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Abstract

Scene images share underlying regularities on the global scale. In or-
der to develop a representation that encodes the global properties of
scene images and reflects their inherent regularities, we train a prob-
abilistic hierarchical model to infer correlational information from
scene images. The model parameters fitted to the characteristic statis-
tics of scene images reveal an efficient representation of global infor-
mation that encodes salient visual structures with low dimensional la-
tent variables. Through a perceptual experiment which assesses scene
image similarities in terms of spatial layout, we demonstrate that our
model representation is more consistent with perceptual similarities
of scene images than the state-of-the-art visual features.

1 Introduction

Understanding the global structures in scene images (pictures that depict spaces rather
than primarily describing objects in a scene) is a key process for holistic perception of
scenes. Such global information gives rise to relevant perceptual spatial layout prop-
erties of scene images such as depth, opennes and perspective [5]. In addition, scene
images that belong to the same semantic categories tend to have similar global struc-
tures [14] suggesting that the global information contributes to semantic properties of
scenes.

Previous studies have revealed that global features such as GIST [15], pyramid of his-
tograms of orientation gradients (PHOG) [2], spatial pyramid of SIFT [10] and his-
tograms of textons [4] are capable of predicting the semantic properties of scene images
such as perceptual properties of the spatial layouts [19], categories, memorability [7]
and typicality [3] of scene images. Although these approaches have been successful,
the features require careful hand-tuning of parameters depending on the tasks. This re-
quirement limits the generality of what is learned based on such features in one dataset
to others [21].

1



Another potential disadvantage of projecting scene images onto the hand-designed fea-
ture spaces is that they do not necessarily capture all relevant scene information. For
instance, although scene images have diverse local properties based on their contents
(textures and objects within the scenes, etc.), the global structures of scenes are highly
constrained in spatial layout and 3D structure. These constraints provide scene images
with special regularities on the global scale. Hand-designed representations which do
not take these regularities into account is unlikely to deal with the meaningful statistical
structures of the scene images (which are potentially relevant to the perceptual prop-
erties of scene images) [16]. Therefore, such representations require extra procedures
such as supervised training or metric learning with rather expensive human labels in
order to learn proper metrics relevant to higher level representation such as perception
or semantic categories [17].

Several algorithms have been developed for encoding the characteristic structures of
images. One approach is to build efficient representations that encode images with a
small number of coefficients by imposing sparsity constraints [22, 6]. Another method
is to learn a representation invariant to translations and rotations [12, 9, 18]. This al-
gorithm adopts pooling algorithms that feed the strongest responses of local filters over
a fixed range to the higher level representations. Although these methods have been
successful for local textures and object recognition, scene images have quite different
properties from them and thus such objectives might not be optimal.

For learning regularities of scene images, one interesting objective would be to encode
the co-occurrences of local structures on global scales. For instance, horizontal lines,
which are prevalently observed structures in scene images, are composed of horizontal
structures over space around similar vertical locations. A model which can encode such
prevalent global structures based on the co-occurrences of local structures would be
able to represent global regularities of scene images. To learn a representation which is
more adequate for the purpose of learning the global structures of the scene images, we
train a hierarchical probabilistic model (which will be referred to hereafter as the dis-
tribution coding model) that infers the correlational structures of the distributions from
which specific types of scenes are drawn [8]. The distribution coding model compactly
represents the space of covariance matrices that best capture correlational structure of
the scene mages. Since the model encodes a scene image based on its distribution but
not its pixel values, it is invariant to image variability that is not aligned with the statis-
tical regularities of scene images.

