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Abstract

We propose Discovering Novel Anomalous Patterns (DAP), a new method for continual and auto-
mated discovery of anomalous patterns in general datasets. Currently, general methods for anomalous
pattern detection attempt to identify data patterns that are unexpected as compared to “normal” system
behavior. We propose a novel approach for discovering data patterns that are unexpected given a profile
of previously known, both normal and abnormal, system behavior. This enables the DAP algorithm to
identify previously unknown data patterns, add these newly discovered patterns to the profile of “known”
system behavior, and continue to discover novel (unknown) patterns. We evaluate the performance of
DAP in two domains of computer system intrusion detection (network intrusion detection and masquer-
ade detection), demonstrating that DAP can successfully discover and characterize relevant patterns for
these two tasks. As compared to the current state of the art, DAP provides a substantially improved
ability to discover novel patterns in massive multivariate datasets.

1 Introduction

The ability to automatically and continually discover novel anomalous patterns in massive multivariate data is
an important tool for knowledge discovery. For concreteness consider an analyst who is tasked with detecting
attacks or intrusions on a system. It is imperative that the analyst identify novel (previously unknown)
attacks, allowing for the proper rectification of possible system exploits. There is still utility in identifying
previously known attacks, as it may highlight the persistence of specific vulnerabilities, however this is a
challenge of classification not necessarily pattern discovery. After identifying a new attack and following the
established security protocols, the analyst will resume his task of discovering previously unknown threats to
the system.

Here we focus on the task of continual anomalous pattern discovery in general data, i.e., datasets where
data records are described by an arbitrary set of attributes. We describe the anomalous pattern discovery
problem as continually detecting groups of anomalous records and characterizing their anomalous features,
with the intention of understanding the anomalous process that generated these groups. The anomalous
pattern discovery task begins with the assumption that there are a set of processes generating records in a
dataset and these processes can be partitioned into two sets: those currently known and unknown to the
system. The set of known processes contains the “background” process, which generates records that are
typical and expected; these records are assumed to constitute the majority of the dataset. Records that
do not correspond to the background or any of the other known data patterns, and therefore represent
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unfamiliar system behavior, are assumed to have been generated by an anomalous process and follow an
alternative data pattern.

Anomalous pattern discovery diverges from most previous anomaly detection methods, as the latter
traditionally focuses on the detection of single anomalous data records, e.g., detecting a malicious network
connection or session. If these anomalies are generated by a process which is very different from every element
in the set of known processes, it may be sufficient to evaluate each individual record in isolation because many
of the records’ attributes will be atypical, or individual attributes may take on extremely surprising values,
when considered under the known data distributions. However, a subtle anomalous process—an intelligent
intruder who attempts to disguise their activity so that it closely resembles legitimate connections—will
generate records that may each be only slightly anomalous and therefore extremely challenging to detect. In
such a case, each individual record (malicious session) may only be slightly anomalous. The key insight is
to acknowledge and leverage the group structure of these records, since we expect records generated by the
same process to have a high degree of similarity. Therefore, we propose to incrementally detect self-similar
groups of records, for which some subset of attributes are unexpected given the known data distributions.

The rest of the paper is organized as follows: in Section 2, we review related work; then in Section 3, we
present our general anomalous pattern discovery framework, while our specific algorithmic solution to the
framework is presented in Section 4; the experimental results are discussed in 5; finally, we conclude this
work in Section 6.

2 Related Work

In this section, we review the related work, which can be categorized into three major groups: intrusion de-
tection, rare category analysis and anomalous pattern detection for general data. Additionally, we juxtapose
the general tasks of anomalous pattern discovery and anomalous pattern detection, while proposing a simple
extension to the current state of the art method in anomalous pattern detection, allowing it accomplish the
task of discovery. We will utilize this simple extension as a baseline for comparison to our method presented
in Section 4.

