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Abstract

A common classifier for unlabeled nodes on undirected graphs uses label propaga-
tion from the labeled nodes, equivalent to the harmonic predictor on Gaussian ran-
dom fields (GRFs). For active learning on GRFs, the commonly used V-optimality
criterion queries nodes that reduce the L2 (regression) loss. V-optimality satis-
fies a submodularity property showing that greedy reduction produces a (1− 1/e)
globally optimal solution. However, L2 loss may not characterise the true nature
of 0/1 loss in classification problems and thus may not be the best choice for active
learning.
We consider a new criterion we call Σ-optimality, which queries the node that
minimizes the sum of the elements in the predictive covariance. Σ-optimality
directly optimizes the risk of the surveying problem, which is to determine the
proportion of nodes belonging to one class. In this paper we extend submodularity
guarantees from V-optimality to Σ-optimality using properties specific to GRFs.
We further show that GRFs satisfy the suppressor-free condition in addition to
the conditional independence inherited from Markov random fields. We test Σ-
optimality on real-world graphs with both synthetic and real data and show that it
outperforms V-optimality and other related methods on classification.

1 Introduction

Real-world data are often presented as a graph where the nodes in the graph bear labels that vary
smoothly along edges. For example, for scientific publications, the content of one paper is highly
correlated with the content of papers that it references or is referenced by, the field of interest of a
scholar is highly correlated with other scholars s/he coauthors with, etc. Many of these networks
can be described using an undirected graph with nonnegative edge weights set to be the strengths of
the connections between nodes.

The main character of graph-based representation of data is that all features of a node are implicitly
characterized by its edges. Despite that many datasets are naturally represented by graphs, a feature-
based database can also be easily turned into a graph by considering the k-nearest-neighbors among
input feature vector pairs. In this way, the similarity of input features between different instances
(i.e. nodes) is preserved. Figure 1 shows how to construct a graph on a toy dataset where input
features are images of 8-by-8-pixel hand-written digits. To visualize the process, we used the scores
of the first two principal components as the coordinate of an instance. The distance between two
instances is designed to be the Euclidean distance of their corresponding 2-dimensional coordinates.
Figure 1(a) demonstrate the 4 nearest neighbors on this feature space of the node at the bottom.
Figure 1(b) is the final k-nn graph, where edge directions are removed. Using label propagation,
which is a graph inference technique described below, the constructed k-nn graph can be used to
predict the actual number indicated by each image in the test set, just like a feature-base database.
In general, the more interesting results come from network graphs.
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(a) The 4 nearest neighbors of one node
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(b) Final 4-nn graph

Figure 1: The 4-nn graph constructed from input images using the Euclidean distance on the first 2
PCA projection of concatenated pixel values.

The model for label prediction in this paper is the harmonic function on the Gaussian random field
(GRF) by Zhu et al. (2003). It can generalize two popular and intuitive algorithms: label propagation
(Zhu & Ghahramani, 2002), and random walk with absorptions (Wu et al., 2012). GRFs can be
seen as a Gaussian process (GP) (Rasmussen & Williams, 2006) with its (maybe improper) prior
covariance matrix whose (pseudo)inverse is set to be the graph Laplacian.

Specifically, the label propagation / random walk prediction used in our paper works as follows. To
predict the label of a test node, start such a random walk from this node that if it arrives at node
vt at time t, during the next time step, it randomly traverses one outbound edge with probability
proportional to the corresponding edge weight. This random walk terminates when it hits any labeled
node. Given the above random experiment, the prediction model in this paper assigns the probability
of this node having exactly the label A by the chance that this random walk hits a labeled node of
class A before any other labeled classes. Figure 2 illustrates the probability that every unlabeled
node belongs to the positive class, given the three labeled nodes (one positive and two negatives).
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Figure 2: The number on every node is the chance that it belongs to class “+”, predicted by the
random walk model. Red “+” and blue “©” are labeled nodes (i.e. training set) of both classes.

Like other learning problems, labels may be insufficient and expensive to gather, especially if one
wants to discover a new phenomenon on the network. Active learning addresses these issues by
making automated decisions on which nodes to query for labels from experts or the crowd. A
visualization is shown in Figure 3.
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(a) The actual knn graph visualized in 2D. (b) The first 10 labels picked by Σ-optimality.

Figure 3: Problem being solved: On actual graphs like (a) or network graphs, we want to find (b) a
desirable training set labeling which helps classification the most, without any labels to start with.

1.1 Problem Being Solved

We consider the problem of designing a good active learning strategy that, under labeling budget
constraints, selects which instances to query for labels that are most helpful for classification on a
graph-represented database. We assume that the graph structure provides reasonable information for
node classification in that the node class distribution is modeled by a Gaussian random field model
with known hyper-parameters. The performance of a specific active learning strategy is measured
by the classification accuracy using harmonic prediction that is based on label propagation.

Figure 3(b) shows an example of the first 10 labels picked by a reasonable active learning strategy,
which is the Σ-optimality that we advocate.

1.2 Main Contributions and Related Work

We proposed a new strategy for the active learning problem by considering a criterion we call Σ-
optimality, which is a variant of a recent variance minimization/Bayes risk minimization criterion.
We compared its performance with other popular criteria including empirical risk minimization
(Settles, 2010), mutual information gain (Krause et al., 2008), and V-optimality (Ji & Han, 2012).
In our experiments, we show that Σ-optimality outperforms other approaches for active learning
with GRFs for classification and surveying. Insights were also provided.

We also established several related theoretical results. Namely, we show that greedy reduction of
Σ-optimality provides a (1 − 1/e) approximation bound to the global optimum. We also show that
Gaussian random fields satisfy the suppressor-free condition, described below.

1.2.1 V-optimality on Gaussian Random Fields

Ji & Han (2012) proposed greedy variance minimization as a cheap and high profile surrogate active
classification criterion. To decide which node to query next, the active learning algorithm finds the
unlabeled node which leads to the smallest average predictive variance on all other unlabeled nodes.
It corresponds to standard V-optimality in optimal experiment design.

We will discuss several aspects of V-optimality on GRFs below: 1. The motivation behind V-
optimality can be paraphrased as the expected risk minimization with the L2-surrogate loss (Sec-
tion 2.1). 2. The greedy solution to the set optimization problem in V-optimality is comparable to
the global solution up to a constant (Theorem 1). 3. The greedy application of V-optimality can
also be interpreted as a heuristic which selects nodes that have high correlation to nodes with high
variances (Observation 4).