The contributions of this paper are that : 1) we show a compact dictionary for rep-
resenting global structures of scene images, 2) the latent variables for encoding the
correlational structures of scene images compactly encode the perceptually salient vi-
sual structures of scene images, 3) we develop a scene similarity measure based on the
distribution coding model which is significantly more consistent with perceptual simi-
larities of scene images than state-of-the-art descriptors, 4) we optimize the learning and
inference procedures for the distribution coding model expediting the training process
and 5) we put more sophisticated constraints on the model parameters than previous
approach to prevent degenerate solutions.
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2 Model training

2.1 Model description

To learn the global structures captured by the correlational relationships over space,
we trained the distribution coding model [8] on whole scene images. The distribution
coding model assumes that data, x, e.g., vectorized scene images in our setting, follows
a conditional multivariate gaussian distribution,

x|y ∼ N (0,C(y)) (1)

The zero mean assumption is valid because averaging a sufficient number of scene im-
ages shows that the pixel values of the mean scene image have almost uniform values.
To satisfy the positive definiteness constraint on covariance matrices, the model formu-
lates the logarithm of the covariance matrices as a function of the latent variable y as
below,

log(C(y)) =
∑

j

yjAj =
∑

j

yj

∑
k

wj,kbkbT
k (2)

where yj corresponds to the j th element of y. With this formulation, the distribution
coding model is capable of defining a continuum of covariance matrices that are defined
by the continuous latent variables y. Note that the model encodes x in terms of its
distribution unlike other scene descriptors. This approach makes the representation
robust to noise which is not relevant to the regularities present in the scene images.

Since Aj is symmetric, the distribution coding model formulates it as the weighted
sum of the outer products of vectors bks whose dimensionality is identical to that
of the data. Each bk corresponds to a direction along which the covariance matri-
ces can vary. Rather than learning separate sets of bk, (k = 1, · · · , K) for each Aj ,
the model lets them share the common dictionary of bks and incorporate coefficients
wj,k to reduce the dimensionality of the parameters; Aj with a high value of wj,k

strongly encodes the correlational structures present in bk. On the other hand, a low
value of wj,k corresponds to a suppressed variability along bk. We constrain bk and
wj = {wj,1, · · · , wj,K} on the unit norm ball to prevent degenerate solutions [1].

To enforce the model parameters to learn a compact representation of covariance ma-
trices, the model uses a laplacian prior on y,

log p(y) ∝ −
∑

j

|yj | (3)

2.2 Learning and inference

The model parameters Θ = {bk,wj} were optimized using the maximum likelihood
method. During the training process, we randomly sample a subset of training data.
We first infer latent variables for each data points in the subsample with bks and wjs
fixed to the current estimation (inference step). Then, with the latent variables fixed, we
update the model parameters (learning step).

Once the training process is completed, we can use the model parameters bks and wjs
which are fit to the statistical properties of scene images to infer the latent variables
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for new scene images. We do so by using the same procedure that we used in the
inference step in the training process. Latent variables are initialized to random and
updated to maximize the likelihood of a scene image. Based on the formulation of the
distribution coding model, the latent variables optimized for a scene image compactly
encode the covariance matrix for the multivariate Gaussian distribution from which the
scene image is drawn.

The number of bks and the number of wjs, K and J , are fixed beforehand. The re-
sults that we report in this paper were obtained with the K and J set to 596 and 60,
respectively.

2.3 Optimization method

The previous implementation of the distribution coding model [8] employed the
stochastic gradient method for the learning and inference procedures. While the
stochastic gradient method is easy to implement, the method requires sophisticated tun-
ing of the learning parameters such as step sizes. Here, we adopt the limited memory
BFGS (L-BFGS) method [13] for the learning and inference procedures. Since the L-
BFGS method employs the line search method to find the step sizes, there is no need to
tune them. Another benefit of the L-BFGS method is that it approximates the second-
order information and thus converges faster with greater stability than the stochastic
gradient method. To deal with the large size of the dataset required for estimating the
high dimensional parameters, we trained the model with the minibatch training method
[11].

With the optimized learning procedures, the model converges within hours to a good
solution whereas the previous implementation took days to reach stable solutions. The
results we report in this paper were obtained with approximately 20 hours of the learn-
ing procedure on a GPGPU Tesla M2070 GPU. Note that once we fit the model parame-
ters through the training procedure, extracting features from images which corresponds
to the inference step is achieved in real time.

