species [16]. Alignment and search methods, most notably BLAST [1], have
become standard tools and are extensively used by molecular biologists. Cross species analysis of sequence
data is now a standard practice. However, similar usage of expression databases has not materialized. Ex-
pression databases, including Gene Expression Omnibus (GEO; www.ncbi.nih.gov/geo/) and ArrayExpress
(www.ebi.ac.uk/Databases/microarray.html) hold hundreds of thousands of arrays from multiple species (see
Fig. 1). Co-expression is a powerful method for assigning new function to genes within a single species [21].
If we are able to identify a large set of matched expression experiments across species this method can
be extended and used in a cross species analysis setting as well. Consider a human gene with unknown
function that is co-expressed (across many different conditions) with a mouse gene with known function.
This information can provide useful clues about the function of the human gene. This information is also

∗Earlier version appears in [15].
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Figure 1: Growth of microarray databases. Growth in microarray datasets deposited in GEO in the last
decade. The growth resembles the impressive growth of sequence databases in the 90’s.

useful for identifying orthologs. If a gene has multiple homologs in another species then the homolog with
the highest co-expression similarity in several conditions is likely its orthologs since they are involved in the
same processes in both species.

While promising, querying expression datasets to identify co-expressed genes in other species is challeng-
ing. Unlike sequence, which is static, expression is dynamic and changes between tissues, conditions and
time. Thus, a key challenge is to match experiments in one species with experiments in another species.
Almost all studies that have analyzed expression datasets in multiple species relied on one of two methods.
They have either carried out experiments under the same condition in multiple species or have looked at
co-expression within a species and tested whether these relationships are retained across species. Examples
of the former set of methods include comparison of cell cycle experiments across species [14], comparing
response programs [17] and comparing tissue expression between human and mouse [24]. Examples of the
latter strategy include the metaGene analysis [23] and cross species clustering methods [18]. See [19] for a
recent review of these methods.

While successful, the approaches discussed above are not appropriate for querying large databases. In
almost all cases it is impossible to find a perfect match for a specific condition in the database. Even in
the rare cases when such matches occur it is not clear if the same pathways are activated in the different
species. For example, many drugs that work well on animal models fail when applied to humans, at least
in part because of differences in the pathways involved [5]. Looking at relationships within and between
species would also not answer the questions we mentioned above since these require knowledge of orthologs
assignment to begin with. These methods are also less appropriate for identifying one to one gene matchings
because they are focusing on clusters instead.

The only previous attempt we are aware of to facilitate cross species queries of expression data is the non-
negative matrix factorization (NMF) approach presented by Tamayo et al [25]. This unsupervised approach
discovers a small number of metagenes (similar to principle components) that capture the invariant biological
features of the dataset. The orthologs of the genes included in the metagenes are then combined in a similar
way in the query species to identify related expression datasets. While the approach was successfully used to
compare two specific experiments in humans and mouse, as we show in Results, the fact that the approach
is unsupervised makes it less appropriate for large scale queries of expression databases.

In this paper, we present a new method for identifying similar experiments in different species. Instead of
relying on the description of the experiments we develop a method to determine the similarity of expression
profiles by introducing a new distance function and utilizing a group of known orthologs. Our method
uses a training dataset of known similar pairs to learn the parameters for distance functions between pairs
of experiments based on the rank of orthologous genes overcoming problems related to difference in noise
and platforms between species. We show that the function we learn outperforms simpler rank comparison
methods that have been used in the past [10, 13]. We next use our method to compare millions of array
pairs from mouse and human experiments. The resulting matches highlight conditions and diseases that
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are activating similar pathways in both species and can also hint at diseases were these pathways seem to
differ. Given the large number of arrays in current databases our methods can also be used to aid manual
annotations of cross species similarity by focusing on a small subset of the millions of possible matches.

We note that while the discussion below focuses on microarray data and we have only tested our methods
on such data, our methods are appropriate for deep sequencing expression data as well. As long as a partial
orthologs list can be obtained the methods we present below can be used to compare any expression datasets
across species.

2 Methods

2.1 Comparing microarrays across species

Our goal is to obtain a distance function that given two microarray datasets outputs a small distance
between experiments that are very similar and a large distance for those pairs that study different processes
or in which different pathways are activated in the two species being compared. Since we are comparing
experiments from different platforms and species the first decision we made was to compare the ranking of
the genes in each array rather than their expression levels (previous methods for comparing experiments
in the same species have relied on ranking as well [10]). There are a number of other properties that we
seek for such scoring functions. First, they should of course be able to separate similar pairs from non
similar pairs. In addition, it would be useful if the function is a metric or a pseudometric (a pseudometric
satisfies all properties of a metric except for the identity, that is d(x, y) could be 0 even if x 6= y). This will
guarantee useful distance properties including symmetry and triangle inequality (see Supporting Methods
for the complete list). Finally, we would like to be able to determine some statistical properties for these
scoring methods in order to determine a p-value for the similarity / difference between the experiments being
compared (Section 2.3.1).

2.1.1 Notations

We first provide notations that are used in the rest of the paper. As mentioned above our function would
be constructed from metrics on permutations (ordering) of ranks. Each microarray experiment is a vector in
Rn, where each dimension is the expression value for a specific gene. We consider the problem of comparing
a microrarray X of a species A with nA genes and a microarray Y of a species B with nB genes. There are
m orthologs between the two species. In other words, there is a one-to-one mapping O from m species A
genes to m species B genes. 1, . . . ,m are the orthologs, X = {Xi : 1 ≤ i ≤ m} and Y = {Yi : 1 ≤ i ≤ m}
are the expression values of the orthologs in X and Y , respectively. Let π, σ be the rank orderings of the
expression values of the orthologs in X and Y . For simplicity, we assume that there are no ties in rankings.
Therefore, π, σ are two elements of the permutation group Gm. Recall that π, σ : {1, . . . ,m} → {1, . . . ,m}
are bijections: π(i), σ(i) are the ranks given to the ortholog i, with lowered numbered ranks given to higher
expression values. Also let Im be the identity permutation in Gm. Finally, tr(M) is the trace of a matrix
M .

Assume we have a metric d on Gm. For our significance analysis we test the null hypothesis H0 that π
and σ are not associated versus the alternate hypothesis that they are. One way is to ask how large d(π, σ)
would be if σ were chosen uniformly at random. More formally, let Dd be the distribution of d(π, σ) when σ
is drawn uniformly from Gm. We reject the null hypothesis H0 if d(π, σ) is significantly smaller than E(Dd).
This setting is a standard approach in literature [8] (see also Supporting Fig. 1).

2.2 Fixed distance function: Spearman’s rank correlation

Below we discuss distance functions that satisfy the requirements mentioned above for cross species analysis.
We first discuss a method that does not require any parameter tuning. Such methods have been extensively
used for comparing permutations. However, as we show in Sect. 3.2 they are less appropriate for gene
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expression data due to the unique properties of such data. In the next section we discuss modification of
these methods that are more appropriate for the expression data we are working with.

The Spearman’s rank correlation R metric is defined as:

R(π, σ) =

√

√

√

√

m
∑

i=1

(π(i)− σ(i))
2

(1)

In other words it is the L2 distance between π and σ. Hence, it is a metric. Moreover, using Hoeffding’s
central limit theorem it can be proved that R2 has a limiting normal distribution [8]. Note that frequently,
R is standardized to have values in [−1, 1]. This yields the widely used Spearman’s rank correlation ρ.