Some previous work is related to point 2 above. Nemhauser et al. (1978) shows that any submodular,
monotone and normalized set function yields a (1 − 1/e) global optimality guarantee for greedy
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solutions. Our proof techniques coincides with Friedland & Gaubert (2011) in principle, but we
are not restricted to spectral functions. Krause et al. (2008) showed a counter example where the
V-optimality objective function with GP models does not satisfy submodularity.

1.2.2 Σ-optimality on Gaussian Random Fields

We define Σ-optimality on GRFs to be another variance minimization criterion that minimizes the
sum of all entries in the predictive covariance matrix. As we will show in Lemma 7, the predictive
covariance matrix is nonnegative entry-wise and thus the definition is proper. Σ-optimality was orig-
inally proposed by Garnett et al. (2012) in the context of active surveying, which is to determine the
proportion of nodes belonging to one class. However, we focus on its performance as a criterion in
active classification heuristics. The survey-risk of Σ-optimality replaces the L2-risk of V-optimality
as an alternative surrogate risk for the 0/1-risk.

We also prove that the greedy application of Σ-optimality has a similar theoretical bound as V-
optimality. We will show that greedily minimizing Σ-optimality empirically outperforms greedily
minimizing V-optimality on classification problems. The exact reason explaining the superiority of
Σ-optimality as a surrogate loss in the GRF model is still an open question, but we observe that
Σ-optimality tends to select cluster centers whereas V-optimality goes after outliers (Section 5.1).
Finally, greedy application of both Σ-optimality and V-optimality needO(N) time per query candi-
date evaluation after one-time inverse of a N ×N matrix.

1.2.3 GRFs Are Suppressor Free

In linear regression, an explanatory variable is called a suppressor if adding it as a new variable
enhances correlations between the old variables and the dependent variable (Walker, 2003; Das &
Kempe, 2008). Suppressors are persistent in real-world data. We show GRFs to be suppressor-
free. Intuitively, this means that with more labels acquired, the conditional correlation between
unlabeled nodes decreases even when their Markov blanket has not formed. That GRFs present
natural examples for the otherwise obscure suppressor-free condition is interesting.

2 Approach: Learning Model & Active Learning Objectives

We use the Gaussian random field/belief propagation (GRF/BP) as our learning model. Suppose the
dataset can be represented in the form of a connected undirected graph G = (V,E) where each
node has an (either known or unknown) label and each edge eij has a fixed nonnegative weight
wij(= wji) that reflects the proximity, similarity, etc. between nodes vi and vj . Define the graph
Laplacian of G to be L = diag (W1) −W , i.e., lii =

∑
j wij and lij = −wij when i 6= j. Let

Lδ = L+ δI be the regularized Laplacian obtained by adding self-loops. In the following, we will
write L to also encompass βLδ for the set of hyper-parameters β > 0 and δ ≥ 0. The binary GRF is
a Bayesian model to generate yi ∈ {0,+1} for every node vi according to,

p(y) ∝ exp
{
− β

2

(∑
i,j

wij(yi − yj)2 + δ
∑
i

y2
i

)}
= exp

(
−1

2
yTLy

)
. (2.1)

Suppose nodes ` = {v`1 , . . . , v`|`|} are labeled as y` = (y`1 , . . . , y`|`|)
T ; A GRF infers the output

distribution on unlabeled nodes, yu = (yu1
, . . . , yu|u|)

T by the conditional distribution given y`, as

Pr(yu|y`) ∝ N (ŷu, L
−1
u ) = N (ŷu, L

−1
(v−`)), (2.2)

where ŷu = (−L−1
u Lu`y`) is the vector of predictive means on unlabeled nodes and Lu is the

principal submatrix consisting of the unlabeled row and column indices in L, that is, the lower-right

block of L =

(
L` L`u

Lu` Lu

)
. By convention, L−1

(v−`) means the inverse of the principal submatrix.

We use L(v−`) and Lu interchangeably because ` and u partition the set of all nodes v.

Finally, GRF, or GRF/LP, is a relaxation of the binary GRF to continuous outputs, because the latter is
computationally intractable even for a-priori generations. LP stands for label propagation, because
the predictive mean on a node is the probability of a random walk leaving that node hitting a positive
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label before hitting a zero label. For multi-class problems, Zhu et al. (2003) proposed the harmonic
predictor which looks at predictive means in one-versus-all comparisons.

Remark: An alternative approximation to the binary GRF is the GRF-sigmoid model, which draws
the binary outputs from Bernoulli distributions with means set to be the sigmoid function of the GRF
(latent) variables. However, this alternative is very slow to compute and may not be compatible with
the theoretical results in this paper.

2.1 Active Learning Objective 1: L2 Risk Minimization (V-Optimality)

Since in GRFs, regression responses are taken directly as probability predictions, it is computation-
ally and analytically more convenient to apply the regression loss directly in the GRF as in Ji & Han
(2012). Assume the L2 loss to be our classification loss. The risk function, whose input variable is
the labeled subset `, is:

RV (`) = Ey`yu
∑
vui
∈u(yui

− ŷui
)2 (2.3)

= E
[
E
[∑

i

(
yui − (−L−1

u Lu`y`)i
)2∣∣∣y`]] = tr(L−1

u ).

This risk is written with a subscript V because minimizing (2.3) is also the V-optimality criterion,
which minimizes mean prediction variance in active learning.

In active learning, we strive to select a subset ` of nodes to query for labels, constrained by a given
budget C, such that the risk is minimized. Formally,

arg min
`: |`|≤C

R(`) = RV (`) = tr(L−1
(v−`)). (2.4)

2.2 Active Learning Objective 2: Survey Risk Minimization (Σ-Optimality)

Another objective building on the GRF model (2.2) is to determine the proportion of nodes belonging
to class 1, as would happen when performing a survey. For active surveying, the risk would be:

RΣ(`) = Ey`yu
( ∑
ui∈u

yui −
∑
ui∈u

ŷui

)2
= E

[
E
[(
1Tyu − 1T ŷu

)2|y`]] = 1TL−1
u 1, (2.5)

which could substitute the risk R(`) in (2.4) and yield another heuristic for selecting nodes in batch
active learning. We will refer to this modified optimization objective as the Σ-optimality heuristic:

arg min
`: |`|≤C

R(`) = RΣ(`) = 1TL−1
(v−`)1. (2.6)

Further, we will also consider the application of Σ-optimality in active classification because (2.6) is
another metric of the predictive variance. Surprisingly, although both (2.3) and (2.5) are approxima-
tions of the real objective (the 0/1 risk), greedy reduction of the Σ-optimality criterion outperforms
greedy reduction of the V-optimality criterion in active classification (Section 5.1), as well as several
other methods including expected error reduction.

