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Abstract 

The advent of information technology has enabled the collection of 
large scale network data. This presents an exciting opportunity for 
researchers to understand consumer behavior in a social network 
environment. In this study, we model the interdependence of product 
adoption decisions among consumers in a social network. We 
develop a Gaussian Markov Random Field (GMRF) model to 
characterize the correlation of latent product preferences among 
connected consumers. The GMRF approach has two desirable 
properties: first, it enables the modeling of arbitrary network 
topology; second, it encapsulates the concept of conditional 
independence which leads to a parsimonious specification of the 
correlation among consumers. Applying our model to a dataset 
obtained from a large Asian telecom company, we find strong and 
consistent evidence of positive correlation among connected 
consumers in their product adoption decisions. We find that the 
correlation is stronger between consumers who communicate more 
frequently. We evaluate the performance of our model on predicting 
consumer adoption, and find that its precision is almost twice that of 
a naïve model; it outperforms commonly used logistic regression-
based benchmark models by 10-15%; and it outperforms support 
vector machine-based benchmark models as well. To our best 
knowledge, this study is the first to use GMRF to empirically model 
and estimate consumers’ latent product preferences.  

Keywords: Markov Random Field, Social Network, Homophily, 
Product Adoption, Forecast  



1. Introduction 
With the advent of information technology, large scale social network data is increasingly 
becoming available. This presents an exciting opportunity for social science researchers 
to leverage social network theory and machine learning techniques to investigate issues 
with significant practical implications. In this study, we analyze a large-scale telecom 
dataset, where we model the interdependence of product adoption behaviors of 
consumers of a major Asian telecom company, by leveraging the social network structure 
inferred from their communications.  

Specifically, we develop a model to quantify an effect that has long been recognized in 
social networks, namely homophily (McPherson et al 2001). The theory of homophily 
indicates that people tend to connect, or form relationship, with other people with similar 
characteristics. Consequently, people who are connected in a social network tend to have 
similar traits. Consequently, their decisions, such as on whether to adopt a product, 
should be inter-dependent. Modeling such interdependence is not trivial, however, 
especially in social networks with arbitrary connection structures. In this study, we 
propose a model that uses Gaussian Markov Random Field, or GMRF, to quantify such 
interdependence.  

GMRF is a specific type of Markov Random Field (MRF) model. MRFs have been used 
extensively in temporal and spatial analysis as well as image analysis (Rue and Held 
2005). A few characteristics of GMRF make it especially attractive to study the impact of 
social networks on activities. These characteristics include its ability to model graphs of 
arbitrary topology, and the conditional independence property it elegantly encapsulates. 
Furthermore, model parameters of GMRF also have straightforward interpretations; this 
makes GMRF particularly attractive to social science researchers. Considering this, we 
develop a GMRF model to analyze consumers’ product adoption behavior in a social 
network environment. Extensive research exists on the formation and implications of 
social networks. However, to our best knowledge, GMRF has not been used in these 
studies, especially on modeling consumer decisions. Our study thus contributes to the 
literature by introducing and evaluating this approach. 

We use a unique dataset obtained from a large Asian telecom company, covering all cell 
phone consumers in a major city. The dataset contains the detailed phone call records of 
the consumers over a six-month period, and the purchase information of a product called 
caller-ringback tone (CRBT). In our study, we infer the social network structure using the 
phone call record, and model the adoption of CRBT by each individual consumer using a 
binary Probit model. In contrast to a standard Probit model which treats each consumer as 
independent, we consider the product tastes of individual consumers as being drawn from 
a Gaussian Markov Random Field, so that the product tastes, and in turn the adoption 
propensities of connected consumers, are correlated. The neighborhood structure of the 
GMRF is defined by social network connections inferred from the call data. Given the 
theory of homophily in social networks, we expect such correlations to be positive. We 
adopt a hierarchical Bayesian specification, and estimate the model using a Markov-
Chain Monte Carlo (MCMC) method. Since the communication network is only an 



approximation of the true social network, we impose a threshold in identifying 
connections, i.e. two consumers are considered as connected only if the number of phone 
calls between them reaches a threshold value. We vary the threshold values to ensure 
robustness.  

The estimation of our base model reveals significant and positive conditional correlation 
in product tastes among consumers who are connected. This confirms the existence of the 
homophily effect. Communication records are only an approximation of social 
connections, as they contain noise arising from non-social phone calls. With higher 
threshold values, more noise will be filtered out, leaving mostly true social connections. 
As we increase the threshold value, the correlation estimated from our model becomes 
stronger. This indicates that the actual correlation among consumers who are indeed 
connected may be even higher. In an extended model, we find the conditional correlation 
goes up with the communication frequency between the consumers. This further shows 
that not only the existence of ties, but also their strength, determine the extent to which 
consumers’ tastes are correlated. Our estimate also shows that, somewhat unexpectedly, 
the precision of the estimated product taste is lower for consumers who are connected 
with more consumers.  

To evaluate the predictive ability of the model, we estimate the model using 80% of the 
consumers, and apply the estimates to the remaining 20% of the consumers to predict 
their purchase decisions. We compare the predictive performance of our proposed models 
with a few benchmark models. These benchmark models use characteristics of individual 
consumers as well as social network measures, and make predictions using logistic 
regressions (LR) or support vector machine (SVM) approaches. We find that our 
proposed models significantly outperform all LR-based benchmark models, where the 
precisions of our proposed models are 10-15% better than the best benchmark model. We 
find that our proposed models perform better than the SVM-based benchmark models as 
well. Furthermore, the parameters of our models all have straightforward interpretations, 
while SVM-based models, especially non-linear ones, do not have such interpretability. 
Our modeling approach thus not only is parsimonious, but also has high potential to be 
applied to practical settings. 

A rich literature on social and economic networks exists in fields such as sociology 
(Wasserman and Faust 1994), economics (Jackson 2003), marketing (Braun and Bonfrer 
2010), and computer science (Kempe et al. 2003). Both the formation and the implication 
of networks have been the focus of existing studies. Literature on the formation of 
networks uses statistical and economic models. Jackson (2003) provides a comprehensive 
survey of economic models of network formation, where connections are in general 
formed according to their payoffs to related parties. Alternatively, exponential random 
graph models (Holland and Leinhardt 1981, Frank and Strauss 1986, Robins et al. 2007) 
have been developed, where the existence of connections is captured using probabilistic 
models. A key concept permeating network formation studies is homophily (McPherson 
et al. 2001), which states that people tend to associate with other people who are similar. 
This concept has been the focus on studies on community detections (Copic et al. 2009). 