Network Intrusion Detection continues to be a popular topic of research in computer systems security
and machine learning. [13] provides a historical overview of intrusion and intrusion detection from the early
1970s to the early 2000s, while [15] and [11] focus more on methodological advances over the latter part of
this time span. Similarly, [20] provide an overview of popular and more recent machine learning algorithms
designed for classifying or detecting intrusions. We argue that all the methods surveyed by these authors
suffer from at least one important limitation, separating it from the work we introduce in this article as well
as the other related work discussed below. Many methods require previous examples of relevant intrusions
and are specifically designed for the challenge of network intrusions; therefore, these methods can attribute
a significant amount of their success to prior knowledge of the behavior of interest. A second limitation is
that most methods evaluate each record in isolation, while the methods evaluated below attempt to leverage
the group structure of records the potentially relevant records. A third limitation is the inability of these
methods to provide a framework for the continual uncovering of the various abnormal pattern types. Instead
of focusing on the specific task of identifying network intrusions, our work is a general method for continual
pattern discovery, most useful for incrementally identifying interesting and non-obvious patterns occurring
in the data, when there is little knowledge of what patterns to look for. Additionally, the anomalous pattern
detection literature [3, 17, 1, 9] described below demonstrates that evaluating potential records of interest
in the context of all other records likely to be generated by the same anomalous process, can significantly
improve our power to detect anomalies (including those in the network intrusion domain) as compared to
evaluating records in isolation.

Rare Category Detection is defined as given a set of data points {R1, . . . , Rn}, with Ri ∈ Rd, each
from one of K distinct classes, finding at least one example from each class with the help of a labeling oracle,
while minimizing the number of label queries. An initial solution to this task fits a mixture model to the
data, and selects points to label based on the Interleaving approach [18]. However, this approach and many
others require that the majority classes and minority (rare) classes are separable, or experience significantly
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compromised detection power when this assumption is violated. The authors of [5, 6] allow for inseparable
classes, but still require knowing the number of rare classes and the proportion of of the data that belong to
this classes. Additionally, there is the assumption that the probability densities of the majority classes are
sufficiently smooth, and the support regions of the each minority class is small. [7] relaxes the requirement
for prior information, but assumes the probability densities follows a semi-parametric form.

Each these methods are essentially mechanisms to rank data points based on the likelihood they are
members of a rare class. The goal of our work is to continually discover the existence of an anomalous
process by finding a group of records for which a subset of its attributes are anomalous. The authors of
[8] do propose a method for simultaneously detecting and characterizing the features of a minority class;
however, it is only optimized for existence of one minority class and again requires the proportion of the data
belonging to the minority class be provided. More generally, rare category detection paradigm assumes each
data point is a vector of real-values, while the anomalous pattern discovery paradigm permits categorical and
real-valued data features. This assumption of only real-values is exploited by the theory and optimization
mechanisms found in much of this literature; if possible, extending these methods to mixed datasets would
be non-trivial.

Anomalous Pattern Detection for general datasets can be reduced to a sequence of tasks: learning
a model M0 to representing the normal or expected data distribution, defining the search space (i.e., which
subsets of the data will be considered), choosing a function to score the interestingness or anomalousness
of a subset, and optimizing this function over the search space in order to find the highest scoring subsets.
Each anomalous pattern detection method discussed here, learns the structure and parameters of a Bayesian
network from training data to represent M0, and then searches for subsets of records in test data that are
collectively anomalous given M0. [2] presents a simple solution to the problem of individual record anomaly
detection by computing each record’s likelihood given M0, and assuming that the lowest-likelihood records
are most anomalous. Although efficient, this method will lose power to detect anomalous groups produced
by a subtle anomalous process where each record, when considered individually, is only slightly anomalous.
The authors of [3] allow for subsets larger than one record by finding rules (conjunction of attribute values)
with higher than expected number of low-likelihood records. However, this method also loses power to detect
subtle anomalies because of its dependency on individual record anomalousness, permission of records within
a group to each be anomalous for different reasons, and the need to reduce its search space of all rules to
only those composed of 2-components. [17, 1] increases detection ability by maximizing a likelihood ratio
statistic over subsets of records, however this method must reduce its search space and use a greedy heuristic
because the space of all possible subsets of records is too vast to search over exhaustively. The authors of
[9] improve on these previous methods by defining the pattern detection problem as a search over subsets of
data records and subsets of attributes, and searching for self-similar groups of records for which some subset
of attributes is anomalous given M0.

3 Anomalous Pattern Discovery Framework

We propose a general framework that allows for the continual discovery of novel anomalous patterns by
maintaining a collection of models representing known pattern types Mknown = {M0, . . . ,MK}. Similar
to [9], we frame our discovery problem as a search over subsets of data record and subsets of attributes.
More precisely, we define a set of data records R = {R1 . . . RN} and attributes A = {A1 . . . AM}. For each
record Ri, we assume that we have a value vij for each attribute Aj . We then define the subsets S under
consideration to be S = R×A, where SR ⊆ R and SA ⊆ A. The null hypothesis H0 is that every record Ri
is drawn from a known pattern type Mk, while the alternative hypothesis H1(S = SR × SA) is that for the
subset of records SR, the subset of attributes SA are not drawn from any of the known models. Therefore,
we wish to identify the most anomalous subset