3 Methods

Our method that directly solves the active learning problem is the greedy application of Σ-optimality.
Because it is a variant of the greedy application of V-optimality, both are described below, followed
by algorithmic guarantees with proofs in the appendix. In the end is a summary of our method and
other baseline comparison methods.

3.1 Algorithm for Greedy Application of Σ- and V-Optimality

Both (2.4) and (2.6) are subset optimization problems. Calculating the global optimum may be
intractable. As will be shown later in the theoretical results, both objectives are submodular set
functions and the greedy sequential update algorithm (Algorithm 1) yields a solution that has guar-
anteed approximation ratio to the optimum (Theorem 1).
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Algorithm 1 Greedy subset selection.
Input: Graph Laplacian L, objective function R(`), budget C.
Output: A subset ` ⊂ v by greedy selection.
Define `(0) ← ∅.
for k = 1, 2, . . . , C do

Find v(k)
∗ ← arg min

v

(
R(`(k−1) ∪ {v})−R(`(k−1))

)
.

Update `(k) ← `(k−1) ∪ {v(k)
∗ }.

end for

The following applies Algorithm 1 to our specific objective functions. At the k-th query decision,
denote the covariance matrix conditioned on the previous (k − 1) queries as C = (L(v−`(k−1)))

−1.
By Shur’s Lemma (or the GP-regression update rule), the one-step look-ahead covariance matrix
conditioned on `(k−1) ∪ {v}, denoted as C′ = (L(v−(`(k−1)∪{v})))

−1, has the following update
formula: (

C′ 0
0 0

)
= C− 1

Cvv
· C:vCv:, (3.1)

where without loss of generality v was positioned as the last node. Further denoting Cij = ρijσiσj ,
we can put (3.1) inside RΣ(·) and RV (·) to get the following equivalent criteria:

V-optimality : v
(k)
∗ = arg max

v∈u

∑
t∈u(Cvt)

2

Cvv
=
∑
t∈u

ρ2
vtσ

2
t , (3.2)

Σ-optimality : v
(k)
∗ = arg max

v∈u

(
∑
t∈u Cvt)

2

Cvv
= (
∑
t∈u

ρvtσt)
2. (3.3)

where the second equalities in both (3.2) and (3.3) come from the observation that(
(ρvu1

σu1
), . . . , (ρvu|u|σu|u|)

)T
=

1√
Cvv
·
(

Cvu1
, · · · ,Cvu|u|

)T
. (3.4)

Remark: We may generalize the two optimalities to a broader class of λp-optimalities: 1

λp-optimality : v
(k)
∗ = arg max

v∈u

∑
t∈u

(ρvtσt)
p

= arg max
v∈u

∑
t∈u

(
Cvt√
Cvv

)p
(3.5)

where V-optimality corresponds to p = 2 and Σ-optimality p = 1 (up to the same optimizer).

3.2 Theoretical Guarantee for the Greedy Applications

For the general GP model, greedy optimization of the L2 risk has no guarantee that the solution
can be comparable to the brute-force global optimum (taking exponential time to compute), because
the objective function, the trace of the predictive covariance matrix, fails to satisfy submodularity
in all cases (Krause et al., 2008). However, in the special case of GPs with kernel matrix equal to
the inverse of a graph Laplacian (with ` 6= ∅ or δ > 0), the GRF does provide such theoretical
guarantees, both for V-optimality and Σ-optimality. The latter is a novel result.

The following theoretical results concern greedy maximization of the risk reduction function (which
is shown to be submodular): R∆(`) = R(∅)−R(`) for either R(·) = RV (·) or RΣ(·).
Theorem 1 (Near-optimal guarantee for greedy applications of V/Σ-optimality). In risk reduction,

R∆(`g) ≥ (1− 1/e) ·R∆(`∗), (3.6)

where R∆(`) = R(∅) − R(`) for either R(·) = RV (·) or RΣ(·), e is Euler’s number, `g is the
greedy optimizer, and `∗ is the true global optimizer under the constraint |`∗| ≤ |`g|.2

1The base is never negative as Lemma 9 shows that in any conditional distribution of GRFs, ρvt ≥ 0, ∀v, t.
2The results (3.7)–(3.6) can be extended to nonuniform node costs. Denote cv as the node cost of v ∈ v.

In this case, a corresponding greedy algorithm maximizes the marginal risk reduction divided by the marginal
cost and the constraint in (3.6) becomes

∑
v∈`∗ cv ≤

∑
v∈`g cv
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According to Nemhauser et al. (1978), it suffices to show the following properties of R∆(`):
Lemma 2 (Normalization, Monotonicity, and Submodularity). ∀`1 ⊂ `2 ⊂ v, v ∈ v,

R∆(∅) = 0, (3.7)
R∆(`2) ≥ R∆(`1), (3.8)

R∆

(
`1 ∪ {v}

)
−R∆(`1) ≥ R∆

(
`2 ∪ {v}

)
−R∆(`2). (3.9)

3.3 Corollary on GRF Model Class

Another sufficient condition for Theorem 1, which is itself an interesting observation, is the
suppressor-free condition. Walker (2003) describes a suppressor as a variable, knowing which will
suddenly suppress a strong correlation between the predictors. An example is yi+yj = yk. Knowing
any one of these will suppress correlations between the others. Walker further states that suppressors
are common in regression problems. Das & Kempe (2008) extend the suppressor-free condition to
sets and showed that this condition is sufficient to prove (2.3). Formally, the condition is:∣∣corr(yi, yj | `1 ∪ `2)

∣∣ ≤ ∣∣corr(yi, yj | `1)
∣∣

∀vi, vj ∈ v,∀`1, `2 ⊂ v. (3.10)

In fact, it may be easier to understand (3.10) as a decreasing correlation property. It is well known
for Markov random fields that the labels of two nodes on a graph become independent if conditioned
on their Markov blanket. Here we establish that GRF boasts more than that: the correlation between
any two nodes decreases as more nodes get labeled, even before a Markov blanket is formed. To
summarize, we have:
Theorem 3 (Suppressor-Free Condition). (3.10) holds for pairs of nodes in the GRF model. Note
that since the conditional covariance of the GRF model is L−1

(v−`), we can properly define the corre-
sponding conditional correlation to be

corr(yu|`) = D−
1
2L−1

(v−`)D
− 1

2 , with D = diag
(
L−1

(v−`)

)
. (3.11)

3.4 Summary of Our Method and Other Baseline Methods

All of the active learning strategies to be compared are:3

1. The new Σ-optimality with greedy sequential updates: minv′
(
1>(Luk\{v′})

−11
)
.