A large stream of literature also focuses on the implications of networks, since the reason 
to investigate networks is often to inform on specific characteristics of interest, such as 
opinion formation, diffusion, decision interdependence, etc. The impact of the network 
can be reflected either actively, where the network directly effects decision processes 
such as opinion formation (Golub and Jackson 2010), or passively, where the network 
informs decision makers, such as marketers, to predict consumer adoptions based on their 
associations (Hill et al 2006). Since our study focuses on understanding the 
interdependence of consumers’ adoption decisions in a network environment, it falls into 
this category. There is a rich literature in this category. Choi et al. (2008) studies the 
imitation effect on demand propagation induced by geographic and demographic 
proximity across regions; Iyengar et al (2010) studies the effect of contagion on new 
product introduction; Hill et al. (2006) uses consumer network information to improve 
target marketing, with the idea that someone who is connected to an adopter is also likely 
to be an adopter. Our study is also related to a large stream of work on network based 
classifications, as predicting whether a consumer will adopt can be considered as a 
classification problem. Macskassy and Provost (2007) survey the research in this area, 
while providing a toolkit based on existing methods. These methods typically base 
classification on node specific attributes and attributes of related nodes, using Naïve 
Bayes or Logistic Regression methods or weighted averaging (e.g. Macskassy and 
Provost 2003). Our study is similar to these studies in that we also leverage the same type 
of information. We differ from these studies in that we model the interdependence as 
correlated latent tastes using Gaussian Markov Random Field, instead of using explicit 
regressions over or weighted averages of network neighbors’ decisions. 

GMRF is a specific type of Markov Random Field (MRF) model (Kindermann and Snell 
1980). MRFs have been applied extensively in temporal and spatial analysis as well as 
image analysis (Rue and Held 2005). A few characteristics of GMRF make it especially 
attractive to study the implication of networks. These characteristics include its ability to 
model graphs of arbitrary topology, and the conditional independence property it 
elegantly encapsulates. Furthermore, model parameters of GMRF have straightforward 
interpretations. Given these features, GMRF has been applied to analyze genome 
networks lately (Wei and Li 2007), and in network mining studies (Richardson and 
Domingos 2002). Richardson and Domingos (2002) studies the effect of viral marketing 
through mining connections at knowledge-sharing sites, where adoption behavior is 
modeled using MRF. It is very closely related to our study. However, the study specifies 
the network effect as a simple average of neighbors’ decisions, while we model it as 
correlated latent tastes, and statistically estimate the extent of correlation from data. 

The rest of the paper is organized as follows: in section 2 we describe the dataset used in 
our study; we then discuss our model in detail in section 3; section 4 explains the 
estimation approach; section 5 discusses the results of model estimation, as well as the 
predictive performance of the proposed models and benchmark models; finally, we 
conclude in section 6.   



2. Data 

The dataset used in this study is obtained from a large Asian telecom company. The data 
covers all mobile phone customers in a major city for six months. The dataset contains 
detailed phone call data. The information contained in each communication record 
includes the customer who placed the call, identified by the phone number, the customer 
who was called, the timestamp of the phone call, and the duration of the call. Certain 
demographic information, including gender and age, is available for each customer. Also 
contained in the dataset are the purchase records of a product called caller-ringback-tone 
(CRBT). This product is popular in many Asian countries. The product works in a way 
similar to but different from that of a ringtone: if a consumer A has purchased a CRBT, 
and consumer B calls A, then consumer B will hear the tone played over the phone before 
A picks up. In our study, we use the phone call records to identify connections among 
consumers, and we model the adoption decisions of CRBT by leveraging the social 
network structure constructed this way.  

Table 2-1: Descriptive Statistics 

Mean SD Min Max
Gender Male 218017 Female 13399
Age 40.56 13.67
Number of Consumers Called by Each Consumer 13.73 22.9 1 2858
Number of Phone Calls Per Consumer 410.4 942.7 1 59016

Number
Adoption 
Percentage

Number of Consumers 231416
Number of Consumers Who Adopted CRBT 79505 34.36%
Number of Consumers with Neighbors Who Adopted CRBT 200970
Number of Such Consumers Who Adopted CRBT 73623 36.63%
Number of Consumers with 3+ Neighbors Who Adopted CRBT 126294
Number of Such Consumers Who Adopted CRBT 53904 42.68%
Adoption Percentage by Gender Male 34.50% Female 31.89%  

We first look at the descriptive statistics, which are reported in Table 2-1. There are a 
total of 231,416 consumers in the dataset. The average age of the consumers is 40.56. 
Each consumer on average called 13.73 other consumers over the six month period, 
placing an average of 410.4 phone calls. There is a wide dispersion on number of phone 
calls and the number of other consumers called, where the maximum are 59,016 and 
2,858, respectively. The consumers are predominantly recorded as male, although this 
may not be an accurate reflection of reality, since those who purchase the phone may be 
different from those who use it (e.g. husband opens an account for wife to use).  

Among all the consumers, there are 79,505 who have adopted CRBT, leading to an 
adoption percentage of 34.36%. To further look into the adoption decisions, we calculate 
the adoption percentage by gender. As shown in the table, the adoption percentage of 
male consumers is 34.50%, slightly higher than that of female consumers, 31.89%, 
though the difference is minor. We then look at the adoption decisions of the age groups, 
shown in Figure 2-1. Most of the consumers are between ages of 20 and 60. The adoption 
percentage, however, does not exhibit a clear pattern based on age. The age group 20-29 



has the lowest adoption percentage, 29.76%, while the age group younger than 20 has the 
highest adoption percentage, 42.14%.  

Figure 2-1: CRBT Adoption by Age 
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Neither gender nor age appears to affect CRBT adoption decisions greatly. To better 
understand adoption, we turn to characteristics related to the consumer network. Figure 2-
2 plots the adoption decision by consumers’ “degrees”. The degree of a consumer is 
simply the number of other consumers who communicated with the consumer over the 
phone over the six month period. Two features are evident from the chart. First, most 
consumers communicate with only a very small number of other consumers – more than 
80% of consumers communicated with less than 20 other consumers over the six month 
period (the left Y-axis is in logarithm scale). Second and more importantly, the adoption 
percentage goes up with degree: for consumers with degrees less than 10, the adoption 
percentage is 27.65%; whereas for the 2087 consumers who have degrees of 90 or higher, 
59.94% adopt the product. It is thus quite promising to use network characteristics to 
inform on adoption decisions.  

Figure 2-2: CRBT Adoption by Degree 
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Incorporating the degree of a consumer, however, is only the first step in this direction. 
To better leverage information of the network, we should also look at the decisions 
among connected consumers. Visualization is an effective way to discern patterns, 
especially for studies related to networks. With hundreds of thousands of consumers, 
however, the size of the dataset poses a significant challenge. Figure 2-3 is the graph 



constructed for 1000 consumers selected from the dataset through snowball sampling. 
Each node in the graph represents a consumer, and is color-coded based on his adoption 
decision. The connections between nodes represent the existence of phone calls between 
the corresponding consumers. Even for this small sample, with less than 1% consumers 
of the entire dataset, the connection structure is already very complex (visualizing the 
entire dataset would require specialized tools). Nonetheless, some observations can be 
made. As shown in the graph, some consumers seem to form tightly connected subgroups, 
and similar adoption decisions are apparent in some of these groups. For example, both 
group A and group B in the graph consist mostly of non-adopters. In contrast, group C 
consists primarily of adopters. This suggests that adoption decisions of connected 
consumers are likely correlated. To obtain further evidence, we calculated the number of 
consumers who have communicated with at least one other consumer who has adopted 
CRBT, the result of which is presented in Table 2-1. There are 200,970 such consumers 
with at least one neighbor who adopted. Among them, 73,623 consumers also adopted 
CRBT themselves. This implies a conditional adoption percentage of 36.63%, slightly 
higher than the population level average. Furthermore, there are 126,294 consumers who 
each have at least three neighbors who adopted CRBT. Among them, 53,904 consumers 
also adopted themselves. This indicates a conditional adoption percentage of 42.68%, 
significantly higher than that of the population. These descriptive statistics are further 
evidence that consumers’ decisions to adopt CRBT are indeed correlated, and provide 
empirical motivation to our study. Such patterns, it should be pointed out, are not 
universal. As shown in Figure 2-3, group D is evenly divided on the adoption decisions, 
even though they are fairly closely connected. In-depth modeling is thus needed to further 
our understanding.  