S∗ = S∗R × S∗A = arg max
S

F (S), (1)

where the score function F (S) defines the anomalousness of a subset of records and attributes when considered
across K + 1 known pattern types.
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Figure 1: Anomalous Pattern Discovery Framework

Our framework, shown in Figure 3, captures the integral components of an anomalous pattern discovery
method:

(1) A (probabilistic) model capable of representing a data generating process, i.e., the “normal” and the
other known pattern types.
(2) Given test data, and possibly multiple known pattern types, a method capable of identifying the subset
of data most likely generated by an unknown process.
(3) A mechanism to update component (2) with curated patterns representing an novel data generating
process.

The pattern detection task addressed in [9] and our task of pattern discovery may appear to be framed
similarly–e.g., a search over subsets of records and subsets of attributes–however, every pattern detection
method described in §2 fails to demonstrate the last two integral features described above. The pattern
detection methods cannot distinguish between subsets generated by multiple known and unknown processes,
while continually incorporating information from discovered patterns, because they are only capable of
modeling the background pattern type M0. It is therefore very unlikely that our analyst from §1 would be
able to utilize any of these pattern detection methods to identify pernicious system activity indicative of a
novel attack because patterns that have been previously identified, but are highly abnormal as compared to
baseline behavior, would continue to be reported. Furthermore, if the analyst was capable of identifying a
novel threat, these methods provide no updating mechanism that allows for this knowledge to be incorporated
into future searches. We note that one simple way to allow pattern detection methods to incorporate this
knowledge into future searches is to simply update the background model M0, having it represent all known
pattern types. Intuitively, this is less than ideal because with each additional pattern type M0 is required to
represent, the model dilutes and loses the ability to represent any individual pattern type well. In §5 we will
demonstrate this phenomena empirically by comparing our method for anomalous pattern discovery to this
simple extension, which we will refer to as FGSS-MM (a mixture model extension to the Fast Generalized
Subset Scan algorithm proposed in [9]).

Although the current state of pattern detection does not address these necessary conditions of pattern
discovery because it assumes the existence of only one known pattern type M0, we can think of the pattern
detection task as a special case of pattern discovery, occurring when the collection of known data models only
includes M0. More specifically, our Discovering Novel Anomalous Patterns algorithm presented in section 4
is a generalization of the Fast Generalized Subset Scan algorithm for anomalous pattern detection proposed
by the authors in [9], allowing for the continual discovery of self-similar groups of records, for which some
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subset of attributes are unexpected given a collection of known data distributions.

4 Discovering Novel Anomalous Patterns

Discovering Novel Anomalous Patterns (DAP) is a method for continual anomalous pattern discovery in
general data given a set of known models, where each model represents the data distribution when a partic-
ular known pattern type is present. The DAP algorithm assumes that all attributes are categorical, binning
continuous valued attributes, but future work will extend the approach to explicitly model continuous at-
tributes as well. The DAP algorithm is designed to discover the existence of an anomalous data generating
process, by detecting groups of self-similar records that are unlikely to be generated by a known data process.
A record is considered unlikely if the conditional probabilities of a subset of its attributes are significantly
low when evaluated under each known data distribution separately. An overview of the DAP algorithm is
given in Section 4.7, and we now explain each step in detail.

4.1 Modeling Pattern Types

The DAP algorithm first learns a Bayesian network corresponding to each of the known pattern types Mknown

using the Optimal Reinsertion method proposed by [14] to learn the structures, and using smoothed maximum
likelihoods to estimate the parameters of the conditional probability tables. The background model M0 is
typically learned from a separate “clean” dataset of training data assumed to contain no anomalous patterns,
but can also be learned from the test data if the proportion of anomalies is assumed to be very small. The
Bayesian network representing a particular anomalous pattern type can similarly be learned from labeled
training data, or from examples discovered in the test data after a particular iteration of the DAP algorithm.
For the purposes of this current work, we assume that we have a sufficiently large collection of training data
from which to learn each model, while a focus of future work will be the challenge of learning representative
models from possibly small samples of novel anomalous patterns.