2. Greedy V-optimality (Ji & Han, 2012): minv′ tr
(
(Luk\{v′})

−1
)
.

3. Greedy information gain (IG), which is the same as determinant-optimality (Krause et al.,
2008):4 maxv′

(
L−1
uk

)
v′,v′

.

4. Mutual information gain (MIG) (Krause et al., 2008): maxv′
(
L−1
uk

)
v′,v′

/ (
(L`k∪{v′})

−1
)
v′,v′

5. Uncertainty sampling (Unc) picking the largest prediction margin: maxv′ ŷ
(1)
v′ − ŷ

(2)
v′ .

6. Expected error reduction (EER) (Settles, 2010; Zhu et al., 2003). Selected nodes maximize
the average prediction confidence in expectation: maxv′ Eyv′

[(∑
ui∈uŷ

(1)
ui

∣∣∣yv′)∣∣∣y`k] .
7. Random selection with 12 repetitions.

We use GRF/BP model with δ = 0 and β = 1 as our learning model. In such a setting, the con-
nectivity between different nodes on a graph is the strongest and the effect of the outliers is at its
minimum. We feel that these parameters generally yields to better baseline results.

4 Data

Comparisons are made on the following real-world network graphs or manifold graph embeddings.
3Code available at http://www.autonlab.org/autonweb/21763
4 Using the equivalence,

(
L−1

uk

)
v′,v′

= det(L−1

uk )/det
(
(Luk\{v′})

−1
)
, when L is a generalized graph

Laplacian matrix, we have arg minv′ det
(
(Luk\{v′})

−1
)

= arg maxv′
(
L−1

uk

)
v′,v′

.
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1. DBLP coauthorship network.5 The nodes represent scholars and the weighted edges are the
number of papers bearing both scholars’ names. The largest connected component has 1711
nodes and 2898 edges. The node labels were hand assigned in Ji & Han (2012) to one of the
four expertise areas of the scholars: machine learning, data mining, information retrieval, and
databases. Each class has around 400 nodes.

2. Cora citation network.6 This is a citation graph of 2708 publications, each of which is classified
into one of seven classes: case based, genetic algorithms, neural networks, probabilistic methods,
reinforcement learning, rule learning, and theory. The network has 5429 links. We took its
largest connected component, with 2485 nodes and 5069 undirected and unweighted edges.

3. CiteSeer citation network.6 This is another citation graph of 3312 publications, each of which
is classified into one of six classes: agents, artificial intelligence, databases, information retrieval,
machine learning, human computer interaction. The network has 4732 links. We took its largest
connected component, with 2109 nodes and 3665 undirected and unweighted edges.

4. Scikit-learn handwritten digits (digits).7 This is an image classification database published in
the scikit-learn software. The database contains 1797 images of hand written digits (0-9) with
8 × 8 pixel resolution. Every digit class contains roughly 180 images. We created a 7-nearest
neighbor (7-nn) graph using Euclidean distances of raw features and symmetrized the resulting
graph.

5. Isolated Letter Speech Recognition (ISOLETe / ISOLET4).8 This is a UCI benchmark database
of human pronunciations of the 26 English letters. For every letter pronunciation, 617 domain-
specific features are created. We used the first 4 mini-batches which contain 120 human subjects
(ISOLET4). Further, we also looked at a harder problem that distinguishes letters containing “e”
sound (B, C, D, E, G, P, T, V, Z) (ISOLETe). For both problems, we constructed a 4-nearest
neighbor (4-nn) graph using Euclidean distances of raw features and symmetrized the resulting
graph.

6. Face pose recognition (pose).9 This is a database that regresses semantic information from
images. 687 pictures of the same sculpture face were taken with different face poses and lighting
conditions. The goal is to reconstruct the face poses (2-dimensional: left-right and up-down). To
solve the problem, we constructed a 7-nearest neighbor (7-nn) graph using Euclidean distances
of the first 240 principal components and symmetrized the resulting graph.

To summarize, our pool of databases aims to cover most of Table 1.

Table 1: Datasets and Experiments Overview

Model Type \ Task Classification & Survey Regression
Network graphs DBLP, Cora, CiteSeer N/A
Manifold graph embeddings
of the Euclidean space

digits, ISOLET4, ISOLETe pose

4.1 Visualization the Graphs via 2-Dimensional Embedding.

To gain insights of the of the graph databases or graphs generated from feature-represented
databases, it is helpful to lay out the graphs on the 2D plane. We use the OpenOrd toolbox (Martin
et al., 2011) in the Gephi software10 for this purpose.

In Figure 4(a-f), it is clear that for classification, different clusters on the graphs, characterized by
dense concentrations of nodes, connect to different classes which are shown by node colors. Among
them, (a-c) are from network graphs and class boundaries are more unclear. On the contrary, (d-f)
are from k-nearest-neighbors graphs for classification problems and classes are more separated. (f)
is a noisier version of (e), containing only classes that are more difficult to classify.

5
http://www.informatik.uni-trier.de/˜ley/db/

6
http://www.cs.umd.edu/projects/linqs/projects/lbc/index.html

7
http://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html

8
http://archive.ics.uci.edu/ml/datasets/ISOLET

9
http://isomap.stanford.edu/datasets.html

10
https://gephi.org/

8

http://www.informatik.uni-trier.de/~ley/db/
http://www.cs.umd.edu/projects/linqs/projects/lbc/index.html
http://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
http://archive.ics.uci.edu/ml/datasets/ISOLET
http://isomap.stanford.edu/datasets.html
https://gephi.org/


Figure 4(g) shows nodes more uniformly distributed throughout the embedded space in the pose
regression problem. Validity of the GRF model can also be seen as the regression outputs, the yaw
and nod of the face pose, vary smoothly along the 6-nn graph generated from Euclidean distance of
the first 240 principal components of the face image pixels. For Figure 4, the graph is visualized via
Isomap (Tenenbaum et al., 2000) with which the correspondence between the location of a node and
its actual pose is more clear.