2.4 Training data and preprocessing

We trained the distribution coding model on 130,519 scene images (from 397 scene cat-
egories) in the SUN database [23]. The dataset is hierarchically organized and covers
wide varieties of scene images with diverse structures. Due to the technical constraints
such as the number of training examples required for avoiding overfitting and the com-
putational cost, we downsampled the original scene images to 32×32 grayscale images
suitable for performance of object detection and scene categorization tasks by human
subjects [20]. Because the dataset has enough number of scene images compared to the
dimensionality of the model parameters, it is unlikely that the results are overfitted to
the training data. This is demonstrated when we apply the model parameters trained on
the SUN database to other scene image datasets [10, 19] and scene images downloaded
from the web, as the latent variables have similar properties.
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Figure 1: (a) 96 out of 576 randomly selected are shown. To visualize bks which
are vectors, we rearrange their elements into 32 × 32 matrix form. (b) The stacked
histogram describing the orientation and scale of bks. 0◦ corresponds to the horizontal
orientation, 90◦ to the vertical orientation. The bks are sorted from the most localized
to the most global.The black, dark gray, light gray and white parts of the bar graph
correspond respectively to the group of the top 25% localized structures, the groups of
top 25–50% and 50–75% localized bks and the group of the most global bks.

3 Model representation

3.1 Model parameters

As discussed in Section 2.1, bk encodes a common direction along which the covari-
ance units Aj can vary. When trained on the 32×32 scene images, bks show gabor-like
structures as shown in Figure 1a. Note that the formulation of the model did not con-
strain bks to have localized structures; rather, the structures emerged while fitting the
parameters to the scene image statistics. If we generate sample images using a multi-
variate Gaussian distribution with the covariance matrix exp(bkbT

k ), the pixels located
at the same positions as the elements of bk which have the same signs will be correlated
in the generated samples. On the other hand, if two elements of bk have opposite signs,
then the pixel values found at the same location with theses elements in the generated
samples will be anti-correlated.

When we categorize bks based on their orientation and scale, the horizontal and vertical
orientations are dominant in light of the external physical structures. In terms of scale,
horizontal units, compared to other orientations, have a greater portion of the most
global scales (Figure 1b). The non-isotropic distribution of scale and orientation of
bks, the common directions along which the covariance units Ajs can vary, suggests
the density component model invests more resources for prevalent visual structures in
scene images. This contrasts with most hand-designed visual features in that they tend
to allocate uniform bits of information for all orientations and scales.

While bks showed localized properties, we find that wjs encode global information by
incorporating the localized correlational structures encoded in the bks over space. To
visualize each wj , we first assign a bar to each bk which has the same location and
orientation with that bk in the image space. We then assign each bar a color value cor-
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Figure 2: (a)–(h) Representative Aj on the left with corresponding color bars. The red
corresponds to positive values of wj,k while blue represents the negative values. On the
right, top rows show images generated from multivariate Gaussian distributions with
exp(yjAj) as covariance matrices (yj > 0). The bottom rows show scene images from
the SUN database which have the highest values of ŷj .

responding to the value of wj,k. We show eight out of sixty wjs, equivalent to the Aj

(Eq.2) in Figure 2; these wj reveal horizontal and vertical line structures (Fig. 2a–2b),
wall structures (Fig. 2c), depth contrasts between centers and sides (Fig. 2c), oblique
lines (Fig. 2e), converging lines (Fig. 2f), contrasts between top and bottom (Fig. 2g)
and structures in upper part of images (Fig. 2h). We demonstrate the global corre-
lational structures encoded by wj by generating random samples from a multivariate
Gaussian distribution whose covariance matrices is exp(yjAj) (yj > 0). The generated
samples show visually similar structures as the corresponding covariance matrices. In
addition, scene images which have the highest values of yj among the SUN database
contain visual structures that resemble the visualization of correlational structures en-
coded in Aj .