ρ = 1− 6R2(π, σ)

(m3 −m)
(2)

2.3 Adaptive Metrics

While fixed methods that do not require parameter tuning have proven useful for many cases they are less
appropriate for expression data. In such data the importance of the ranking is not uniform. In other words
genes that are expressed at very high or very low levels compared to baseline may be very informative
whereas the exact ranking of genes that are expressed at baseline levels may be much less important. Thus,
rank differences for genes in the middle of the rankings are more likely due to noise. An appropriate way to
weight the differences between the rankings may lead to a better distance function between arrays. The key
challenge is to determine what are the important ranks and how they should be weighted. Below we present
a number of adaptive methods that can address this issue. The methods we present differ in the number of
parameters that needs to be learned and thus each may be appropriate for different cases depending on the
amount of training data that exists.

2.3.1 Weighted Rank Metric

Using a weight vector w of length m, we can modify the Spearman’s rank correlation and define the following
metric:

d(π, σ) =

√

√

√

√

m
∑

i=1

(w(π(i))− w(σ(i)))
2

(3)

The vector w defines the weight of each rank and thus captures the significance of each rank in measuring the
association of two microarrays. Consider two arrays (1, 2, 3, 4) and (1, 3, 2, 4). Their Spearman R distance
is

√
2 while for a weight vector w = (1, 0, 0, 1), their distance would be 0. Such a weight vector places the

weight on the top and bottom matches and disregards middle orderings.
The resulting function is no longer a metric, but rather a pseudo-metric in the original π, σ space

(d(π, σ) = 0 does not imply π = σ). However, it is easy to see that it is a metric in the transformed w(.)-
space because it is a L2 distance between the vectors w(π) and w(σ), where w(π) = (w(π1), . . . , w(πm)) and
similarly for w(σ). In other words the w-transformation makes some of the permutations indistinguishable
indicating that the changes made are not significant and so the two permutations result in the same weighted
vector. However, for those permutations that are still distinguishable following the w-transformation the
metric properties are preserved. The distribution Dd of d(π, σ) when σ is drawn uniformly from Gm is
asymptotically normal. See Supporting Methods for proof. We can calculate the mean and variance of
Dd through exact calculation or random sampling. P-value can then be calculated based on this normal
distribution.

A specific assignment of weights which is in line with our assumptions regarding the importance of genes
expression ranks is the following modified Spearman’s rank correlation.
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2.3.2 Top-Bottom R (TBR)

For any 0 < k < 1 and r > 0 we can define w as following:

w(i) =











r(i− km) if 1 ≤ i < km,

r(i− (1− k)m) if (1− k)m < i ≤ m,

0 otherwise.

(4)

Note that genes expressed at a high level will have negative weights and those with low levels positive weights
allowing the method to penalize experiments in which genes move from one extreme to the other. All middle
ranks [km, (1− k)m] are assigned the same weight so genes that have ranks changed within this interval do
not affect the distance at all. At the same time, it scales the high and low ranks r times to a wider range
to increase the granularity of rank difference. Choosing the value of k and r can either be done using cross
validation or it could be manually specified.

2.3.3 Learning a complete weight vector w

While the above method leads to different weights for different rankings it specifies a very strict cutoff which
may not accurately represent the importance of the differences in ranking. An alternative approach is to
assign weights that are continuously changing based on the ranking by learning a weight vector from training
data. Here we assume that we have access to such training data which is indeed the case for a number of
pairs of species (most notably tissue data for human and mouse as we use in Results). Assume we have M
microarrays of species A and N microarrays of species B and for each microarray, let S be the set of pairs
of similar arrays and D is the set of pairs of dissimilar arrays. If the dissimilar arrays are not known, we can
select D as the set of all pairs that are not in S.

Each permutation π can be represented as a binary m×m matrix Mπ.

Mπ(i, j) =

{

1 if π(i) = j,

0 otherwise.
(5)

Using this notation we can define an L2 metric d as:

d(π, σ) = ‖Mπw −Mσw‖2 (6)

=

√

wT (Mπ −Mσ)
T
(Mπ −Mσ)w (7)

Our goal is to learn a vector w such that this distance be small for the positive set and large for the
negative set. This leads to the following optimization problem:

min
∑

(x,y)∈S

wT
(

Mπx
−Mπy

)T (

Mπx
−Mπy

)

w (8)

s.t
∑

(x,y)∈D

wT
(

Mπx
−Mπy

)T (

Mπx
−Mπy

)

w = 1 (9)

Note that the summation is on different groups. The optimization (top) is summed over the similar pairs
whereas the constraint (bottom) is summed over the dissimilar pair. The choice of the constant 1 on the
right hand side of (9) is arbitrary. However, replacing it with any constant c > 0 results only in w being
multiplied by

√
c which leads to the same order of scores for microarray pairs and so does not change our

results. We can further simplify the problem to

min wTZSw (10)

s.t wTZDw = 1 (11)
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with

ZS =
∑

(x,y)∈S

(

Mπx
−Mπy

)T (

Mπx
−Mπy

)

ZD =
∑

(x,y)∈D

(

Mπx
−Mπy

)T (

Mπx
−Mπy

)

The matrices ZS and ZD are positive semidefinite since they are sums of positive semidefinite matrices
(

Mπx
−Mπy

)T (

Mπx
−Mπy

)

. Although this optimization is not convex, there exists global minima based
on the reformulation of this problem to finding eigenvalues of the Rayleigh quotient. The derivation is similar
to Fisher’s Linear Discriminant Analysis [11].

2.3.4 Relational Weighted Rank Metric

A drawback of the weight vector distance metric discussed above is that it assigns weights to ranks in each
microarray independent of the ranks in the other microarray. To overcome this problem we extend the vector
weight w into a full matrix W to incorporate the dependence between ranks in two microarrays. For a pair
of microarrays with ortholog rankings π and σ, define a symmetric m×m matrix MF

π,σ, whose entries (i, j)
are non-zeros if and only if there exists a gene g such that g is ranked i and j in the microarrays, respectively.
Formally,

MF
π,σ(i, j) = 1

[

π−1(i) = σ−1(j)
]

+ 1
[

π−1(j) = σ−1(i)
]

(12)

In other words, MF
π,σ is a matrix where an entry of 1 in location (i,j) indicates that the gene in location i in

the first experiment is the same as the gene in location j in the second or vice versa. By definition, MF
π,σ is

a symmetric matrix. Note that this definition implies that if a gene g is ranked ith in both π and σ then
MF

i,i = 2 and when π = σ, MF = 2I. Let W be a positive semidefinite m×m matrix, with each entry Wi,j

being the weight assigned to a gene having rank i and j in the two microarrays. The larger the entries are,
the more dependent the two ranks are.