Figure 2-3: Call Graph and CRBT Adoption – 1000 Consumers 
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3. Model 

We now discuss the model used in our study. There are I  consumers, each indexed by 
Iii ..1, = . Each consumer has a vector of observed characteristics, denoted as iX . This 

vector includes gender, age, and degree. 

Each consumer in the model is connected with a subset of other consumers. A connection 
is a two-way relationship, i.e. if A is connected to B, then B is connected to A. Therefore, 
the connections can be collectively represented using an undirected graph, the adjacency 
matrix of which is denoted as: 

(1)  ][ ijcC =   

In equation (1), C  is an II ×  matrix, where: 

(2)  
⎩
⎨
⎧

=
otherwise0

connected are  and  consumers if1 ji
cij  



Each consumer makes a decision on whether to adopt a product. In our dataset, the 
product is the CRBT. Denote the decision made by consumer i  as iD : 

(3)  
⎩
⎨
⎧

=
otherwise0

product  theadopts  consumers if1 i
Di  

We model the adoption decision using a binary Probit formulation: 

(4)  )0Pr()1Pr( >=== ii UD , where 

(5)  iiii XU εβα ++=  

In equation (5), β  is the parameter that captures the importance of each observed 
characteristics in the adoption decision. )1,0(~ Niε  is assumed to be an i.i.d. random 
disturbance, the variance of which is normalized to 1 for identification of the Probit 
model.  

Of most interest in the model is the parameter iα . This is the individual-specific, 
unobserved product taste parameter. The focus of this study is to leverage the network 
structure in understanding and predicting people’s behavior. We do so by modeling iα  
using a Gaussian Markov Random Field (GMRF). 

3.1 Gaussian Markov Random Fields (GMRF)  

The origin of Markov Random Fields, or MRF, (Kindermann and Snell 1980) can be 
traced back to the Ising model. Over the years, it has received widespread use in fields 
such as physics, economics, and sociology. A specific case of MRF, Gaussian Markov 
Random Fields (GMRF), is defined as follows (Rue 2008): 

Definition (GMRF): A random vector T
nxxx ),...( 1=v   is called GMRF w.r.t. the 

undirected graph )},..1{( EnVG ==  with mean μv  and precision matrix 0>Q  if and 
only if its density has the form: 

))()(
2
1exp(||)2()( 2/12/ μμππ vvvvv −−−= − xQxQx Tn  

And  

jiEjiQij ,,},{0 ∀∈⇔≠  

In another word, a GMRF is a multivariate-normal vector with the connection structure 
encoded by its precision matrix, so that non-zero off-diagonal elements in the matrix 
correspond to the existence of a connection between the two corresponding variables. 



A seemingly simple formulation, GMRF has two desirable properties for modeling 
interdependence. The first is its ability to model arbitrary connection topology, as there is 
a simple correspondence between connections encoded in an adjacency matrix and non-
zero off-diagonal element in the precision matrix of a GMRF. 

The second desirable property of GMRF is the concept of conditional independence (CI) 
it encapsulates: if i  and j  are not directly connected, then conditional on every other 
variables, ix  and jx  are independent: 

jiQxxx ijijji ,,0| ∀=⇔⊥ −  

The property of CI can be easily seen from the density of the multivariate normal, where 
ix  and jx  can be factorized conditional on other elements if 0=ijQ . The above two 

features make GMRF especially attractive for modeling the interdependence in consumer 
decisions. With this setup, we achieve the conditional independence property: if i  and j  
are not directly connected, then their characteristics, conditional on the characteristics of 
all other consumers in the network, are independent.  

2 31
 

To further illustrate conditional independence, consider the graph above. There are three 
consumers, with consumer 2 connected with both 1 and 3, while consumers 1 and 3 are 
not directly connected. In this group, we can expect the characteristics of 2 to be 
correlated with both that of 1 and that of 3 due to homophily. Because of this, we can also 
expect the characteristics of consumers 1 and 3 to be correlated. Since the correlation 
comes from consumer 2, however, we can expect that once the characteristic of 2 is 
known, those of 1 and of 3 should be independent. This property is elegantly 
encapsulated in the GMRF formulation. 

Specific to our study, we assume that the intrinsic product taste parameters of all 
consumers are collectively randomly drawn from a GMRF:  
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In addition to the standard multivariate normal setup, the special property of GMRF is 
encoded in the precision matrix ][ ijqQ = , where 0=ijq  if 0=ijc . That is, the off-
diagonal element of the precision matrix is zero for any pair of consumers who are not 
directly connected. 

3.2 Parameterization and Interpretation of the Precision Matrix 



In addition to enabling the modeling of arbitrary topology and encoding conditional 
independence, GMRF also has desirable interpretation properties. We now further detail 
the parameterization of our model and explain the interpretation. 

We parameterize Q  as follows: 

(7)  
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Note: the off-diagonal element is 0 if the two nodes are not directly connected 

This formulation is driven by the interpretation of GMRF. The precision matrix 
IjiijqQ ..1,][ ==  of a GMRF has straightforward interpretations. Each diagonal element 

represents the precision (inverse of variance) of the corresponding variable conditional on 
all other variables: 

(8)  iiii q=− )|(Precision αα  

Meanwhile, the conditional correlation between each pair of variables is the negative of 
the corresponding off-diagonal element divided by the square root of the two 
corresponding diagonal elements: 

(9)  jjiiijijji qqq /)|,(Cor −=−ααα  

Given this, the parameter r  in the precision matrix in our model is the conditional 
correlation of iα  and jα , between two consumers i  and j  who are directly connected, 
while κ  is the precision of iα  conditional on the intrinsic product taste of all others.  

In addition to the direct interpretation of the precision matrix, the covariance matrix 

(10)  1−=Σ Q  

can also be interpreted normally, with the off-diagonal element of the matrix representing 
the (unconditional) covariance between the pair of consumers. 

3.3 Alternative Specifications 

The base model discussed above is a parsimonious formulation that incorporates the key 
features of GMRF. When applied to actual datasets, it could be extended to include 
additional properties. We now discuss two extensions of the base model. We will refer to 



the base model as Model B, while these two alternative models as Model AI and Model 
AII, respectively. 