3.2 Latent variables

Due to the sparsity constraint on the latent variables (Eq.3), the distribution of latent
variables ŷ peaks around zero (Fig. 3a). Even though there exist 60 covariance units
(Aj), only approximately 20 units are necessary for capturing the correlational struc-
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0 20 40 60
−300

−250

−200

Number of active yj

Lo
g 

lik
el

ih
oo

d

(b) Log likelihood

Figure 3: (a) Distribution of values of ŷj for scene images in the SUN database (blue
solid line) and the constraint we imposed on yj (Eq.3, red dashed line). (b) The log
likelihood computed using the most active ŷjs. The x-axis corresponds to the number of
most active units used (60 indicates using the original ŷ), while the y-axis corresponds
to the log likelihood of the data computed using the most active ŷjs. The blue line
corresponds to the mean over the SUN database and the red lines are the error bars.

tures of a scene image (Fig. 3b); when we order the elements of the latent variable ŷ of a
scene image x according to their magnitudes, and maintain the values of the most active
elements, while setting others to zero to compute the likelihood of x, the log likelihood
is saturated when we use 20 most active units. Note that this number corresponds to
only less than 2% of the original dimensionality of 32× 32 grayscale images.

When we visualize the covariance matrices determined by the latent variables, they are
visually similar to the salient visual features of the corresponding scene images (Fig-
ure 4). For each sample scene image, we order its latent variables ŷ = {ŷ1, · · · , ŷJ}
based on their magnitudes. We show the logarithms of the cumulative covariance ma-
trices,

∑k
i=1 ŷI(i)AI(i), in the first rows; I corresponds to the order of ŷjs based on

the absolute values in the descending order. The positive and negative components
of ŷI(k)AI(k) are separately displayed in the second and the third rows separately for
visual clarity. The second column corresponds to k = 1 and the right-most column cor-
responds to k = 6. Consistent with the sparse distribution of ŷ, the first few elements
of the ŷj encode the salient global structures of scene images.

We can also analyze the covariance matrices that best describes corresponding scene
images by spectral analysis. The spectral analysis reveals the directions along which
the covariance matrices are expanded or contracted. In Figure 5, we visualize the eigen-
vectors of the covariance matrices. Note that the eigenvectors corresponding to the pos-
itive values of eigenvalues have similar global structures to the scene images. Also,
the structures encoded in the eigenvectors corresponding to the negative values of the
eigenvalues are absent in the corresponding scene images. Consistent with the previous
analysis, this results suggest that the directions along which the covariance matrices are
extracted encode the global structures of scene images.

Lastly, we show randomly generated samples drawn from multivariate Gaussian dis-
tributions with covariance matrices parameterized by latent variables corresponding to
target scenes, respectively (Figure 6). It is interesting to note that the generated samples
only preserve global structures corresponding to low frequency information. Note that
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Figure 4: For each target image x, we infer its latent variable ŷ (Section 2.2) and order
the ŷjs according to their absolute values. The first rows show the cumulative sum of
the logarithm of the covariance matrix using the k most active ŷjs. The second and the
third rows show the positive and negative parts of ŷI(k)AI(k), respectively. I refers to
the order of ŷjs based on their magnitudes. This figure is best viewed in color.

the generated samples, however, do not preserve the edges present in the original im-
ages and suggests that the covariance structures in images do not necessarily preserve
contours.

4 Similarity measure based on the distribution coding model

In the previous section, we showed that the latent variables ŷ capture the correlational
information which is consistent with the visual structures of scene images and that this
representation is efficient in that it requires only a small number of variables to encode
the salient properties of scene images. In this section, we discuss how we can utilize
the correlational structures encoded in the latent variables as a scene similarity measure
and show image retrieval results based on it.

Once we train the distribution coding model and infer the latent variables for scene
images, we can develop a metric for measuring the scene similarities in terms of cor-
relational structures using the joint probability of a target scene image xt and a latent
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Figure 5: For each target image x, we show eigenvectors corresponding to the positive
values (upper row) and the negative values (lower row) of the eigenvalues.