Given these notations we define the distance between the two microarrays as:

d(π, σ) =

√

√

√

√

m
∑

i=1

m
∑

j=1

((

2I −MF
π,σ

)

◦W
)

i,j
(13)

=

√

√

√

√

√

∑

i,j:π−1(i)=σ−1(j)

or π−1(j)=σ−1(i)

(

Wi,i +Wj,j

2
−Wi,j

)

(14)

d(π, σ) =
√

tr
((

2I −MF
π,σ

)

W
)

(15)

where ◦ is the Hadamard, or simply entry-wise product. As mentioned above, if the two permutations are
identical then MF = 2I and the distance is 0. Otherwise, the penalty for a disagreement of a pair (i, j)
between the rankings is (Wi,i +Wj,j) /2−Wi,j . This captures both the importance of the individual ranks
(very high or very low ranking genes maybe more important than middle genes) as well as the penalty for
the disagreement between the pair. Equation (14) also shows that the entity under the square root is non-
negative since for a positive semidefinite matrix W , (Wi,i +Wj,j) /2 ≥ Wi,j , ∀i, j. Equation (15) follows from
Equation (13) since MF has only one entry in each column / row. In Supporting Methods we prove that this
distance function is a pseudometric in the original permutation space and a metric in the W -transformed
space.

Learning algorithm: To determine the values of W using the training data we solve the following opti-
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mization problem:

min
∑

(x,y)∈S

tr
((

2I −MF
πx,πy

)

W
)

(16)

subject to
∑

(x,y)∈D

tr
((

2I −MF
πx,πy

)

W
)

= 1 (17)

W � 0 (18)

Like for the weight vector the constraint (equality to 1) is arbitrary and guarantees that dissimilar arrays
are distant from each other. This optimization is a semidefinite program (SDP) [20]. The objective function
is a summation of traces of semi-definite matrices and so this is a convex optimization problem and there
exists a global minimum solution. However, the matrix W is very large (m by m) and would require large
amounts of training data for learning. Since such data is limited using a full rank matrix will likely lead
to overfitting. Instead we seek a low-rank approximation of W . Let Z be the rank k approximation of W :
W ≈ Z = Y Y T , where Y ∈ Rn×k. Given these changes the optimization problem is:

min tr
(

Y TZSY
)

(19)

subject to tr
(

Y TZDY
)

= 1 (20)

with

ZS =
∑

(x,y)∈S

(

Mπx
−Mπy

)T (

Mπx
−Mπy

)

ZD =
∑

(x,y)∈D

(

Mπx
−Mπy

)T (

Mπx
−Mπy

)

See Supporting Methods for a discussion on how to further regularize this optimization problem and how to
solve it using augmented Lagrangian approach.

3 Experiments and Results

We first used a training dataset from human and mouse tissues to learn parameters for our distance functions
and to test the different methods on a dataset for which the correct answer is known. We next downloaded
a large number of microarray expression datasets from GEO and applied our distance function to select
pairs of experiments that are similar. For this section we consider the cross-species analysis between human
(Homosapiens) and mouse (Musmusculus) biological samples. We obtained the list of 16,376 human and
mouse orthologs from Inparanoid (inparanoid.sbc.su.se).

3.1 Gene Variance

While the methods described above can work for any number of orthologs, the larger the number the more
data we would need to fit the weight vector and matrix methods. Since all our expression levels were log
ratios to a reference data (see below) we have excluded from the analysis genes that did not vary much within

each species. We selected the top 500 most varying orthologs for further analysis. We note two things. First,
methods that are not affected by overfitting (in our case Spearman’s correlation and TBR) were also tested
using all orthologs with results very similar to the results obtained from the 500 gene list. Second, while such
a selection favors genes with high variance across a large number of experiments, at no stage in the selection
have we considered the agreement between the actual levels of orthologous genes in specific experiments.

7



3.2 Testing distance metrics on data from human and mouse tissues

For evaluation and comparisons of all metrics discussed in this paper, we used an expression dataset, which
we call ‘Toronto dataset’, consisting of expression profiles for 26 human tissues and their corresponding
tissues in mice [6]. These 26 tissues pairs were profiled using species specific custom arrays. For each tissue,
we had one human and one mouse arrays, which were processed and normalized by the authors of [6]. See
Supporting Table 1 and Website for the list of tissues.

We used 2 fold cross-validation with 10 random permutations of tissues to compare the performance of
the NMF method [25] and the five different distance metrics discussed above. For Pearson correlation, we
select the varying 500 genes based on their expression values. For NMF we used the R code provided by the
authors which also performs model selection to limit the number of metagenes [4]. The human samples were
used to discover the metagenes and the mouse orthologs of these genes were used for the mouse metagenes.
For training of the methods discussed in this paper we use the set of similar tissues as the positive set and
all the remaining pairs as negative examples. Using parameters learned in the training phase we rank all
test pairs by their distance and plot a Precision-Recall (PR) curve for all methods. Since the data set is
highly skewed (i.e. there are many more negative than positive pairs), PR curves provide a more informative
picture of the metrics’ performance than the Receiver Operator Characteristic (ROC) curves [7].
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Figure 2: Comparison of different metrics using human-mouse tissues. PR curves of Spearman’s rank
correlation, TBR, NMF, Vector and Matrix Weight metrics.

3.2.1 Comparison of cross species comparison metrics

As can be seen in Fig. 2 most methods (except for Spearman’s rank correlation) achieved a very high precision
to begin with (80% and higher). However, this precision level drops and when reaching 20% recall only the
weight matrix method achieves a precision that is higher than 90%. Since there are hundreds of thousands
of expression experiments in GEO, precision is more important than recall for our goals. At these high
precision rates the weight matrix method dominates the other methods we have considered and thus we used
it in all subsequent analysis.

As for the other methods we believe that Spearman’s rank correlation performs worse than Pearson
correlation because the test dataset is well normalized so nonparametric methods loose statistical power.
However, in application to large, heterogenous, datasets the assumption of normalization across the datasets
is less likely. For NMF, the fact that it is unsupervised and does not use information from the query species
to construct the components likely led to its weaker performance. The results presented in Fig. 2 used
an approximation matrix with rank 3. We have also tested other ranks (recall that rank 1 is the weight
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Figure 3: The penalty matrix between ranks (Wi,i +Wj,j) /2 − Wi,j as shown in (14), learned from the
human and mouse tissues data.

vector shown on the figure as well). We observe that both ranks 2 and 4 do not improve the overall success
(Website) and so we have focused on rank 3 matrices for the reminder of this paper.

We have repeated the above analysis (comparison of methods) using another, independent, human-mouse
tissue dataset, which we term the ‘Novartis dataset’, from [24]. As we discuss in Supporting Results this
additional analysis agrees with the results presented above indicating that our method is robust to the
specific data used and to the different platforms in these two studies.

Fig. 3 presents the residual weights (Wi,i +Wj,j) /2 − Wi,j which are the penalties for differences in a
ranked pair as shown in (14). High (red) values indicate bigger penalty while lower (blue) values indicate
that the penalty is smaller. Interestingly the method seems to focus more on the repressed genes and puts
a higher weight on genes that move from being repressed to being upregulated or at a medium expression
level.

3.2.2 Effect of ortholog assignment on the performance of the Matrix method

Inparanoid contains over 10000 known orthologs between human and mouse making them one of the best
annotated pairs of species. As noted above, from this set we select a subset of 500 genes and use these in our
algorithms. To test whether our methods would be appropriate to other species pairs for which much fewer
orthologs are known we repeated the analysis discussed above starting with a smaller set of orthologs. We
selected random sets of 2000 orthologs (roughly 12% of all orthologs) and then reran our method using this
initial set (selecting the top 500 varying genes from this smaller subset and running the matrix algorithm
discussed above). Figure 4 presents results for seven of these random sets. The blue curve are the results
when starting with the full set of orthologs. As can be seen our method is robust and is appropriate for pairs
of species with much fewer known orthologs as well.