We also marked the first portion of nodes selected by Σ-optimality active learning criterion to gain
insights about its behavior. They are marked with red squares or input snapshots if applicable. To
the active learner, the only node labels visible are the marked ones.

(a) dblp coauthorship (b) Citeseer coauthorship (c) Cora citation

(d) digits 7-nn graph (e) isolet4 4-nn graph (f) isolete 4-nn graph (g) pose 6-nn graph

Figure 4: Visualization of the graphs we use via OpenOrd (a-f) or Isomap (g). Node colors in (a-f)
indicate classes. (a-c) are network graphs. (d-f) are k-nn graphs for classification. (g) is a k-nn graph
for regression. Squares or input snapshots mark the nodes queried decided by our Σ-optimality,
starting from not knowing any class labels.

5 Analysis

At a first step, we analyzed our method and other baseline methods conceptually or under simple
cases. The goal is to gain intuitions about the behavior of every method and to find out the types of
problems that every method is more suitable for.

5.1 Insights From Comparing the Greedy Applications of Σ- and V-Optimality Criteria

First, we compare V- and Σ-optimality because the former is a recent successful method and the
latter is a variant of the former. Both V/Σ-optimality criteria are approximations to the 0/1 risk min-
imization objective. Unfortunately, we cannot theoretically reason why Σ-optimality outperforms
V-optimality in the experiments. However, we made two observations during our investigation that
provide some insights.
Observation 4. Eq. (3.2) and (3.3) suggest that both the greedy Σ/V-optimality selects nodes that
(1) have high variance and (2) are highly correlated to high-variance nodes, conditioned on the
labeled nodes.
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In order to contrast the Σ/V-optimality, rewrite (3.3) as:

(Σ-optimality) : arg max
v∈u

(
∑
t∈u

ρvtσt)
2 =

∑
t∈u

ρ2
vtσ

2
t +

∑
t1 6=t2∈u

ρvt1ρvt2σt1σt2 . (5.1)

Observation 5. The Σ-optimality has one more term that involves cross products of (ρvt1σt1) and
(ρvt2σt2) (which are nonnegative according to Lemma 9). By Cauchy–Schwartz Inequality, the sum
of these cross products are maximized when they equal. So, the Σ-optimality additionally favors
nodes that (3) have consistent global influence, i.e., that are more likely to be in cluster centers.

To visualize the intuitions described above, Figure 5 shows the first few nodes selected by different
optimality criteria. This graph is constructed by a breadth-first search from a random node in a
larger DBLP coauthorship network graph that we will introduce in the next section. On this toy
graph, both criteria pick the same center node to query first. However, for the second and third
queries, V-optimality weighs the uncertainty of the candidate node more, choosing outliers, whereas
Σ-optimality favors nodes with universal influence over the graph and goes to cluster centers.

 

 

  class 1

  class 2

  class 3

  Σ−optimality

  V−optimality

Figure 5: Toy graph demonstrating the behavior of Σ-optimality vs. V-optimality.

5.2 Simulating the Node Labels on a Graph

To further investigate the behavior of Σ- and V-optimality, we conducted experiments on synthetic
labels generated on real-world network graphs. The node labels were first simulated using the model
in order to compare the active learning criteria directly without raising questions of model fit. We
carry out tests on the same graphs with real data in the next section.

For active learning, Σ-optimality outperforms V-optimality on various graphs.

We simulated the binary labels with the GRF-sigmoid model and performed active learning with
the GRF/LP model for predictions. The parameters in the generation phase were β = 0.01 and
δ = 0.05, which maximizes the average classification accuracy increases from 50 random training
nodes to 200 random training nodes using the GRF/LP model for predictions. Figure ?? shows the
binary classification accuracy versus the number of queries on both the DBLP coauthorship graph
and the CORA citation graph that we will describe below. The best possible classification results are
indicated by the leave-one-out (LOO) accuracies given under each plot.

Figure 6 can be a surprise due to the reasoning behind the L2 surrogate loss, especially when the
predictive means are trapped between [−1, 1], but we see here that our reasoning in Section 5.1 can
lead to the survey loss actually making a better active learning objective.
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(a) DBLP coauthorship graph. 68.3% LOO accuracy.
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(b) Cora citation graph. 60.8% LOO accuracy

Figure 6: Simulating binary labels by the GRF-Sigmoid; learning with the GRF/BP, 250 repetitions.

We have also performed preliminary experiments with different values of β and δ. Despite that larger
β and smaller δ increase label independence on the graph structure and undermine the effectiveness
of both V/Σ-optimality heuristics, we have seen that whenever the V-optimality establishes a supe-
riority over random selections, the Σ-optimality yields better performances. Particularly, a larger δ
increases the performance gap between Σ- and V-optimality, because it decreases the influence from
one node on the graph to another, yielding more significant outliers that hinder the performance of
V-optimality more seriously than Σ-optimality.

For active surveying, Σ-optimality also outperforms V-optimality.

The active surveying problem strives to determine the mean of the (continuous) node labels. When
the objective was set to active surveying, Σ-optimality also outperformed V-optimality (Figure 7).
Here, for simplicity, we set δ = 0 and β = 1. Notice that the random selection is actually a very
competent baseline as the squared standard error of the mean decreases at the rate O(k2), where k
is the number of random query points.
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(a) The DBLP dataset
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(b) The CORA dataset

Figure 7: Active surveying risk comparison. Lower is better. 24 repetitions.

Fail case: when the goal is set to minimize the regression mean-squared-error.
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Apart from classification and surveying problems, another broad active learning application is the
regression problem. The superiority of Σ-optimality over V-optimality predicates on the fact that
the L2 surrogate loss does not reveal the true binary/survey risk in these previous objectives. Yet,
for the regression problem, V-optimality directly minimizes its expected mean-squared-error (MSS).
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(a) The DBLP dataset
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(b) The CORA dataset

Figure 8: Average regression risk comparison. Lower is better. 100 repetitions.