Figure 6: Generated random samples from multivariate Gaussian distributions with the
covariance matrices parameterized by latent variables corresponding to original images.

variable ŷc of a candidate scene image xc,

p(xt, ŷc) ∝ p(xt|ŷc)p(ŷc) (4)

The metric consists of two terms; the first term indicates the level of similarity between
a target scene image and a candidate scene image in terms of correlational structures.
If two data points, xt and xc, have similar correlational structures, then xt will be
highly likely under the multivariate Gaussian distribution with the covariance matrix
determined by the latent variable for xc; thus the conditional probability of xt given ŷc,
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Figure 7: Schematic representation for p(xt|ŷ). The blue oval represents the covari-
ance matrix C(ŷ1) (Eq.3) where ŷ1 indicates the latent variable for x1. The red oval
represents the covariance matrix that captures anti-correlated x1 and x2 values. Under
the Gaussian distribution with this covariance matrix, xt will have low likelihood. The
purple oval optimized for x3 represents the positively correlated values of x1 and x2,
but to a different degree from xt

1 and xt
2. Thus, xt will have low conditional probability

under the distribution optimized for x3.

p(xt|ŷc) (Eq. 1), will be high. Consider the two dimensional example illustrated in Fig.
7. In the figure, the ovals represent the covariance matrices that are characterized by the
latent variables of the data points with the corresponding colors respectively. Namely,
the ovals represent the covariance matrices that best explains the corresponding data
points under the model. The two data points xt and xs show similar correlational
structures to x1. Thus, xt and xs are well captured by the covariance matrix defined by
ŷ1, which is the latent variable for x1. On the other hand, covariance matrices which
are optimized for data points with different correlational structures from those of xt and
xs (for instance, x2 and x3 in Fig 7) return low conditional probability values of xt and
xs.

In image space, each axis would correspond to individual pixel values of images. Note
that the representation achieves invariance to the pixel values of images as illustrated
in Fig. 7) in that the model considers xt to be more similar to x1 than x2 and x3 even
though the two are closer to xt in terms of the Euclidean distances based on pixel values.
The analogy extends to the high dimensional space. The reason we do not use p(x|ŷt)
to find similar data points to a target image xt is that data points near the origin (for
instance, xo in Fig. 7) will be well captured by any multivariate Gaussian distributions
regardless of their covariance information.

The second term in the metric, p(ŷc), favors the correlational structures that can be
described by sparse latent variables; in the case that two candidates return the same
value of the conditional probabilities of the target image given their latent variables, the
metric prefers the one that results in sparser representation, as it returns higher prior
probability values (Eq. 3).

We demonstrate the usage of the joint probability described above using the image re-
trieval task; for a target image xt, we retrieve candidate scene images from a large scene
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Figure 8: (a)–(h) Scene image retrieval results. The top left portion shows the target
scene images. The retrieved images are ordered so that the left-most columns shows
the most similar and the right-most columns show the 5 th similar candidate scene
images to the targets. From the top to the bottom rows correspond to PCD, GIST(4×4),
HOG(2×2), PHOG (3 levels), spatial pyramid of SIFT (3 levels). For (a)–(f) the target
images are from the SUN database while the target images shown in (g)–(h) are not.

image pool (we used 108,754 images in the SUN database as the pool), whose latent
variable returns the highest joint probability value with xt, or equivalently the lowest
value of −p(xt, ŷ) . We call this the probabilistic correlational distance (PCD) here-
after. In Fig. 8, we show the five most similar candidate scene images from 108,754
images retrieved with PCD, GIST, HOG, PHOG and spatial pyramid of SIFT. For GIST
and HOG, we tried three different spatial scales (1 × 1, 2 × 2 and 4 × 4) and show
the qualitatively best results. For all other representations than the distribution coding
model, we used the Euclidean distances as similarity measures. Even though the model
representation requires a small number of units to represent a scene image, the image
retrieval results are qualitatively satisfactory. The distribution coding model achieves
the efficiency by projecting scene images based on their characteristic features rather
than representing scene images with fixed number of scales and orientations. In addi-
tion, it takes approximately 0.1 seconds to retrieve the similar images to targets using
PCD which is fast enough for real-time image retrieval.
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5 Quantitative evaluation of scene similarity measures

In this section, we quantitatively evaluate the similarity measure based on the distri-
bution coding model on encoding the perceptual and the semantic similarities between
scene images.