3.3 Identifying similar experiments in GEO

The previous section shows that our weight matrix performs better than standard metrics on the Toronto
and Novartis datasets and moreover can get a very high precision for the recall value of 20%. Our goal is to
apply this new metric for retrieving cross-species similar pairs of microarray experiments in a large dataset.
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microarray pairs selected by our method.
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3.3.1 Data Collection

We downloaded 715 human and 769 mouse datasets from GEO and used GDS data and metadata to identify
control samples for each dataset (Website). Such samples are important for properly normalizing and
transforming the data so that all data used is log2 ratio of the response sample to its control. We excluded
from the analysis all datasets for which we could not positively identify the control sample leaving us with
3416 human and 2991 mouse microarrays from 535 human and 641 mouse datasets.

3.3.2 Identification of associated pairs of microarrays

We used the weight matrix trained using the full set of human-mouse tissue pairs. We used the results of
Fig. 2 to select a similarity cutoff corresponding to the cutoff that led to 95% precision and 10% recall. Using
this cutoff we ended up with 301, 453 pairs of microarrays whose distances are smaller than the cutoff which
is roughly 3% of all pairs tested. These pairs are from 14493 dataset pairs (many array pairs are from the
same pair of human and mouse datasets).

We also looked at the distribution of scores under the null hypothesis (since more than 95% of microarray
pairs are not similar, this can be done by selecting random human-mouse array pairs) and determined that
the p-value for the null hypothesis is uniformly distributed, as expected. As a sanity check for our results
we also computed the Pearson correlation across the pairs determined to be significant by our method for
all human and mouse orthologs that were not part of the 500 genes we used for learning the parameters.
Fig. 5 shows the histogram of this correlation and the histogram of the correlation for the same set of genes
in a randomly selected set of 301, 453 microarray pairs. As can be seen the selected experiments are indeed
more similar for many of the orthologs when compared to random selected pairs indicating that our method
can identify correlated array pairs without using the experiment description.

3.3.3 Description and dataset analysis

The list of pairs derived by our method allows us to address many questions. We first asked what conditions
/ organs / tissues are the most similar between human and mouse in terms of expression. We used the titles
provided in the metadata section of the GDS to identify common words that are significantly over-represented
in the microarray pairs we extracted. For each pair of similar experiments, a word that appears in both titles
could provide information about the relationship between the pair. For each word we have also computed
the number of times it appeared in a title for all microarrays used from each species and the expected
number of times it should have appeared in the pairs we selected. Using the hypergeometric distribution we
computed the overrepresentation P-value for each word. Table 1 presents the results of the analysis of over
represented words in matched titles. As can be seen some organs and tissue types are much more represented
than others. For example, brain, muscles and blood appear to have similar expression patterns between the
two species. Certain conditions are also overrepresented, most notably immune response. Several words are
associated with experiments related to such response including different types of cells participating in the
response (macrophages, dendritic, cd8). In contrast, cancer, one of the most common words in the human
studies (roughly 10% of human datasets contained cancer in the title) was not overrepresented supporting
recent results that most mice are not an ideal model system for at least some types of cancer [3, 22]. We
repeated this analysis using the abstracts provided instead of the titles leading to similar results (see Website
for full results). We have also looked beyond pairwise similarities and identified entire datasets (GDS files)
that contained several similar pairs of arrays between human and mouse. An expert pathologist (Oltvai)
manually inspected the top 100 matched datasets and determined that over 80% of them make biological
sense (see Supporting Table 2). Many of the datasets identified as similar contained experiments for the same
tissue (most notably muscle, but also blood and brain). However, some of the matches were less obvious.
Fibrosis is a chronic progressive and often lethal lung disease. One of the top 50 matches in our results was
between a human dataset titled non-diseased lung tissue (GDS1673) and the mouse dataset titled Pulmonary
fibrosis(GDS251). However, upon a closer inspection of the mouse dataset it can be seen that it compares
two mouse strains treated with bleomycin. One is determined to be susceptible to fibrosis (C57BL6/J)
whereas the other is determined to be resistant (BALB/c). When looking at the similarities computed by
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Rank P-value Word #Pairs

Identified Expected

1 7.14429e-13 MUSCLE 121 28.46752
2 7.39409e-13 DENDRITIC 24 2.13506
3 1.76946e-11 SKELETAL 42 12.12506
4 3.12418e-11 MACROPHAGE 18 2.21414
5 1.89634e-08 ERYTHROID 6 0.15815
6 2.52933e-08 OBESITY 9 0.63261
7 8.35063e-08 HEMATOPOIETIC 13 1.84512
8 2.36749e-07 BRAIN 19 4.42828
9 1.52768e-06 CD8+ 5 0.18451
10 1.67619e-06 CARDIAC 6 0.34266
11 1.45374e-05 STEM 43 20.87618
12 2.02795e-05 HAIR 5 0.31631
13 9.19217e-05 FIBROBLASTS 12 3.08398
14 2.04560e-04 AIRWAY 7 1.15979

Table 1: Top 14 words identified in titles of pairs determined to be similar. #Pairs Identified is the number
of time this pair was observed. #Pairs Expected is the number of time expected based on single species
occurrences. The P-value is computed using the hypergeometric distribution.

# Genes

Rank Category Name Assigned Expected P P adj

1 cell cycle 39.0 9.1 8.5E-15 <0.001
2 cell division 26.0 4.5 5.5E-13 <0.001
3 cell cycle phase 26.0 4.7 1.6E-12 <0.001
4 M phase 24.0 4.2 4.8E-12 <0.001
5 cell cycle process 26.0 5.5 4.6E-11 <0.001
6 mitotic cell cycle 21.0 3.8 2.4E-10 <0.001
7 mitosis 17.0 2.9 6.7E-9 <0.001
8 nuclear division 17.0 2.9 5.8E-9 <0.001
9 M phase of mitotic cycle 17.0 3.0 6.7E-9 <0.001

Table 2: GO enrichment analysis for mouse genes using STEM.

our method it can be seen that the vast majority of the top 100 matches are for the BALB/c strains. Thus,
our cross species comparisons can be used to identify cases in which similar pathways are activated even
though the conditions may be different.

3.3.4 Quarrying GEO to identify cycling mouse genes

To demonstrate the utility of our method for quarrying large cross species databases like GEO we used
a set of 50 known human cycling genes extracted from [26]. For each of these genes we used all 301,453
microarray pairs determined to be similar to identify the set of similarly expressed mouse genes using
Spearman correlations (regardless of their sequence similarity). We retrieved the top 10 most similar mouse
genes for each query human gene resulting in a set of 206 genes. Note that the database we used contained
a diverse set of experiments and, while a few may have been focused on cell cycle studies the vast majority
were not. Importantly, our analysis here did not rely on any specific cell cycle time series dataset.

We used STEM [9] to determine significant GO categories associated with this list of mouse genes. As
can be seen in Table 2, all top categories that are enriched for this set are related to cell cycle (including
cell cycle itself). The set of mouse genes contains orthologs of the original set of human genes including
CDC2A, a cell division control protein and CCNB1, an essential component of the cell cycle regulatory
machinery. The list also contains many known mouse cell cycle genes with no homologs on the human list.
These include members of a highly conserved complex which is essential for the initiation of DNA replication
(ORC1L and ORC6L) and PRIM1 and PRIM2 which are involved in chromosomal replication during cell
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cycle. See Website for complete list. These results highlight the potential use of our method for identifying
functionally related genes across species.