Note that in the base model, we specify the same conditional precision κ  and correlation 
r  parameters for all nodes and pairs. In the first alternative model, model AI, we relax 
the assumption on the precision parameter by making it depend on the node degree: 

(11)  
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In this formulation, id  is the degree of node i , i.e. the number of consumers to whom 
consumer i  is connected. We make this extension because intuitively, the more 
connections we know about a consumer, the more we should know about her, hence 
higher precision. That is, we expect nm κκ >  if nm > . To preserve the parsimony of the 
model, we specify the following functional relationship between the conditional precision 
and the degree: 

(12)  )1log(10 +⋅+= dd κκκ  

That is, the conditional precision is a linear function of the log of the node degree. 

All relations are not the same, with some stronger or closer than others. Considering this, 
in our second model extension, Model AII, we make the conditional correlation 
parameter depend on the observed closeness between the two consumers. 
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To account for the closeness, we specify the correlation as a function of the number of 
communications between the two consumers: 

(14)  )log(10 ijij Callrrr ⋅+=  

That is, the conditional correlation is a linear function of the log of the number of phone 
calls between the two consumers. 



4. Estimation 

The base model is parameterized at the population level with },,,{ κβα r=Θ . Given the 
observed connection structure C , and individual characteristics IiiXX ..1}{ == , the 
likelihood of observing the adoption decision IiiDD ..1}{ ==  is: 

(15) ∫∫∫ ∏
=

=Θ
I

II

I

i
iii ddrCLXDLXCDL

αα

αακαααβα
...

11
11

..),,,|..(),,|(),,|(  

Unfortunately, this likelihood function is computationally infeasible to compute, as it 
involves high-dimensional integration and calculating the density of a high-dimensional 
multivariate distribution. To address these two problems, we resort to a hierarchical 
Bayesian setup, where we estimate the model parameters together with the individual 
level propensity parameters, i.e. Iαα ..1 , using Markov-Chain Monte Carlo (MCMC) 
method. Furthermore, to address the issue of computing the high-dimensional normal 
density, we follow a pseudo-likelihood approach (Besag 1986) for computing the model 
parameters.  

4.1 MCMC Draws 

Specifically, we take MCMC draws in a hybrid Metropolis-Gibbs fashion as follows: 

4.1.1 Draw iα : 

(16) ),,,|(),,,|(),,,,,,,|( )( iiiiiNiiiii DXDLrCDXrf βακαααϕκαβαα ∝−  

In equation (16), (.)ϕ  is the conditional density of a normal random variable given the 
other random variables; )(iN  is the neighbors of i  as encoded in C  – the other 
consumers are conditionally independent from i  given )(iN ; (.)L  is the Probit-
likelihood of the adoption decision given the parameters and data. We sample iα  through 
Metropolis with random walk, where the random walk step is taken from normal 
distribution )05.0,0(N . 

4.1.2 Draw α : 

(17) ))(),()(()..1:|( 1

1

1 −

=

− +++∝= ∑ ααα ααφαα VIVVIIif
I

i
ii  

In equation (17), (.)ϕ  is the density of normal distribution. We choose diffuse conjugate 

hyper-priors 0=α  and 10000=αV  

4.1.3 Draw β : 



(18) ∏
=

∝=
I

i
iiiiiii DXDLDXIif

1

),,,|()(),,..1:|( βαβπαβ  

We choose a diffuse improper prior of uniform distribution for each element in β . We 
sample each element in β  through Metropolis with random walk, where the random 
walk step is taken from normal distribution )05.0,0(N . 

4.1.4 Draw r : 

(19) ∏
=

∝=
I

i
iNii rrCIirf

1
)( ),,,|()(),,,,..1:|( καααϕπκαβα  

We choose a flat prior for r . We sample r  through Metropolis with random walk, where 
the random walk step is taken from normal distribution )05.0,0(N . 

4.1.6 Draw κ : 
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We choose a flat prior for r . We sample r  through Metropolis with random walk, where 
the random walk step is taken from normal distribution )05.0,0(N . 

The estimation of the two extended models is very similar to that of the base model, with 
slight modifications of the MCMC draws to incorporate the new functional form. Flat 
priors are used for parameters 0κ , 1κ , 0r  and 1r . 

5. Empirical Results 

In this section, we discuss the empirical analysis of applying the model and estimation 
methods to the mobile phone dataset. We first discuss an important step to operationalize 
the model, namely identifying the connection structure. We then present the estimation 
results and examine predictive performance of the proposed models. 

5.1 Identifying Connections 

Our model assumes the knowledge of social connections among consumers, yet what is 
actually contained in the dataset is the communication network. Ideally, a generative 
model of the communication network should be used. That is, it is best to have a 
statistical model which specifies the distribution of a certain true underlying 
characteristics of people, and the likelihood they communicate with one another given 
their respective characteristics. An example is the latent space formulation (Hoff et al. 
2002). Such a generative model, however, has two important difficulties in our setting. 
First, existing generative models, such as latent space approach, cannot be easily scaled 
to networks of large size, as estimating such a generative model minimally calls for 



repeatedly computing the likelihood of each edge, which is of the order )( 2nO , where n  
is the number of nodes in the networks. Second and more importantly, existing generative 
models mainly focus on explaining the communication network alone, instead of drawing 
implications from the network structure, e.g. understanding individual purchase behavior 
as in our study. It is unclear how a latent characteristics approach, which is of dyadic 
nature, can be extended to modeling individual behaviors. For example, when using the 
latent space approach, the actual coordinate of a point in the latent space is of no meaning; 
only the distance between two points matters. However, to explain purchase behavior we 
need a generative model where the coordinates of points are interpretable. 

Considering this, we use the communication networks to approximate the underlying 
social network. Since it is possible that the data contains random phone calls among 
people who are not closely related, we use a threshold approach, by considering two 
people connected only if the number of times they communicated with each other reaches 
a threshold. The setting of the threshold value is a balance between precision and recall: 
setting a low threshold would admit connections that are actually non-social phone calls, 
while setting a high threshold would drop true social connections between two people 
who do not communicate frequently. To ensure robustness, we vary the threshold values 
and examine the sensitivity of results to such thresholds. 

5.2 Estimation Result 

We now discuss the result of the model estimation. We randomly choose 80% of the 
consumers for estimation, leaving the remaining 20% to evaluate predictive performance. 
Since our model is a static one, this random partition is used to approximate the situation 
where a company first learns from existing customers, then applies the model to make 
prediction for new customers. The result is generated from taking 10,000 MCMC draws, 
with the first 5,000 discarded as the burn-in draws. 

The result for the base model, Model B, is presented in Table 5.2-1. We tested six 
different threshold values for identifying connections. In the case of the lowest threshold, 
we consider two consumers as connected as long as there has been at least one phone call 
between them. In the case of the highest threshold, we consider two as connected only 
when they have called each other at least 20 times. As the table shows, both κ , the 
conditional precision parameter, and r , the conditional correlation parameter, are highly 
statistically significant (the standard deviations of the draws are quite low for both 
parameters, as there are hundreds of thousands of observations). The conditional 
precision parameter κ  is estimated to be quite similar across all threshold values.  