5.1 Perceptual similarities of scene images

To investigate whether the global correlational information encoded by the distribution
coding model is consistent with the perceptual similarities between scene images, we
conducted an experiment in which subjects were asked to select candidate scene images
that were most similar to a target scene image in terms of spatial layout. In each trial,
a target image from one of 397 semantic categories of the SUN database [23] was
presented together with 25 randomly chosen candidate scene images. Subjects were
allowed to select more than one candidate images if they were equally similar to the
target images. We call the selected candidate images similar images. In the trials when
none of the candidate images were perceptually similar to the target images or when the
target images mainly consisted of objects and it was thus difficult to get a sense of spatial
layout of the scene, subjects could skip the trial. Subjects were specifically instructed to
focus on the shape and spatial layout of the scenes and to ignore non-spatial attributes
such as color or types of objects in the scenes. Candidate images were chosen only
from the same semantic categories as the target images, in order to control the difficulty
of the tasks. Without such constraints, candidate images from different scene categories
are too dissimilar to make meaningful judgements. In addition, using candidate images
from the same category prevents subjects from depending on any semantic information
to perform the task. Five subjects (one female; with normal or corrected to normal
vision; 22-33 years old) participated in the experiment. We collected 2597 trials and the
subjects selected 1.39 candidate images per trial on average (the number of candidate
images selected per trial ranged from 0 to 13). Out of 2597 trials, subjects selected more
than one similar images in 834 trials and selected zero similar images in 825 trials.

We evaluate the performances of various representations based on two criteria. The first
one is the percentage of trials in which the similar images coincided with the closest
candidate image to the target in a feature representation, the closest image. If a feature
representation is consistent with the perceptual properties of images, the closest image
will be perceived to be similar to the targets. The other criterion is the mean rank
of the similar images when all the candidates in a trial are sorted in the ascending
order in terms of the distances to the target in each representation. We assume that
similar images will be more likely to have shorter distances to the targets than others
and thus will have lower mean ranks of similar images if the distance is consistent with
perception.

We use PCD introduced in the previous section as the scene similarity measure for the
distribution coding model. For other representations, the Euclidean distances between
the features extracted from images were adopted as the similarity measures. As we
trained the distribution coding model and ICA on images of 32 × 32 resolutions, we
downsampled the original images to 32× 32 pixels and then extracted the correspond-
ing features. For all other state-of-the-art representations, we extracted the features
from images of 128 × 128 resolutions. As reported in Table 1, PCD shows the most
consistencies with the perceptual experiment in terms of both criteria. Note that the
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percentage criterion only takes into account the closest images whereas the mean ranks
criteria considers all the similar images within a trial.

Table 1: Performance evaluation of various representations for the perceptual experi-
ment on scene layout similarities. We show detailed performances for subcategories
of scene images. IN, Out-Nat and Out-Man correspond to Indoor, Outdoor natural and
outdoor manmade scenes, respectively.

Feature Resolution Percentage (%) Mean Ranks

Total IN Out-
Nat

Out-
Man Total IN Out-

Nat
Out-
Man

PCD 32×32 19.3 18.0 22.5 17.2 7.01 5.91 7.16 6.93
GIST(4×4) 128×128 16.3 16.0 17.8 15.2 10.7 9.67 10.4 11.0

ICA 32×32 10.4 8.00 12.7 8.92 11.7 10.7 11.1 12.2
HOG(2×2) 128×128 15.1 18.0 16.8 13.8 10.9 9.70 10.9 10.9
PHOG(L=3) 128×128 16.1 20.0 18.4 14.3 11.0 11.0 10.9 11.0
SIFT(L=3) 128×128 15.4 12.0 16.0 15.2 9.78 9.35 9.88 9.72

5.2 Perceptual spatial layouts

In the previous section, we discussed that the distance measure between scene images
based on the density coding model predicted the similarity between scene images based
on their spatial layouts. Here, we investigate the degree to which the latent representa-
tion based on the correlational structures of images is effective at predicting perceptual
spatial layout properties.