4 Conclusions and future work

The growth of microarray databases opens the door to applications that can simultaneously query sequence
and expression databases to identify both static and dynamic matches. However, these methods would
require a set of matching expression datasets in the species being queried. Such matches are hard to come
by. It is rare to find the exact same experiment (condition, time, tissues etc.) in multiple species. To allow
the use of these databases we looked at several different distance metrics between expression experiments.
We defined a new distance function which utilizes the ranking of orthologs in both species. Our method
uses a training dataset to learn weights for differences in rankings between the species and these differences
are then summed up to determine the similarity between the two experiments. Testing this method on a
training dataset of known similar pairs showed that it indeed improves upon other distance measures and
that it can achieve high precision.

We used our new distance function to retrieve similar experiment pairs from GEO. The set of experiments
identified by our method allowed us to look at questions regarding the conditions and tissues that activate
similar expression patterns in human and mouse and to find a set of cycling mouse genes based on a set of
known human cycling genes. Many of these mouse genes are known to be cycling and the rest of the genes
identified are candidates for further study into their role in the cell cycle.

Our method attempts to learn a new distance function for permutations based on training data. There has
been recent work in Machine Learning on trying to learn new distance function for feature vectors [2], though
we are not aware of any work so far that attempted to learn such methods for permutations. A number
of the methods developed for feature vectors were later kernelized allowing for much faster computations.
It would be interesting to see if the Matrix weight method discussed in this paper can also be kernelized.
We have primarily relied on one to one orthology matches for computing the distance between pairs of
experiments. Since many orthology assignments are many to one or many to many, methods that can utilize
such information may be able to improve upon the results suggested in this paper. Our overall goal is to
compile a large set of expression pairs that can be used for querying human and mouse genes. As we noted
in the introduction our method can also help in distinguishing between orthologs and homologs by looking
for genes with similar sequence that are also co-expressed in the set of similar experiments. We would also
like to extend this work to other species and we are looking for training data for these species.
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Appendix

A Metric properties

For completeness we list below the properties of distance metrics.

1. Non-negative: d(π, σ) ≥ 0

2. Symmetric: d(π, σ) = d(σ, π)

3. Identity: d(π, σ) = 0 if and only if π = σ

4. Triangular inequality: d(π, σ) ≤ d(π, τ) + d(τ, σ) for any τ ∈ Gm

B Proof of Asymptotic Normality

Proof Since d(π, σ) = d(ππ−1, σπ−1) = d(Im, σπ−1), the distributionDd is the distribution of d(Im, τ) when
τ is a uniformly random permutation in Gm. Applying Hoeffding’s Combinatorial Central Limit Theorem
[12] with cm(i, j) = (w(i)− w(j))2, we only need to verify the condition (12) of the theorem 3.

Define dm(i, j) as in the equation (11). Let α = min
1≤i,j≤m

dm(i, j) and β = max
1≤i,j≤m

dm(i, j). α and β exist

because −∞ < w(i) < ∞ for all i .

lim
m→∞

max
1≤i,j≤m

[dm(i, j)]2

1
m

m
∑

i=1

m
∑

j=1

[dm(i, j)]2
≤ lim

m→∞

β2

1
m

m
∑

i=1

m
∑

j=1

α2

(21)

= lim
m→∞

β2

mα2
(22)

= 0 (23)

C Pseudometric properties of the relational weighted rank matrix

Below we prove that Equation 13 is a pseudometric in the original permutation space and a metric in the
W -transformed space.

Lemma C.1
MF

π,σ = MT
π Mσ +MT

σ Mπ (24)

2I −MF
π,σ = (Mπ −Mσ)

T
(Mπ −Mσ) (25)

Proof Since Mπ and Mσ are permutation matrices, MT
π Mσ = Mσπ−1 and MT

σ Mπ = Mπσ−1 .
Therefore, by the definition of the permutation matrix in (5), Mσπ−1(i, j) = 1 if and only if σπ−1(i) = j

or π−1(i) = σ−1(j). Similarly, Mπσ−1(i, j) = 1 if and only if π−1(j) = σ−1(i). Equation (24) follows from
the definition of MF

πσ in (12).

2I −MF
π,σ = MT

π Mπ +MT
σ Mσ −

(

MT
π Mσ +MT

σ Mπ

)

= (Mπ −Mσ)
T
(Mπ −Mσ)

Theorem C.2 If the matrix W is positive semidefinite, the distance is a pseudometric.
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Proof

d(π, σ) =
√

tr
((

2I −MF
π,σ

)

W
)

=
√

tr (Y T (Mπ −Mσ)T (Mπ −Mσ)Y )

= ‖(Mπ −Mσ)Y ‖F

Since the Frobenius norm ‖.‖F is a metric, our distance d(π, σ) satisfies non negativity, symmetry and
triangular inequality. Therefore, the distance is a pseudometric. d(π, σ) = 0 implies MπY = MσY , hence
the distance is a metric in the W -transformed space.

D Matrix and Vector Weight metrics

We show that the vector weight discussed in section 2.3.3 is a special case of the general weight matrix when
that matrix has a rank of 1.

Proof Since W is ranked 1, W = wTw with w is a vector of length n. Let d1 and d2 be the metric in
Sect. 2.3.3 and Sect. 2.3.4 respectively. Recall from the proof of Theorem C:

d1(π, σ) =
√

wT (Mπ −Mσ)T (Mπ −Mσ)w (26)

d2(π, σ) =
√

tr
(

wT (Mπ −Mσ)T (Mπ −Mσ)w
)

(27)

=
√

wT (Mπ −Mσ)T (Mπ −Mσ)w (28)

Therefore, the metric in Sect. 2.3.3 is a special case of the metric in Sect. 2.3.4.

E Regularizing and solving the weight matrix optimization prob-

lem

An additional constraint that is useful for controlling overfitting is to regularize the solution. In our case,
since nearby locations can be affected by small amounts of noise a reasonable regularization policy is to
require that the W matrix is smooth. To achieve this we add linear inequality constraints to enforce that
column-adjacent entries in Y differ by at most δ > 0: Y (i, j)−Y (i+1, j) ≥ −δ and −Y (i, j)+Y (i+1, j) ≥ −δ
∀1 ≤ i < m, 1 ≤ j ≤ k.

We solve this optimization by using the augmented Lagrangian approach. Similarly, we can incorporate
the smoothness constraints to the Lagrangian. See [20] for a detailed discussion on the augmented Lagrangian
method.

F Normality of the null distribution

Supporting Fig. 1 experimentally confirms that the null model follows a normal distribution. The red curve
is a normal distribution fit using Matlab.

G Testing distance metrics data from human and mouse tissues

G.1 Different rank values and number of negative examples

Supporting Fig. 2 shows the PR curves of the Matrix Weight metrics using the rank values of 2,3 and 4.
Both ranks 2 and 4 do not improve the overall success. We also have tested using a different number of
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Supporting Fig. 1: The histogram of the Spearman correlation of 2000 random pairs of microarrays and the
Gaussian distribution fit using Matlab.
negative examples for each array in the training set (since the number of positive examples is only 1 it is
hard to change that number). For this test we used 5 negative examples (in the original analysis we used
12). As can be seen in Supporting Fig. 2, this change did not affect the results much and the PR curve for
such setting is very close to the original PR curve.