The conditional correlation parameter r  is positive for all threshold values. This clearly 
shows that the product tastes of connected consumers are positively correlated. This 
confirms the motivation of the model, and shows there is potential to identify likely 
adoption targets based on social network information. Furthermore, the result in table 
5.2-1 shows that as threshold value increase, this conditional correlation increases 
significantly: from 0.0225 for threshold value 1 to 0.0595 for threshold value 20, a 164% 
increase. This shows that identifying connection is important for social network based 
inferences. When threshold value is low, many random phone calls will be picked up as 



representing connections, and such noise dilutes the correlation between consumers who 
are truly connected. As threshold value goes up, more noise will be filtered out, leaving 
mostly true connections, and the estimated correlation becomes stronger.    

Table 5.2-1: Parameter Estimation – Model B 

Mean SD Mean SD
1 0.0991 0.00036 0.0225 0.00012
3 0.0978 0.00064 0.0303 0.0004
5 0.0964 0.00044 0.0385 0.00072
8 0.0951 0.00059 0.0464 0.00075

10 0.0952 0.00074 0.0471 0.00088
20 0.0934 0.00051 0.0595 0.00104

rκThreshold

 

The result for the first alternative model, Model AI, is presented in Table 5.2-2. This 
model extends the base model by making the conditional precision depend on node 
degree. The motivation for this extension is that as more neighbors of a consumer are 
known, we should know more about the consumer, i.e., the condition precision should be 
higher. Interestingly, however, we see that the coefficient for the linear parameter, 1κ , 
has a negative sign for all threshold values. This means the conditional precision is lower 
for consumers who have more connections. An explanation is that those consumers who 
are more connected, and more active, have higher variation in their tastes for the product. 
Thus although more of their neighbors are known, it is not enough to pinpoint their taste 
with higher precision. An in-depth understanding of this is in interesting topic for further 
research. In this model specification, we again see positive conditional correlation for all 
threshold values, and that the correlation goes up with threshold value.  

Table 5.2-2: Parameter Estimation – Model AI 

Mean SD Mean SD Mean SD
1 0.129 0.0011 -0.013 0.00031 0.0227 0.00038
3 0.115 0.00093 -0.0097 0.00037 0.03487 0.0006
5 0.113 0.00153 -0.0094 0.00061 0.03912 0.00079
8 0.108 0.0011 -0.008 0.00075 0.0469 0.00088

10 0.1043 0.0015 -0.0063 0.00084 0.0536 0.00094
20 0.101 0.0016 -0.0054 0.00091 0.0607 0.0012

rThreshold κ 0 κ 1

 

The result for the second alternative model, Model AII, is reported in Table 5.2-3. In this 
extension, the conditional correlation parameter is defined to be a function of the strength 
of the ties, measured using the number of calls between the two consumers. As the result 
shows, the linear parameter, 1r , is positive and statistically significant for all threshold 
values. This shows that in additional to the existence of a connection, the strength of the 
tie also indicates the extent to which the two consumers are correlated in their tastes. Two 
consumers who are more strongly connected, indicated by their more frequent 
communications, have higher correlation in their product taste. In this table, we again see 



that the conditional correlation go up as the threshold value goes up, indicating it is 
important to filter out noise in the data.   

Table 5.2-3: Parameter Estimation – Model AII 

Mean SD Mean SD Mean SD Mean SD
1 0.129 0.0011 -0.0127 0.0004 -0.0013 0.000832 0.0128 0.0004
3 0.117 0.0008 -0.0099 0.0004 -0.021 0.0022 0.0183 0.0007
5 0.11 0.0012 -0.0078 0.0006 -0.025 0.0034 0.0199 0.001
8 0.1077 0.0016 -0.0074 0.0008 -0.0476 0.0036 0.0253 0.0009

10 0.1051 0.0011 -0.0063 0.0006 -0.0444 0.0047 0.0242 0.0012
20 0.0994 0.0014 -0.004 0.00087 -0.056 0.0061 0.0283 0.0014

r 1Threshold κ 0 κ 1 r 0

 

In summary, the estimated results of the three models for various threshold values 
confirm the correlation in product taste between the consumers who are connected. Such 
correlation increases as we increase the threshold value for identifying connections, as 
more noise is filtered out with higher threshold values. Furthermore, the correlation is 
stronger for consumers who communicated with each other more frequently, so the 
strength of the tie also matters in addition to its existence. 

5.3 Predictive Performance 

We now evaluate the predictive performance of the model. From marketer’s perspective, 
it is important to accurately evaluate a consumer’s likelihood to adopt, to improve the 
effectiveness of target marketing efforts. We perform this evaluation by randomly 
choosing 80% of the consumers as training sample for estimation. We then apply the 
estimated model on the remaining 20% of the consumers to predict their adoption. The 
individualized prediction comes from the knowledge of their connections with the 
customers in the training dataset. This is illustrated in Figure 5.3-1. We exclude 
consumers who are isolated, i.e. those who are not connected to any other consumers. 
Since our objective is to leverage social network knowledge, isolated consumers are 
irrelevant to our study. The number of remaining test cases is reported in Table 5.3-2. 



Figure 5.3-1: Dividing Training and Testing Data 

Estimation Testing  

We perform two types of predictions. In the first, we predict for each consumer in the 
testing dataset based on its estimate alone. That is, we predict that the consumer will 
adopt if the model calculates an adoption probability higher than 0.5. In the second, we 
follow a “top-k” approach, by predicting that a fixed number of consumers, aN  will 
adopt. To do this, we rank consumers based on their predicted adoption probability, and 
choose the first aN  consumers based on this ranking. The first prediction approach is 
fairly standard, while the second approach is done with a focus on effectiveness. For 
example, if the company wants to target 100 consumers for marketing, it would look at 
the 100 consumers who rank the highest in adoption probability. 

For the first prediction approach, we look at two metrics for evaluation. The first is the 
percentage of correct predictions, while the second is the percentage of correct 
predictions where the prediction is to adopt (that is, the precision of adoption prediction). 
The first is a standard evaluation metric, while the second is in a sense more managerially 
relevant. Obviously for the second prediction approach (the top-k approach), only the 
precision metric is applicable. 

We compare the performance of our three proposed models against five benchmark 
models. The first benchmark model, denoted as BM1, uses individual demographics 
characteristics observed, namely gender and age, to predict adoption using logistic 
regression. The second benchmark model, denoted as BM2, uses the demographics 
characteristics plus the degree of consumers for the logistic regression. Adding degree as 
an explanatory variable can potentially improve performance, as the data patterns show 
higher adoption percentage of consumers of higher degrees. The degree of a consumer is 
a feature in the social network context. Thus the second benchmark model already 
leverages social network information. However, this model does not leverage the 
adoption decisions of other consumers. The third benchmark model, denoted as BM3, 
leverages the decisions of other consumers, by including in the covariates not only the 
degree of the consumer, but also the percentage of neighbors who adopted. This is similar 
to the weighted-vote relational neighbor classifier in Macskassy and Provost (2003). 