Ross and Oliva [19] gathered ground truth human ratings of openness, mean depth and
perspective in 1 to 6 scale (Figure 9). Openness of a scene refers to the quantity and
location of boundaries in a scene. Openness 1 represents scenes with a large portion
of unobstructed sky and dominant horizontal lines and openness 6 represents closed
scenes. Mean depth refers to depth in a global sense related to the physical size of a
scene. Scenes that are close by were rated with mean depth 1 and those which were
far from the camera were rated with mean depth 6. Perspective means the degree of
expansion in a scene which can be estimated by the angle between the camera and the
perceptually dominant vanishing points in an image. Scenes with perpendicular camera
angle to the vanishing points and thus have strong convergence between the parallel
lines were rated with perspective 1 and scenes with surfaces at fairly uniform distances
from the camera with perspective 6.

We investigate if the latent variables that encode the covariance information of scene
images are predictive of the perceptual spatial layout ratings. We first infer the la-
tent variables y (Eq.2) for the scene images with associated perceptual spatial layout
ratings. Then, we fit linear regression functions for predicting individual perceptual
ratings from the latent variables. We used 10-fold cross validation procedure for evalu-
ating the test results. As the dataset consist of natural and urban scene categories, we fit
the linear regression functions to separate categories and also to the total dataset (Table
2). We compare the latent variables y to GIST, HOG, PHOG, spatial pyramids and
ICA coefficients. The latent variables y demonstrates superior performance to all other
representations for predicting openness and depth ratings for natural and urban scenes
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Figure 9: Representative scene images of the scene layout property ratings from [19].
See text for detailed explanation of the rating scale for each scene layout property.

each. For the perspective, which was reported to be hard to estimate for the subjects
and also less consistent that depth and openness ratings, the latent variables y showed
comparable prediction error to GIST, HOG and PHOG.

Table 2: RMSE of linear regression functions for predicting perceptual spatial layout
ratings. Urb and Nat correspond to urban scenes and natural scenes, respectively.

Feature Depth Openness Perspective
Urb Nat Total Urb Nat Total Urb Nat Total

y (32×32) 0.59 0.70 0.66 0.80 0.92 0.88 1.20 1.18 1.25
GIST (4×4, 128×128) 0.63 0.71 0.67 0.93 1.00 0.96 1.22 1.21 1.21

ICA (32×32) 0.71 0.84 0.77 1.21 1.32 1.23 1.46 1.28 1.36
HOG (4×4, 128×128) 0.65 0.75 0.72 1.02 1.08 1.08 1.23 1.19 1.29
PHOG(L=3, 128×128) 0.65 0.76 0.70 0.92 1.03 1.23 1.21 1.26 1.24
SIFT(L=3, 128×128) 0.80 0.82 0.71 0.91 0.97 0.84 1.50 1.60 1.34

6 Conclusion

We trained the distribution coding model to learn the correlational information on the
whole scene images. The model parameters show global correlational structures reflect-
ing the regularities found in the scene images. Adaptive representation to the charac-
teristic statistics allows encoding of the data with a small number of latent variables. In
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addition, the experiment for perceptual scene image similarities suggest that the model
representation is a good scene image descriptor with significantly greater consistency
with perceptual properties of the global structures in scene images. The probabilistic
correlational distance can be used for image retrieval systems. Also the latent vari-
able encoding the covariance information is significantly more predictive of perceptual
spatial layouts (depth and openness) of scene images.

Our approach can be extended to larger size images for encoding more detailed local
information by first learning the correlational structures on local patches and integrating
the local information over space. Also, the probabilistic distance measure introduced
in this paper can be utilized not only for whole image retrieval but also for finding
local interest matching points between images. As the model represents images or
patches based on their adaptive representation rather than fixed number of scales and
orientations, it could find match points more accurately especially in natural scenes
in which points and lines are not defined by as high contrasts as indoor or manmade
scenes. Extending the model training to images describing mainly of objects can also
be useful for understanding object invariances under diverse viewing angles or nonrigid
objects. Lastly, the analysis can be applied to face recognition system.
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