G.2 Comparison of cross species comparison metrics using 1000 most variant

genes

We reran experiments with 1000 orthologs and the results are presented in Supporting Fig. 3 . Indeed, as
the reviewer suspected the matrix method did slightly worse when compared to the results using 500 genes.
However, for the highest precision rates Matrix was still the best method (though by a much lower margin
when compared to the vector method which requires far fewer parameters). The results of using 500 genes
are slightly better than using 1000 genes at the 0.9 precision range (for a recall of 0.21 the 500 genes method
achieves a 0.92 precision whereas the 1000 genes achieves 0.91). Of course, these results are also a function
of the training data size. With a larger training datasets the ability to fit parameters to more sophisticated
models increases and so more complex methods, like the Matrix method, are likely to outperform the simpler
methods.

G.3 Randomized dataset

To demonstrate that how well different methods perform relative to random prediction, we have carried
out the experiment on a randomized dataset, by randomly permuting expression values in each array. The
results are presented as Supporting Fig. 4. As can be seen, all methods do very badly and the results are
essentially a flat PR curve as expected from random data.
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Supporting Fig. 2: PR curves of Matrix Weight metrics with different rank values and using less number of
negative examples.

H Testing distance metrics on an additional dataset from human

and mouse tissues

For an additional evaluation of all metrics discussed in this paper, we used a second human-mouse expression
dataset consisting of 79 human and 61 mouse tissues from [24] (note that some are repeats). In cases where
the cell types differed between human and mouse we have assigned each human tissue sample to at most
three mouse samples based on a mapping by a pathologist (Oltvai). The assignment of human tissues to
mouse tissues are based on the following criteria (see Website for complete assignments):

1. Same organs, cell types, and developmental stages.

2. Spatially closer structures within an organ.

3. Insights that are not necessarily evident from anatomy, e.g, the ontogenic similarity of brown adipose
tissue and muscle.

We next used 4 fold cross-validation with 4 random permutations of the tissues to compare the per-
formance of the NMF method [25] and the four different distance matrices discussed above. The results
presented used an approximation matrix with rank 3.

The overall success for this dataset is lower than for the Toronto dataset. This agrees with the initial
analysis of this data that indicated a large deviation between human and mouse expression data for some
of the tissues [24]. Still, in terms of comparison between methods the results of this analysis agree with
the results presented in the main text. As can be seen in Supporting Fig. 5(a) the weight matrix method
achieves a high precision ( 65%) for a much larger recall (10%). As discussed in the main text the reason
NMF does not perform well on this dataset is likely related to the fact that it is unsupervised and does not
use information from the query species to construct the components.

Supporting Fig. 5(b) presents the residual weights (Wi,i +Wj,j) /2 − Wi,j which are the penalties for
differences in a ranked pair as shown in (14). We note the similarity with the learnt matrix in Fig. 3 in
putting a higher weight on genes that move from being repressed although the penalty is smaller. Thus, the
overall weighting seems to be dataset and platform independent.
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Supporting Fig. 3: PR curves of Spearman’s rank correlation, TBR, NMF, Vector and Matrix Weight metrics
using 1000 most variant genes.
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Supporting Fig. 4: PR curves of Spearman’s rank correlation, TBR, NMF, Vector and Matrix Weight metrics
on a randomized dataset.

I Human and mouse tissue list

Supporting Table 3 shows the list of 26 human and mouse tissues used in this analysis.

J Identifying similar experiments in GEO

J.1 Histogram of the correlation of 500 selected genes

Supporting Fig. 6 shows distributions of correlations for the selected highly varying 500 genes. When using
the 500 selected genes the results look pretty similar to the results presented in the paper though the mean
correlation is slightly higher (0.1057 vs. 0.1021).
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Human Mouse

Adrenal Cortex Adrenal
Bladder Bladder

Bone Marrow Bone Marrow
Brain Brain

Brain Cerebellum Cerebellum
Brain Cerebral cortex Cortex

Epididymis Epididymus
Heart Heart
Kidney Kidney
Liver Liver
Lung Lung

Pancreas Pancreas
Placenta Placenta 12.5
Prostate Prostate

Salivary Gland Salivary
Skeletal Muscle Skeletal Muscle
Small Intestine Small Intestine
Spinal Cord Spinal Cord

Spleen Spleen
Stomach Stomach
Testis Testis
Thymus Thymus
Thyroid Thyroid
Tongue Tongue
Trachea Trachea
Uterus Uterus

Supporting Table 3: The one-one similarity list of human and mouse tissues.

J.2 Description analysis on random sets of array pairs

We repeated the analysis with random sets of array pairs. As can be seen in Supporting Table 4, for these
pairs the p-values are much higher (less significant). Specifically, there are no matched terms with a p-value
lower than 10−10 (whereas in the identified matching there are 4 such words) and only 3 of the top random
match words would be ranked in the top 10 of the words identified using the matches made by the algorithm.
Thus, such p-values are significant and would not be expected from random assignments.

J.3 Heat map of similarity between 3416 human and 2991 mouse microarrays

Supporting Fig. 7 presents a heatmap showing all human by mouse arrays where the color indicates the level
of similarity from the Weight Matrix metric. Smaller value means more similarity.

J.4 Human assessment of identified matched dataset pairs.

To test whether the identified matched pairs are indeed a feasible solution we have asked an expert pathologist
(Oltvai, a co-author of the paper) to examine the top 100 matched dataset pairs identified by our method.
Based on the description for that dataset the expert assigned each match to one of three categories: A correct
match (Y), an incorrect match (N) and an inconclusive. As can be seen in Supplementary Table 5, there
were 83 Y assignments in the top 100 matches with the other 17 determined to either be mistakes (N, 13) or
inconclusive (4). Given that almost all random matches would not make sense this is a very high accuracy
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Rank P-value Word #Pairs

Identified Expected

1 1.13469e-09 BONE 51 19.13650
2 3.91648e-09 ACUTE 43 15.18268
3 1.26953e-06 MARROW 15 3.16306
4 1.49012e-05 GASTROCNEMIUS 8 1.05435
5 2.02795e-05 STEROID 5 0.31631
6 7.76604e-05 METAPLASIA 3 0.07908
7 1.34712e-04 LIPOPOLYSACCHARIDE 8 0 1.44973
8 2.29396e-04 PULMONARY 15 05.00818
9 3.32228e-04 PROGENITOR 8 0 1.66061
10 5.00167e-04 IFN-GAMMA 5 0.63261
11 7.80427e-04 DYSTROPHY 14 5.06089
12 7.86850e-04 DUCHENNE 8 1.89783
13 7.94474e-04 REGIONS 9 02.37229
14 1.34160e-03 LEUKEMIAS 2 0.05272

Supporting Table 4: Top 14 words identified in titles of pairs determined to be similar. #Pairs Identified is
the number of time this pair was observed. #Pairs Expected is the number of time expected based on single
species occurrences.

rate and it clearly indicates that this method can be use to help improve, and speed up, human assessment
of similarity. We have changed the introduction and results sections to reflect this idea and to highlight the
ability of the method to aid in human assessment of similarity.

Human Dataset Description Mouse Dataset Description Assessment

GDS2767 Blood response to various bev-
erages: time course

GDS1077 Hematopoietic stem cells from
different recombinant inbred
strains

Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS2047 Lipopolysaccharide effect on
macrophages pretreated with
carbon monoxide: time course

Y/ inconcl.