Existing network classification models mostly use Logistic Regression methods (or Naïve 
Bayes which is equivalent). The logistic regression approach is somewhat similar to our 
proposed models, as they both can be grounded to a utility framework. To also compare 
with models that are “non-nested”, we introduce two more benchmark models, denoted as 
BM4 and BM5, that use the support vector machine (SVM) method. These models treat 
the adoption prediction as a classification task. Both models use gender, age, degree, and 
percentage of neighbors who adopted as feature variables. Model BM4 uses a linear 
kernel, while model BM5 uses a polynomial kernel. These benchmark models are 
summarized in Table 5.3-1. 

Table 5.3-1: Benchmark Models 

Model Explanatory Variables Mechanism
BM1 Gender, Age Logistic Regression
BM2 Gender, Age, Degree Logistic Regression

BM3
Gender, Age, Degree, Percentage of Neighbors 
who Adopt Logistic Regression

BM4
Gender, Age, Degree, Percentage of Neighbors 
who Adopt

Suppor Vector Machine, 
Linear Kernel

BM5
Gender, Age, Degree, Percentage of Neighbors 
who Adopt

Suppor Vector Machine, 
Polynomial Kernel  

Table 5.3-2 reports the statistics of the test cases, and the percentage of correct 
predictions of the three proposed models, corresponding to the different threshold values 
imposed for identifying connections. As the table shows, the number of test cases reduces 
as the threshold goes up. This is because the higher the threshold value we impose, the 
more consumers become isolated and are thus eliminated from the test dataset. About 
35% of consumers are eliminated as we increase the threshold from 1 to 20. The table 
also shows that the higher the threshold, the higher the percentage of consumers who 
adopt CRBT – the adoption percent increases from 34.18% to 38.6% as we increase the 
threshold from 1 to 20. This is as expected, as the data patterns show that consumers who 
are more connected are more likely to adopt CRBT. The intuition is that those who 
communicate more frequently are also more active consumers who may be more prone to 
purchase related products.  

Interestingly, the table shows that the percentage of correct predictions goes down as the 
threshold value increases. This is surprising at first glance, since as threshold value 
increases the “noise” in the data goes down, so the performance should improve. To 
understand this pattern, then, recall that the adoption percentage of the test dataset goes 
up with threshold value. Since the adoption is below 50%, this means that the prediction 
task gets harder as the threshold increases. Consider the column for the “Naive” model in 
the table. This is simply a predictor that always predicts no adoption. Since fewer than 
half of consumers adopt, such a dummy predictor will already be correct in more than 
50% of the cases. As the threshold value increases, we can see the accuracy of this 
dummy model goes down, showing that the task gets harder. Note that the three proposed 
models all have higher predictive accuracy than this naïve model, which serves as a first 
validation of the performance of the proposed models.  



Table 5.3-2: Predictive Accuracy – Individual Predictions 

Threshold
Total Test 
Cases

Total 
Adoption

Adoption 
Percent Mode B Model AI Model AII

"Naive" 
Model

1 46092 15752 34.18% 66.82% 66.71% 67.14% 65.82%
3 42675 15205 35.63% 65.93% 66.10% 66.52% 64.37%
5 39575 14234 35.97% 65.35% 65.24% 66.06% 64.03%
8 36715 13674 37.24% 64.52% 64.97% 65.49% 62.76%

10 35290 13103 37.13% 64.38% 63.84% 64.79% 62.87%
20 29846 11520 38.60% 63.11% 63.20% 63.74% 61.40%

Percent of Correct Prediction

 

The percentage of correct prediction is the first metric to look at, but it is not the most 
interesting one. From a marketer’s perspective, it is more important to know how well the 
model performs when it predicts adoption. That is, how often is the model correct when it 
predicts that a consumer will adopt. Table 5.3-3 reports this result, when the model 
predicts adoption on an individual basis, i.e. predicting adoption when the calculated 
probability is greater than 0.5. 

We first note that all three models have higher than 50% precision for all threshold values, 
ranging from 52.76% to 57.48%. Comparing this with a naïve predictor which always 
predicts adoption, the precision of which ranges from 34.18% to 38.6% depending on the 
threshold value, we can see that the three proposed models have strong predictive 
performance, with about 50% improvement in precision from a naïve, no information, 
model. Comparing the three proposed models, we can see that Model AI in general is 
slightly better than model B, while Model AII is better than both Model B and Model AI. 
This is as expected, as the models are successively nested. 

Table 5.3-3: Precision – Individual Predictions 

Threshold
Predicted 
Adoption

Correct 
Percentage

Predicted 
Adoption

Correct 
Percentage

Predicted 
Adoption

Correct 
Percentage

1 8385 52.88% 7671 52.76% 8129 53.72%
3 5658 55.07% 6439 55.71% 6752 56.80%
5 6609 54.18% 6359 55.56% 6672 56.01%
8 6707 54.96% 6333 55.35% 6700 57.48%

10 6182 55.26% 7344 54.10% 6242 55.43%
20 6213 54.45% 5977 55.19% 6693 55.22%

Model B Model AI Model AII

 

Table 5.3-4 reports the precisions of the logistic regression-based benchmark models 
when prediction is made on an individual basis, i.e. predict adoption when the calculated 
probability is above 0.5. When predicting using the benchmark model BM1, which uses 
only gender and age for prediction, the predicted adoption probability is less than 0.5 for 
all consumers in the test dataset. Thus the model does not predict adoption for any 
consumer, and is excluded from this evaluation. The precision of BM2 and BM3 are in 
general comparable with the three proposed models, and in several cases the precision of 
the benchmark models is better. However, we note a crucial distinction here: the 



benchmark models in general make many fewer predictions of adoption than our 
proposed models – the three proposed models mostly make more than 6000 predictions 
of adoptions for all threshold values, whereas the two benchmark models, especially 
BM3, make only a little over 2000 such predictions. Precision is expected to be “diluted” 
when more predictions are made, so this must be taken into account when comparing the 
models. The three proposed models can retrieve more “leads” than the two benchmark 
models. Only BM2 makes more than 6000 predictions when threshold value is 10 or 20. 
And in both these cases, its precision is lower than those of the three proposed models. 
Figure 5.3-2 further highlights this point by comparing model AII with BM3. As the chart 
shows, although both models have similar overall precision, model AII has significantly 
higher recall. 

Figure 5.3-2: Precision/Recall – Model AII vs. Model BM3 
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Table 5.3-4: Benchmark Model (LR) Precision – Individual Predictions 

Threshold
Predicted 
Adoption

Correct 
Percentage

Predicted 
Adoption

Correct 
Percentage

1 2006 56.23% 2089 59.89%
3 2060 54.13% 2226 57.77%
5 4142 56.78% 1951 58.89%
8 5475 55.87% 2015 60.10%

10 7124 52.91% 2176 59.93%
20 10939 48.43% 2289 62.69%

Model BM2 Model BM3

 

Table 5.3-5 reports the precisions of the support vector machine-based benchmark 
models, when predictions are made individually. The result shows that the SVM-based 
models have higher precisions than the logistic regression-based models. These 
precisions are also about 10% higher than the three proposed models. Similar to the 
logistic regression-based models, however, the SVM-based models also make many 
fewer predictions of adoptions than the three proposed models do. Thus again the direct 
comparison of precision may be misleading.  