Figure 8 show simulation results in regression settings. Here, we simulate 100 independent draws of
GRF/BP model with δ = 0 and β = 1. The evaluation is the empirical MSE of the predictors among
all node labels. Complying with our intuition, both V-optimality and Σ-optimality win over random
selection, yet V-optimality reduces the MSE even more efficiently than Σ-optimality.

6 Results

6.1 Network Graphs

Classification. For active classification, Figure 9 shows the prediction accuracy of the unlabeled
nodes using only the labels from the nodes that each active learning queries, except for the first
common seed node which was assigned at random. Every curve shows the mean and its standard
error after 12 runs.

On all three datasets, Σ-optimality outperforms other methods by a large margin especially during
the first five to ten queries. The runner-up, EER, catches up to Σ-optimality in some cases, but (1)
it is an order slower to evaluate, (2) it requires query results immediately before the next query,
whereas both V-optimality and Σ-optimality do not, and (3) it does not have theoretical guarantees.

The win of Σ-optimality over V-optimality has been intuitively explained in Section 5.1 as Σ-
optimality having better exploration ability and robustness against outliers. That all three active
learning algorithms win over random selection validates the effectiveness of the GRF model which
assumes node labels cluster according to graph clusters.

We also noticed that IG, MIG, and Unc methods do not perform significantly better than random.
This is because these heuristics tend to query mostly outliers on the graph.

Surveying. We also performed real-world experiments on the root-mean-square-error (RMSE) of
the class proportion estimations, which is the survey risk that the Σ-optimality minimizes. The
Σ-optimality beats the V-optimality (Figure 10).

With the survey experiments, the objective is ‖Êŷ − π‖2/
√
C on unlabeled set u, where ŷ is the

vector of prediction means in different one-vs-alls, C is the number of classes and π is the C-
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(a) DBLP. 87% LOO accuracy.
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(b) CORA. 90% LOO accuracy.
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(c) CITESEER 80% LOO accuracy.

Figure 9: Classification accuracy vs the number of queries. β = 1, δ = 0. Randomized first query.

dimensional true class distribution of unlabeled nodes. Every curve shows the mean and its standard
error after 12 random initializations.
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(a) DBLP coauthorship, 4 classes.
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(b) Cora citation, 7 classes.
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(c) CiteSeer citation, 6 classes.

Figure 10: Survey RMSE, ‖Êŷ − π‖2/
√
C, on unlabeled set u. Model is GRF/BP with δ = 0.

6.2 Manifold Graph Embeddings of the Euclidean Space

Detailed data preprocessing. To embed the Euclidean features from the databases digits, ISOLETe,
ISOLET4, and pose in graphs, we used k-nearest neighbor graphs using the Euclidean distance. In
digits, we created a 7-nearest neighbor graph based on the Euclidean distance of raw features, i.e. the
concatenation of 64 image pixel gray values. The graph was further symmetrized by removing the
direction information (and also doubling the edge weight if an edge was originally bi-directional).
The resulting graph contain 1797 nodes and 8727 edges. Visual inspection shows that the resulting
graph fits the labels well.

In both ISOLETe and ISOLET4, we found the 4-nearest neighbor graph based also on Euclidean
distances of raw features, which is the 617 dimensional domain-specific features. The graphs were
further symmetrized in the same manner. The resulting graph for ISOLETe contains 2160 nodes
and 6337 edges and for ISOLET4 6238 nodes and 18662 edges. Visual inspection shows that the
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resulting graphs are moderately difficult: while some classes are separated from other classes by
sparse cuts, about half of the nodes are close to nodes of other classes in graph distances.

Classification results.
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(a) digits. 99% LOO accuracy.
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(b) ISOLETe. 83% LOO accuracy.
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(c) ISOLET4. 91% LOO accuracy.

Figure 11: Classification accuracy vs the number of queries. Model is GRF/BP with δ = 0.

Figure 11 shows the prediction accuracy of the unlabeled nodes using only the labels from the nodes
that each active learning queries, except for the first common seed node which was assigned at
random. Every curve shows the mean and its standard error after 12 runs.

On all three manifold graph embeddings of the Euclidean space, Σ-optimality again outperforms
other methods by a large margin, while all baseline methods yield to acceptable classification ac-
curacies. We reason that this result follows the spectral and cut similarity between manifold graph
embeddings and the network graphs in previous experiments. Specifically, we observed that in the
2D layouts of these manifold graphs, graph clusters have purer labels and there are also smaller and
less important clusters that distract the heuristics.

Regression. Finally, we performed a graph regression experiment on the pose database. To create
a manifold graph embedding, we used the 7-nearest neighbor graph based on the 240 principal
components of face images that come with the database we downloaded. Then we symmetrized
the resulting graph. There are 698 nodes and 2562 edges on this graph. The validity of this graph
is checked as we recover a 2-dimensional (2D) Euclidean space layout of our graph similar to the
Isomap method (Tenenbaum et al., 2000). The relative positions of the recovered 2D coordinates
agree with the relative yaws and pitches of the original face poses.
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Figure 12: Regression RMSE vs the number of queries on the pose 7-nn graph. Lower is better.

Figure 12 show the RMSE of the 2D pose predictors of all unlabeled nodes based on the 2D pose
labels queried by various active learning heuristics. The curves are averaged after 12 runs from
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different randomly sampled starting nodes. The error bars show the standard error of the mean. V-
optimality outperforms Σ-optimality and both outperformed random selection. The result is similar
to what we have seen in the simulation. An explanation is that for active regression problems,
V-optimality directly minimizes the corresponding risk and thus is the best-performing heuristic.

7 Discussions

For classification and surveying experiments, Σ-optimality reasonably outperformed all its competi-
tors. The reason is explained below.

Notice that the randomness in node classifications on real network graphs is limited, because it is
hard to subsample a graph when we are unclear what properties we should keep. As a result, the only
randomness comes from the initiation of the first query node, which does not affect the behavior of
most algorithms because they generally simply ignore the first query node and re-selects their own
favorite nodes to start. The blips in many curves are for this reason. In k-nn graphs, randomness
of the graph can be created by subsampling 70% of the examples. Thus, the curves appear much
smoother.

7.1 Visualization of Node Selections

To gain insights of the empirical behavior of different active learning criteria, we visually inspected
the choices of various criteria in the OpenOrd embeddings of the DBLP database.