GDS2772 Sevoflurane and propofol effect
on the heart during off-pump
coronary artery bypass graft
surgery

GDS2329 Acute myocardial infarction
model: time course (MG-
U74A)

Y

GDS2772 Sevoflurane and propofol effect
on the heart during off-pump
coronary artery bypass graft
surgery

GDS2330 Acute myocardial infarction
model: time course (MG-
U74B)

Y

GDS2055 Skeletal muscle types (HG-
U133A)

GDS2329 Acute myocardial infarction
model: time course (MG-
U74A)

Y

GDS1815 High-grade gliomas (HG-
U133A)

GDS2159 Spinal cord injury model: time
course

Y

GDS2055 Skeletal muscle types (HG-
U133A)

GDS2330 Acute myocardial infarction
model: time course (MG-
U74B)

Y

GDS2772 Sevoflurane and propofol effect
on the heart during off-pump
coronary artery bypass graft
surgery

GDS488 Myocardial infarction time
course

Y

GDS2056 Skeletal muscle types (HG-
U133B)

GDS2330 Acute myocardial infarction
model: time course (MG-
U74B)

Y

GDS2740 Lengthening and shortening
contractions effect on the mus-
cle: time course

GDS2329 Acute myocardial infarction
model: time course (MG-
U74A)

Y

GDS2740 Lengthening and shortening
contractions effect on the mus-
cle: time course

GDS2330 Acute myocardial infarction
model: time course (MG-
U74B)

Y
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GDS2678 Brain regions of humans and
chimpanzees

GDS2159 Spinal cord injury model: time
course

Y

GDS2055 Skeletal muscle types (HG-
U133A)

GDS488 Myocardial infarction time
course

Y

GDS2767 Blood response to various bev-
erages: time course

GDS2150 Spleens of males and females at
puberty

N

GDS2255 Transmigrated neutrophils in
the alveolar space of endotoxin-
exposed lung

GDS1077 Hematopoietic stem cells from
different recombinant inbred
strains

Y

GDS2255 Transmigrated neutrophils in
the alveolar space of endotoxin-
exposed lung

GDS2047 Lipopolysaccharide effect on
macrophages pretreated with
carbon monoxide: time course

Y

GDS2373 Squamous cell lung carcinomas GDS2334 Myod and Myog expression ef-
fect on myogenesis: time course

N

GDS2373 Squamous cell lung carcinomas GDS981 Uterine response to physio-
logic and plant-derived estro-
gen: time course

N

GDS2373 Squamous cell lung carcinomas GDS1244 Phosgene effect on lungs: time
course

Y

GDS2055 Skeletal muscle types (HG-
U133A)

GDS234 Muscle regeneration (U74Av2) Y

GDS2767 Blood response to various bev-
erages: time course

GDS1336 T cell anergy induction regula-
tion by Egr-2 and Egr-3 (MG-
U74A)

Y/ inconcl.

GDS1673 Non-diseased lung tissue GDS1244 Phosgene effect on lungs: time
course

Y

GDS2373 Squamous cell lung carcinomas GDS1072 Platelet derived growth fac-
tor effect in the presence of
Src family kinase inhibitors
(MOE430A)

Inconcl.

GDS2740 Lengthening and shortening
contractions effect on the mus-
cle: time course

GDS488 Myocardial infarction time
course

Y

GDS2772 Sevoflurane and propofol effect
on the heart during off-pump
coronary artery bypass graft
surgery

GDS2335 Exercise effect on the diabetic
cardiac muscle: time course

Y

GDS2772 Sevoflurane and propofol effect
on the heart during off-pump
coronary artery bypass graft
surgery

GDS627 Cardiac development in embryo Y

GDS2767 Blood response to various bev-
erages: time course

GDS1514 Interferon-gamma tolerogenic
effect on CD8+ dendritic cells

Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS2408 B cell-activating factor of the
TNF family effect on B cells

Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS993 Naive CD8+ T cells prolifera-
tive response to lymphopenia:
time course

Y/ inconcl.

GDS2055 Skeletal muscle types (HG-
U133A)

GDS1541 Exercise effect on diabetic
skeletal muscle: time course

Y

GDS2056 Skeletal muscle types (HG-
U133B)

GDS1541 Exercise effect on diabetic
skeletal muscle: time course

Y

GDS2678 Brain regions of humans and
chimpanzees

GDS2917 Various brain regions of several
inbred strains

Y

GDS2055 Skeletal muscle types (HG-
U133A)

GDS2335 Exercise effect on the diabetic
cardiac muscle: time course

Y

GDS596 Large-scale analysis of the
human transcriptome (HG-
U133A)

GDS2159 Spinal cord injury model: time
course

Inconcl.

GDS2678 Brain regions of humans and
chimpanzees

GDS1406 Brain regions of various inbred
strains

Y

GDS2373 Squamous cell lung carcinomas GDS1058 Uterus response to 17beta-
estradiol: time course

N

GDS2772 Sevoflurane and propofol effect
on the heart during off-pump
coronary artery bypass graft
surgery

GDS1766 Extraocular and hindlimb
skeletal muscle cell differentia-
tion: time course (MG-430B)

Y

GDS1340 Exercise effect on aged muscle GDS2329 Acute myocardial infarction
model: time course (MG-
U74A)

Y

GDS1340 Exercise effect on aged muscle GDS2330 Acute myocardial infarction
model: time course (MG-
U74B)

Y

GDS198 Inflammatory myopathy GDS2329 Acute myocardial infarction
model: time course (MG-
U74A)

Y
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GDS2373 Squamous cell lung carcinomas GDS1277 Obliterative bronchiolitis and
tracheal allograft

Y

GDS1673 Non-diseased lung tissue GDS251 Pulmonary fibrosis Y
GDS2767 Blood response to various bev-

erages: time course
GDS882 Neuromedin U effect on type-2

Th cells: time course
Y/ inconcl.

GDS2168 HIV viremia effect on mono-
cytes

GDS1077 Hematopoietic stem cells from
different recombinant inbred
strains

Y

GDS707 Aging brain: frontal cortex ex-
pression profiles at various ages

GDS2159 Spinal cord injury model: time
course

Y

GDS2055 Skeletal muscle types (HG-
U133A)

GDS1765 Extraocular and hindlimb
skeletal muscle cell differentia-
tion: time course (MG-430A)

Y

GDS2373 Squamous cell lung carcinomas GDS1631 Osteoblast differentiation
(MG-U74A)

N

GDS2373 Squamous cell lung carcinomas GDS1071 Platelet derived growth factor
effect in the presence of Src
family kinase inhibitors (MG-
U74A)

Y

GDS198 Inflammatory myopathy GDS234 Muscle regeneration (U74Av2) Y
GDS2767 Blood response to various bev-

erages: time course
GDS1285 Macrophage response to

lipopolysaccharide and CstF-
64 overexpression

Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS1315 Immune response to suppres-
sive vs. stimulatory im-
munomodulators

Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS1654 Dendritic cell subpopulations:
spleen (MG-U74A)

Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS2741 TCR-alpha/beta CD8-
alpha/alpha intestinal in-
traepithelial lymphocytes

Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS2957 Resting and activated natural
killer cells

Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS658 Thymocyte selection by agonist Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS827 Acute ethanol administration
effect on Toll-like receptor 3
signaling in macrophages

Y/ inconcl.