Table 5.3-5: Benchmark Model (SVM) Precision – Individual Predictions 



Threshold
Predicted 
Adoption

Correct 
Percentage

Predicted 
Adoption

Correct 
Percentage

1 3470 62.07% 1654 68.50%
3 3718 61.97% 1946 65.83%
5 3371 62.06% 2529 64.41%
8 4383 62.03% 2977 65.10%

10 4712 60.36% 3474 63.27%
20 4688 60.30% 3403 62.83%

Model BM4 Model BM5

 

Since it is not easy to compare performance when different models make different 
numbers of predictions, we turn to making only a fixed number of adoption predictions 
for each model, i.e. following a “top-k” approach. For each model, we order all 
consumers based on the calculated probability of the consumer adopting (for SVM-based 
models, the distance to the classification boundary), and predict adoption only for the top 

aN  consumers. This helps us make a fairer comparison across models. This approach 
also has more direct practical applications, as marketing managers often work under 
capacity constraint, e.g. a manager may need to distribute a fixed number of coupons to 
consumers.  

Table 5.3-6: Precision – Top 1000/2000 Consumers 

Threshold Top 1000 Top 2000 Top 1000 Top 2000 Top 1000 Top 2000
1 66.00% 65.80% 65.90% 62.25% 66.30% 65.35%
3 69.80% 64.60% 68.60% 64.90% 72.00% 68.00%
5 69.80% 67.00% 69.60% 65.10% 73.10% 68.75%
8 71.10% 67.05% 67.50% 64.65% 73.80% 68.55%

10 71.40% 65.55% 68.70% 65.25% 71.70% 67.40%
20 70.50% 66.40% 73.50% 66.90% 72.40% 67.10%

Model B Model AI Model AII

 

The precision for the three models is reported in table 5.3-6. We tested two values, 
1000=aN  and 2000=aN . As the table shows, the precision is above 60% for all three 

models and all threshold values, and reaches as high as 73.8%. Recall that only about 
35% of the consumers in the dataset actually adopt, this represents almost double the 
precision of a naïve predictor, a very strong performance. The precision for the top 1000 
consumers is higher than that for the top 2000 consumers for each model and each 
threshold value. This is as expected, as we have higher confidence the higher the 
predicted probability is. This further shows that the models are stable and well behaved. 

The precision for Model AII is higher than that for both AI and B, for each threshold 
value and for both top 1000 and 2000 consumers, with the only exception of top 1000 
consumers with threshold 20 for AI. This suggests that accounting for varying strengths 
in connections indeed can improve model fit and predictive performance. This 
improvement in performance from Model B and AI to AII, however, becomes smaller as 
threshold increases. This is as expected – as threshold values go up the connections 
become more consistently strong, so further differentiating connection strengths do not 
add much additional value. The precision for model AI is not higher than that for model 



B. This is not surprising, either, as the model estimate does not show significant 
relationship between the conditional precision and the degree of a node. It is unclear, 
however, why in several cases the precision of model B is higher than that of model AI, 
as the former is nested in the latter. One explanation is this may be due to data noise 
when we look at a relatively small sample. When we compare model AI with model B 
with respect to individual predictions, where the sample size is larger, the performance 
are almost the same. 

Looking along the threshold value dimension, we can see that the performance first goes 
up when the threshold value increases from 1 to 3, and from 3 to 5. After that, however, 
the performance does not further increase. In fact it decreases for Model AII. Increasing 
threshold value has both positive and negative implications. On one hand, it filters out 
noise, so that what is left is more likely true connections. On the other hand, it also filters 
out true connections when the communication is of low frequency, leaving fewer 
neighbors for each consumer to base inference on. The result suggests that a threshold 
value of 5 is reasonable compromise between these two factors. 

We now compare the proposed models with the benchmark models. The results the three 
logistic regression-based models are reported in table 5.3-7. Among the three benchmark 
models, BM2 has significantly higher precision than BM1, while the performance of 
BM1 is not much better than that of a naïve predictor. This suggests that individual 
demographics information is not valuable in predicting the adoption decisions, while 
incorporating social network related metrics, such as number of connected consumers, 
can dramatically increase predictive performance. Model BM3 has roughly a further 10% 
improvement over BM2. This suggests that the adoption decisions of neighbors can 
directly improve predictive performance, in addition to other social network related 
measures. Comparing table 5.3-7 with 5.3-6, we can see that the three proposed models 
have clearly superior performance over the three logistic regression-based benchmark 
models – average precisions are 67.92%, 66.90%, and 69.54% for the three proposed 
models, versus 36.25%, 54.68%, and 60.76% for the three benchmark models. Even the 
proposed base model, Model B, has better performance than the best benchmark model, 
Model BM3.  

Table 5.3-7: Benchmark Model (LR) Precision – Top 1000/2000 Consumers 

Threshold Top 1000 Top 2000 Top 1000 Top 2000 Top 1000 Top 2000
1 34.20% 34.05% 59.60% 56.25% 62.20% 60.25%
3 36.10% 35.90% 55.70% 53.90% 60.50% 57.90%
5 35.80% 35.80% 54.50% 52.45% 61.50% 59.00%
8 35.70% 37.75% 55.50% 53.90% 61.40% 60.00%

10 36.00% 38.70% 54.10% 53.25% 60.50% 59.45%
20 36.80% 38.15% 54.90% 52.15% 63.60% 62.85%

Model BM1 Model BM2 Model BM3

 

The results for the two SVM-based benchmark models are reported in Table 5.3-8. The 
two SVM-based models have much better performance than the three logistic regression-
based models. The model using polynomial kernel, BM5, has slightly better performance 
than the one using linear kernel, BM4. The performances of these two benchmark models 



are similar to two of the proposed models, model B and AI, but worse than that of model 
AII. Among all the models, the proposed model AII has the best predictive performance 
when evaluated using this top-k method, which can also be seen from Figures 5.3-3 and 
5.3-4, where the performances of all models are plotted. This clearly shows the value of 
our modeling approach.  

Table 5.3-8: Benchmark Model (SVM) Precision – Top 1000/2000 Consumers 

Threshold Top 1000 Top 2000 Top 1000 Top 2000
1 68.10% 66.25% 71.10% 67.05%
3 69.30% 65.25% 70.10% 65.90%
5 70.50% 65.70% 71.80% 66.70%
8 67.10% 66.80% 69.70% 67.50%

10 68.80% 65.60% 70.40% 66.80%
20 70.30% 68.25% 74.60% 67.40%

Model BM4 Model BM5

 

Figure 5.3-3: Predictive Precision – Top 1000 Consumers 
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Figure 5.3-4: Predictive Precision – Top 1000 Consumers 
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In summary, although our proposed models and the benchmark model use the same set of 
information, the proposed models, under the GMRF framework, place higher emphasis 
on “local” characteristics, by incorporating a correlation structure directly between 
neighbors. The result shows that such local emphasis lead to both higher number of 
predicted adoptions (Table 5.3-3) and higher precision (Table 5.3-6), making the 
proposed models superior than the traditional logistic regression or SVM-based 
approaches. Although the performances of the SVM-based models are close to those of 
the proposed model, the proposed models are superior in terms of interpretability as well 
as extensibility: compared with the SVM-based models, the proposed models have 
parsimonious specifications, and the coefficients can be explained intuitively. 
Furthermore, the proposed models can be extended to handle more complex decisions, 
such as repeat purchase over time, or product selection, while extending the SVM-based 
models for those purposes would be challenging. 