(a) Σ-optimality (b) V-optimality (c) IG

(d) MIG (e) Unc (f) EER

Figure 13: DBLP coauthorship graph. First 10 queries decided in a greedy sequential manner.

We used the OpenOrd toolbox (Martin et al., 2011) in the Gephi software to lay out the graph in
2D. The node colors indicate the classes which the nodes belong to. They are not visible to active
learners until the nodes have been queried. The query decisions were made in a greedy sequential
manner. In these visualizations, the first query for all algorithms were fixed at the node of the largest
degree.

In Figure 13, the central part corresponds to the majority of the nodes, which have strong connections
with each other. The periphery contains many outlying nodes which provide little information to
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classifications of the central nodes because their connections are weak. A desirable set of queries
should explore denser regions in the central part, which correspond to clusters of reasonable size
and interesting nodes. However, the presence of many sparse cuts on the periphery hinders the
performance of many other active learning strategies. It is clear that Σ-optimality selected a set of
very reasonable queries, because it exploits the cluster structure in the central part.

Figure 13(b) shows that V-optimality went after small clusters if not outliers in the periphery. It may
be because that the 2-norm score used for greedy update in (3.2) gives a high score to a node which
has fewer but stronger connections to very uncertain nodes. In contrast, the square of 1-norm used
in (3.3) favors the number of links more than the quality of links and the uncertainty of the nodes
that they connect to.

Figure 13(c) shows the information gain criterion, which is equivalent to a criterion that selects
nodes with the highest variance. These nodes correspond to the edge of a graph and are not very
helpful for predicting other node labels.

Figure 13(d) is an improvement over (c). The resulting sample set is similar to (b). It avoid querying
the very edge of the graph, but still query the centers of very small yet sparse cuts at the edge of the
graph. It is not as good as (a).

Figure 13(e) shows the decision of uncertainty sampling which is based solely on predictive means.
An interesting observation in (e) is that all following query decisions are all made along the path
from the first query point to the second query point. The reason is that in label propagation, only
nodes that connect to more than one labeled nodes can possibly have a predictive mean between 0
and 1, because of the effect of Markove blankets. Generally, radial strings of nodes are common in
network graphs and thus uncertainty sampling fail to explore the graph in most cases.

Figure 13(f) shows the decision of expected error reduction which is another criterion based solely
on predictive means. EER fails because of its bias to avoid risks. In the very beginning, EER sees
only one class and infers that the predictive means of all other labels have value 1 for the class EER
has seen and 0 for any other class. Thus, any new query may cause surprises and lower the expected
accuracy after it is made. In order to minimize risk, EER only queries nodes that have small variance,
i.e. being very close to other queried nodes. The fact that EER remains low accuracy after many
samples in k-nn graphs can be explained by the above observation. The result of EER in network
graphs is much improved because in these graphs, the node labels contain much noise which helps
resolve the bias in EER quickly. However, even so, the behavior of EER is unpredictable, because it
is unclear which type of bias is resolved/accumulated.

A final remark is that for active regression, a set of query point at the periphery of a graph may be
desirable, because they reolves regions with the highest variance. Examples have been shown in
simulations (Figure 8 and with pose dataset (Figure 12). As for binary classification, the GRF makes
its biggest relaxation error at the periphery, where the actual variance is always bounded. Thus, risk
minimization methods that directly applies to the GRF model generally fails.

8 Limitations

The randomness of our experiments with network graphs is limited, because it is hard to subsample
a network graph while arguably maintain its desirable properties. There is neither a convincingly
principled way to simulate node labels because GRF is a relaxation of the actual binary model, which
is computationally infeasible to deal with. We tried to combat this limitation with multiple attempts
to increase randomness and using many different datasets of the same nature.

Another limitation comes from the fact that Σ-optimality does not include predictive means in its
criterion. This limitation is alleviated if the relevancy of the graph structure and the node labels
is high. However, it may raise concerns if the noise-level of node labels are not consistent with
the model, in which case it could happen that one cluster requires more queries because the actual
connections in that cluster are weaker than modeled by GRF, if not null. Nonetheless, while including
predictive means in the criterion, e.g. in an EER fashion, increases robustness to GRF modeling error,
there will also be more parameters to tune and the behavior of the EER part in the criterion may be
hard to analyze.
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9 Conclusion & Future Work

For active learning on GRFs, it is common to use variance minimization criteria with greedy one-
step lookahead heuristics. V-optimality and Σ-optimality are two criteria based on statistics of the
predictive covariance matrix. They both are also risk minimization criteria. V-optimality minimizes
the L2 risk (2.3) whereas Σ-optimality minimizes the survey risk (2.5).

Active learning with both criteria can be seen as subset optimization problems (2.4), (2.6). Both
objective functions on the risk reduction are submodular set functions. Therefore, greedy one-
step lookahead applications of these criteria can achieve a (1 − 1/e) global optimality ratio for risk
reduction. Moreover, GRFs may serve as a tangible example to the otherwise abstract suppressor-free
condition.

While the V-optimality on GRFs inherits from label propagation (and random walk with absorptions)
and have good empirical performance, it is not directly minimizing the 0/1 classification risk. We
found that the Σ-optimality performs even better. The intuition is described in section 5.1. Our
claim was also backed by extensive experiments on both synthetic data and real-world data.

It is unclear whether there exist more fundamental reasons that explain what types of graphs the
greedy Σ- and V-optimality work better. Neither do we know the graph-theoretic motivation behind
Σ-optimality. Future work aims to answer these questions.
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Appendix

A Proofs

Our results predicate on and extend to GPs whose inverse covariance matrix meets Proposition 6.
Proposition 6. L satisfies the following. 11

# Textual description Mathematical expression

p6.1 L has proper signs. lij ≥ 0 if i = j and lij ≤ 0 if i 6= j.
p6.2 L is undirected and connected. lij = lji∀i, j and

∑
j 6=i(−lij) > 0.

p6.3 Node degree no less than number of edges. lii ≥
∑
j 6=i(−lij) =

∑
j 6=i(−lji) > 0,∀i.

p6.4 L is nonsingular and positive-definite. ∃i : lii >
∑
j 6=i(−lij) =

∑
j 6=i(−lji) > 0.