GDS2056 Skeletal muscle types (HG-
U133B)

GDS2329 Acute myocardial infarction
model: time course (MG-
U74A)

Y

GDS2083 Limb immobilization effect on
skeletal muscle

GDS2329 Acute myocardial infarction
model: time course (MG-
U74A)

Y

GDS2083 Limb immobilization effect on
skeletal muscle

GDS2330 Acute myocardial infarction
model: time course (MG-
U74B)

Y

GDS2772 Sevoflurane and propofol effect
on the heart during off-pump
coronary artery bypass graft
surgery

GDS40 Cardiac development, matura-
tion and aging

Y

GDS2373 Squamous cell lung carcinomas GDS1865 Chondrocyte differentiation:
time course

N

GDS2767 Blood response to various bev-
erages: time course

GDS2521 Megakaryocytes at successive
stages of maturation

Y

GDS395 Biomaterial engineering GDS981 Uterine response to physio-
logic and plant-derived estro-
gen: time course

N

GDS2113 Pheochromocytomas of various
genetic origins

GDS2159 Spinal cord injury model: time
course

Y

GDS1036 Microglial cell response to
interferon-gamma: time course

GDS2047 Lipopolysaccharide effect on
macrophages pretreated with
carbon monoxide: time course

Inconcl.

GDS1684 Cardiac allograft rejection:
time course

GDS2329 Acute myocardial infarction
model: time course (MG-
U74A)

Y

GDS1684 Cardiac allograft rejection:
time course

GDS2330 Acute myocardial infarction
model: time course (MG-
U74B)

Y

GDS2740 Lengthening and shortening
contractions effect on the mus-
cle: time course

GDS1541 Exercise effect on diabetic
skeletal muscle: time course

Y

GDS2740 Lengthening and shortening
contractions effect on the mus-
cle: time course

GDS2335 Exercise effect on the diabetic
cardiac muscle: time course

Y
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GDS833 Alternative pre-mRNA splicing
in various tissues and cell lines
(Rosetta/Merck Splicing Chip
5)

GDS2162 CH1 domain deletion, p300 and
CBP heterozygous null mutant
hypoxic fibroblasts response to
trichostatin A

N

GDS833 Alternative pre-mRNA splicing
in various tissues and cell lines
(Rosetta/Merck Splicing Chip
5)

GDS1244 Phosgene effect on lungs: time
course

N

GDS1284 Multiple myeloma molecular
classification

GDS1077 Hematopoietic stem cells from
different recombinant inbred
strains

Y

GDS198 Inflammatory myopathy GDS488 Myocardial infarction time
course

Y

GDS2055 Skeletal muscle types (HG-
U133A)

GDS627 Cardiac development in embryo Y

GDS2373 Squamous cell lung carcinomas GDS951 Hormone-induced adipoge-
nesis suppressed by 2,3,7,8-
tetrachlorodibenzo-p-dioxin
and EGF

N

GDS424 Normal human tissue expres-
sion profiling (HG-U95C)

GDS2329 Acute myocardial infarction
model: time course (MG-
U74A)

Inconcl.

GDS2255 Transmigrated neutrophils in
the alveolar space of endotoxin-
exposed lung

GDS1336 T cell anergy induction regula-
tion by Egr-2 and Egr-3 (MG-
U74A)

Y/ inconcl.

GDS2528 Basal plate of the placenta from
midgestation to term (HG-
U133A)

GDS981 Uterine response to physio-
logic and plant-derived estro-
gen: time course

Y

GDS1340 Exercise effect on aged muscle GDS488 Myocardial infarction time
course

Y

GDS2056 Skeletal muscle types (HG-
U133B)

GDS488 Myocardial infarction time
course

Y

GDS1340 Exercise effect on aged muscle GDS234 Muscle regeneration (U74Av2) Y
GDS2373 Squamous cell lung carcinomas GDS857 Corneal stromal cell differenti-

ation
N

GDS1815 High-grade gliomas (HG-
U133A)

GDS2917 Various brain regions of several
inbred strains

Y

GDS2772 Sevoflurane and propofol effect
on the heart during off-pump
coronary artery bypass graft
surgery

GDS1541 Exercise effect on diabetic
skeletal muscle: time course

Y

GDS2106 Lymphoblastoid cell lines from
various CEPH pedigrees

GDS2047 Lipopolysaccharide effect on
macrophages pretreated with
carbon monoxide: time course

Y

GDS2310 Exercise effect on white blood
cells

GDS2047 Lipopolysaccharide effect on
macrophages pretreated with
carbon monoxide: time course

Y

GDS2772 Sevoflurane and propofol effect
on the heart during off-pump
coronary artery bypass graft
surgery

GDS388 Cardiac remodeling (Mu11K-
B)

Y

GDS1962 Glioma-derived stem cell fac-
tor effect on angiogenesis in the
brain

GDS2159 Spinal cord injury model: time
course

Y

GDS2255 Transmigrated neutrophils in
the alveolar space of endotoxin-
exposed lung

GDS1514 Interferon-gamma tolerogenic
effect on CD8+ dendritic cells

Y

GDS2255 Transmigrated neutrophils in
the alveolar space of endotoxin-
exposed lung

GDS2408 B cell-activating factor of the
TNF family effect on B cells

Y

GDS738 Intervertebral disc cells and os-
motic loading

GDS981 Uterine response to physio-
logic and plant-derived estro-
gen: time course

N

GDS395 Biomaterial engineering GDS2162 CH1 domain deletion, p300 and
CBP heterozygous null mutant
hypoxic fibroblasts response to
trichostatin A

N

GDS2435 Male and female venous blood GDS1077 Hematopoietic stem cells from
different recombinant inbred
strains

Y

GDS2959 Granulocyte colony-
stimulating factor mobilized
leukocytes

GDS1077 Hematopoietic stem cells from
different recombinant inbred
strains

Y

GDS2767 Blood response to various bev-
erages: time course

GDS2011 Lupus-prone BWF1 males and
females: spleen (MG-U74A)

Y/ inconcl.
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GDS2767 Blood response to various bev-
erages: time course

GDS2041 Type II activated macrophage Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS2651 Macrophage cell line response
to Chlamydia pneumoniae in-
fection

Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS433 CD8+ effector and central
memory T cells (MG-U74A)

Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS684 T regulatory and T effector
cells in prediabetic lesion

Y/ inconcl.

GDS2055 Skeletal muscle types (HG-
U133A)

GDS2001 Utrophin/dystrophin-deficient
double mutant and dystrophin-
deficient mdx mutant skeletal
muscles

Y

Supporting Table 5: The result of human assessment of identified matched dataset
pairs.
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(a) PR curves of Spearman’s rank correlation, TBR, NMF, Vector and
Matrix Weight metrics.
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(b) The penalty matrix between ranks (Wi,i +Wj,j) /2−Wi,j as shown
in (14), learned from the human and mouse tissues data.

Supporting Fig. 5: Experimental evaluation of metrics.
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Supporting Fig. 6: Blue curve: Correlation of 500 orthologs used for training in a random sample of 301,453
microarray pairs from human and mouse. Red curve: Correlation of 500 orthologs used for training in the
set of microarray pairs selected by our method.
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Supporting Fig. 7: The similarity between 3416 human and 2991 mouse microarrays.
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