5.3.1 The Role of Training Data Size 

To further evaluate the predictive performance of our proposed models, we check its 
robustness by varying the amount of training data used for estimating the model. The 
prediction task becomes more difficult as the amount of training data reduces, so it is 
important to investigate the sensitivity of the methods with respect to the data availability. 
As discussed earlier, Model AII has the best predictive performance among the three 
proposed models, while Model BM5 is the best among the benchmark models. We thus 
further compare these two models by varying the portion of the data used for training, 
from 10% to 90%. We use threshold value 5 for these tests. The result is presented in 
Table 5.3.1-1.  

Table 5.3.1-1: Vary Training Data Size 

TrainingPortion Individual Top 1000 Top 2000 Individual Top 1000 Top 2000
90% 56.85% 69.40% 62.20% 64.55% 66.10% 61.55%
80% 56.17% 71.60% 68.05% 66.11% 73.70% 67.55%
70% 55.30% 73.10% 69.25% 65.03% 72.10% 68.60%
60% 54.83% 74.90% 70.30% 63.46% 71.80% 68.55%
50% 53.86% 74.60% 71.85% 63.14% 73.90% 69.55%
40% 54.32% 76.50% 73.80% 61.31% 74.20% 70.90%
30% 53.64% 73.60% 69.75% 61.74% 74.40% 70.35%
20% 52.86% 72.30% 69.70% 61.92% 72.80% 69.25%
10% 52.74% 69.70% 68.40% 56.17% 69.30% 64.80%

Model AII Model BM5

 

As expected, as the training data portion decreases, the prediction precision where 
predictions are made individually also decreases. As shown in the table, when the portion 
of training data is reduced from 90% to 10%, the precision of model AII decreases from 
56.85% to 52.74%, while that of BM5 decreases from 64.55% to 56.17%. The 
performance decline is only moderate, however, suggesting that the dataset is large 
enough to base inference on, even when only a small portion is used for training the 
model. Interestingly, when the predictions are made only for the top 1000 or 2000 
consumers, the precisions for both Model AII and BM5 have an “Inverted-U” shape, with 



the precision highest when 40% of the data are used for training, while the precision 
lower when either more or less data are used for training. It may at first look surprising 
that precision is lower when more data are used for training. The answer lies with the test 
dataset: not all consumers are “good” candidates for predicting adoption (“good” here 
means they have high probability to adopt). As a larger portion of the data is used for 
training, the testing dataset becomes smaller, so there may be fewer such good candidates, 
meaning the top-1000 or top-2000 is a more difficult task, hence the lower precision. It is 
interesting to see the interactions of these two opposing factors: more training data lead to 
better estimate, but leave fewer candidates. Certainly in a practical situation the marketer 
may not be able to dictate the training and testing data size. But if the marketer can, such 
as through randomly promoting a product first to a subset of consumers and then learning 
the adoption propensity, he should be cognizant of these two forces and achieve a balance 
in between. Finally, we note that the relative performance between Model AII and BM5 
is similar to what we discussed previously, that AII has better performance for the top-
1000 and top-2000 consumers, whereas BM5 has higher precision for individual-based 
predictions, although it makes much fewer predictions of adoption. This validates the 
robustness of the previous result. 

6. Discussions and Conclusion 

Social network has been a focus of study by researchers in social science, economics, 
marketing, and computer science. The advent of information technology enables the 
collection of large-scale network data, which provide an exciting research opportunity. It 
has long been recognized that people tend to associate with other people who are similar, 
a phenomenon known as homophily. Consequently, people who are close to one another 
often have similar traits and make similar decisions.  

The correlation among connected people means marketers can potentially leverage the 
knowledge of the social network among consumers to better identify prospects for target 
marketing. Our study contributes to the literature on this topic, by introducing a model 
based on Gaussian Markov Random Field (GMRF), which has received widespread 
applications in image processing, physics, and biology. We model the product tastes of 
consumers in a social network as a GMRF parameterized by the conditional precision of 
each node and the conditional correlation between each connected pair. This approach 
allows us to leverage two desirable properties of GMRF, its ability to model networks of 
arbitrary topology and its parsimonious specification with the property of conditional 
independence.  

Applying the model to a large mobile phone dataset, where we study the adoption 
decisions of caller ring-back tones, we find strong and consistent evidence of correlation 
in product tastes among connected consumers. We find that such correlation becomes 
stronger as we increase threshold to filter out more noise in the dataset. Furthermore, we 
find that the correlation is also higher between consumers who communicate more 
frequently, suggesting the variation of tie strengthen also leads to different degrees of 
correlation among connected consumers. Our GMRF-based models have consistently 
superior predictive performance over the benchmark models, while working with the 
same set of information.  



This study is a first step towards an in-depth modeling of correlated consumer behaviors, 
and is limited in several ways. First, the model is static, and treats the purchase of ring-
back tones as a one-shot adoption decision. Many real world settings are dynamic, as 
consumers form and sever ties over time, and purchase products repeatedly over time as 
well. Two extensions are possible here. One is to keep the network structure as static, 
while modeling the repeated purchase decisions over time for consumers. Temporal 
dependence can be introduced in such a framework. The other is to treat both network 
and purchase as dynamically evolving, and use the up-to-date network information for 
inference. 

Secondly, the model accounts for the correlation of adoption decisions among consumers 
who are connected, but more work can be done to uncover the source of such correlation. 
Although we motivated the correlation using homophily, the correlation in adoption 
decisions may also arise from social influence, e.g., a person calls another person, finds 
out the callee has a certain ring-back tone, and decides to purchase one himself. While it 
is hard to separate homophily from influence with a static model, it is possible with a 
dynamic one, especially with the detailed communication data in the dataset. Our 
modeling framework also lends itself to extensions which include social influence. 

Finally, we use a threshold approach to identify social connections from the 
communication data. While intuitively appealing, it is subjective on the researcher’s side. 
It is more desirable to have an integrated data generation process, where one statistical 
model is used to explain both the calling behavior and the purchase decisions. This is a 
challenging task, as calling behavior is dyadic in nature, i.e. involves two people, while 
purchase decisions is at individual consumer level. Existing literature has either modeled 
the calling behaviors, e.g. using latent space approach, or modeled purchase decisions, 
e.g. using spatial regression, but has not done both together. This presents a fascinating 
question for future study.  
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