Although the properties of V-optimality fall into the more general class of spectral functions (Fried-
land & Gaubert (2011)), we have seen no proof of either the suppressor-free condition or the sub-
modularity of Σ-optimality on GRFs.
Lemma 7. For any L satisfying (p6.1-4), L−1 ≥ 0 entry-wise.12

Proof. Suppose L = D −W = D(I −D−1W ), with D = diag (L). According to (p6.1), D ≥ 0,
W ≥ 0 and D−1W ≥ 0. Furthermore, by (p6.3),

0 ≤ D−1W ≤
( wij∑

k wik

)N
i,j=1

, (.1)

and so the matrix norm ‖D−1W‖∞ ≤ 1. Thus, any eigenvalue λk and its corresponding eigenvector
vk of D−1W needs to satisfy |λk|‖vk‖∞ = ‖D−1Wvk‖∞ ≤ ‖vk‖∞, i.e. |λk| ≤ 1,∀k = 1, ..., N .

When L is nonsingular, (I − D−1W ) is invertible, i.e., has no zero eigenvalue. Hence, |λk| <
1,∀k = 1, ..., N and limn→∞(D−1W )n = 0. The latter yields the convergence of Taylor expan-
sion,

L−1 = [I +
∑∞
r=1(D−1W )r]D−1. (.2)

It suffices to observe that every term on the right hand side (RHS) is nonnegative.

Corollary 8. The GRF prediction operator L−1
u Lul maps y` ∈ [0, 1]|`| to ŷu = −L−1

u Luly` ∈
[0, 1]|u|. When L is singular, the mapping is onto.

Proof. For y` = 1, (Lu, Lul) · 1 ≥ 0 and L−1
u ≥ 0 imply

(
I, L−1

u Lul
)
· 1 ≥ 0, i.e. 1 ≥

−L−1
u Lul1 = ŷu.

As both Lu ≥ 0 and −Lul ≥ 0, we have y` ≥ 0⇒ ŷu ≥ 0 and y` ≥ y′` ⇒ ŷu ≥ ŷ′u.

Lemma 9. Suppose L =

(
L11 L12

L21 L22

)
, then L−1 −

(
L−1

11 0
0 0

)
≥ 0 and is positive-semidefinite.

Proof. When L is nonsingular, by the block matrix inversion theorem,

L−1 −
(
L−1

11 0
0 0

)
=

(
L−1

11 (−L12)
I

)
(L22 − L21L

−1
11 L12)−1

(
(−L21)L−1

11 , I
)

(.3)

By assumption (p6.4), L−1 is positive-definite, so is its lower right principal submatrix (L22 −

L21L
−1
11 L12)−1. Thus, L−1 −

(
L11 0
0 0

)
is positive-semidefinite.

By Lemma 7, L−1 ≥ 0 and this implies that its lower right (L22 − L21L
−1
11 L12)−1 ≥ 0. The

submatrix L11 also satisfies (p6.1-4) and by Lemma 1, L−1
11 ≥ 0. By the sign rule (p6.1), (−L12) =

11Property p6.4 holds after the first query is done or when the regularizer δ > 0 in (2.1).
12In the following, for any vector or matrix A, A ≥ 0 always stands for A being (entry-wise) nonnegative.
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(−L21)T ≥ 0. Now that every term on the right side of (.3) is nonnegative, the left side also has to
be so.

As a corollary, the monotonicity in (3.8) for both R(·) = RV (·) or RΣ(·) can be shown.

Both proofs for submodularity in (3.9) and Theorem 3 result from more careful execution of matrix
inversions. We first state the key property in these executions of matrix inversions and then prove
both results.
Proposition 10. Without loss of generality, let u = v − ` = {1, . . . , k} and v = vk. Partition the
matrix:

L(v−`) =

(
L(v−`∪{v}) L(v−`∪{v}),{v}

L{v},(v−`∪{v}) L{v}

)
:=

(
A b
bT c

)
(.4)

By the block matrix inversion theorem,(
C d
dT e

)
:=

(
A b
bT c

)−1

=

(
A−1 0

0 0

)
+

(
A−1bbTA−1

c−bTA−1b
−A−1b

c−bTA−1b
−bTA−1

c−bTA−1b
1

c−bTA−1b

)
. (.5)

Proof. submodularity in (3.9) for R∆(·). Adopting the notations in Proposition 10,

L−1
(v−`) − L

−1
(v−`−{v}) =

(
A b
bT c

)−1

−
(
A−1 0

0 0

)
=

(
−A−1b

1

)
1

c− bTA−1b

(
−bTA−1, 1

)
(.6)

For V-optimality,

R∆(` ∪ {v})−R∆(`) = tr
(
−L−1

(v−`−{v}) + L−1
(v−`)

)
=

((−bT )A−1)(A−1(−b)) + 1

c− (−b)TA−1(−b)
.

As every term on the RHS has been written as nonnegative entry-wise, by taking submatrices/vectors
of consistent rows/columns of A and −b, the values of (−bT )A−1 and (−bT )A−1(−b) decrease.

Notice that both A and b correspond to (v − ` ∪ {v}). Thus, as ` grows, A and b shrink in size,
R∆(` ∪ {v})−R∆(`) diminishes.

For Σ-optimality,

R∆(` ∪ {v})−R∆(`) = 1T ·
(
−L−1

(v−`−{v}) + L−1
(v−`)

)
· 1 =

((−bT ) ·A−1 · 1)2

c− (−b)TA−1(−b)
.

Similar arguments hold.

Proof. Theorem 3. Adopt the notations in Proposition 10. Dividing the vector d by the diagonal
number e yields ∀i 6= k:

Cov(yi, yk|`)
Var(yk|`)

=
(L−1

(v−`1))ik

(L−1
(v−`1))kk

=
1

e
· di =

(−A−1b)i
c− bTA−1b

/
1

c− bTA−1b
= (A−1(−b))i. (.7)

That −b ≥ 0 and A−1 ≥ 0 leads to A−1(−b)T ≥ Ã−1(−b̃) ≥ 0 if Ã and b̃ are subsets of consistent
columns/rows (Lemma 9), i.e.,

(L−1
(v−`))ik

(L−1
(v−`))kk

≥
(L−1

(v−`∪`2))ik

(L−1
(v−`∪`2))kk

≥ 0 ∀i 6= k 6∈ ` ∪ `2. (.8)

Similarly, reordering the indices,
(L−1

(v−`))ik

(L−1
(v−`))ii

≥
(L−1

(v−`∪`2))ik

(L−1
(v−`∪`2))ii

≥ 0. It suffices to multiply both

sides of the above.
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