4.2 Computing The Anomalousness of Data Values

Given a model Mk representing a known pattern type, we compute

lijk = PMk
(Aj = vij |Ap(j) = vi,p(j)) (2)

representing the conditional probability of the observed value vij under Mk, given its observed parent at-
tribute values for record Ri. We compute these individual attribute-value likelihoods for all records in the
test dataset, under each model Mk, producing a N ×M matrix of likelihoods for each of the K + 1 models.
We note that

lijk = PMk
(Aj = vij |Ab(j) = vi,b(j)), (3)

where b(j) returns the Markov blanket of attribute Aj , is an alternative formulation to (2). More specifically,
(3) represents the conditional probability of the observed value vij under Mk, given all the other attributes’
values for record Ri. The parent attributes of Aj , the conditioning set in (2), are a subset of Aj ’s Markov
blanket, the conditioning set in (3). The major difference is that (2) assumes that an anomalous process
will make an ex ante intervention on the underlying generating process (i.e., a node is forced to take a given
value while the data record is being generated, thus also affecting the probability distributions of the node’s
descendants in the Bayesian network model), while (3) assumes an anomalous process will make an ex post
intervention (a node is forced to take a given value after the data is generated, leaving all other attributes’
values unaffected). Our DAP algorithm can accommodate either conditional probability formulation, but for
evaluation purposes we select (2) as it better corresponds to the data generating process of our experimental
data described in §5.

The next step of our algorithm converts each element in the matrix of test likelihoods lijk to a correspond-
ing empirical p-value range pijk. To properly understand this conversion, consider that for an attribute Aj
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there is some true distribution of likelihoods lijk under Mk. If we allow Ljk to represent a random variable
drawn from this this distribution, we can define the quantities

pmin(pijk) = PMk
(Ljk < lijk) , (4)

pmax(pijk) = PMk
(Ljk ≤ lijk) . (5)

Intuitively, (5) represents the probability of getting an equally likely or more unlikely value of attribute Aj
for record Ri, if it were truly generated by model Mk. More specifically, it is equivalent to evaluating the
cumulative distribution function (represented by Mk) of Aj ’s likelihoods at lijk. Therefore, if Ri is truly
drawn from Mk, then (5) represents an empirical p-value and is asymptotically distributed Uniform[0, 1].
We then define the empirical p-value range corresponding to likelihood lijk as

pijk = [pmin(pijk), pmax(pijk)] .

In addition to the many advantages of empirical p-value ranges described by [9], including their ability to
appropriately handle ties in likelihoods, we will present advantages in the specific context of anomalous
pattern discovery. We begin by defining the quantity nα(pij), representing the significance of a p-value
range, as follows:

nα(pijk) =


1 if pmax(pijk) < α

0 if pmin(pijk) > α
α−pmin(pijk)

pmax(pijk)−pmin(pijk)
otherwise.

This quantity is a generalization of the traditional binary measurement of significance for p-values, necessary
for p-value ranges, and can be considered the proportion of a range that is significant at level α, or equiva-
lently, the probability that a p-value drawn uniformly from [pmin(pijk), pmax(pijk)] is less than α. Next we
define the following functions:

m(Ri, SA) = arg mink
∑

Aj∈SA

nα(pijk), (6)

nα(Ri, SA) =
∑

Aj∈SA

nα (pijk) s.t. k = m (Ri, SA) (7)

The function in (6) identifies which known model minimizes a record Ri’s number of significant p-value
ranges (or more intuitively which model “best fits” the record) for a given subset of attributes SA, while (7)
calculates how many p-value ranges are significant for record Ri and attributes SA when considered under
the minimizing (empirically “best fitting”) model. Now for a subset S = SR × SA, we can then define the
following quantities:

Nα (S) =
∑

Ri∈SR

nα(Ri, SA), (8)

N(S) =
∑

Ri∈SR

∑
Aj∈SA

1. (9)

The quantity in (8) can informally be described as the number of p-value ranges in S which are significant at
level α–when each record is mapped to its minimizing model–but is more precisely the total probability mass
less than α in these p-value ranges, since it is possible for a range pijk to have pmin(pijk) ≤ α ≤ pmax(pijk).
The quantity in (9) represents the total number of empirical p-value ranges contained in subset S, after each
record has been mapped to a particular “best fitting” model. We also define

mtrue(Ri) = Mk ∈Mknown s.t. Ri ∼Mk, (10)

ntrueα (Ri, SA) =
∑

Aj∈SA

nα (pijk) s.t. k = mtrue (Ri) , (11)
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where (10) returns Ri’s true data generating process, and note that

Nα (S) ≤
∑

Ri∈SR

ntrueα (Ri, SA),

because the minimum of a set is trivially bounded above by any element of the set, and recall we assume
under H0 that the true generating process in contained in Mknown.

Therefore, for a subset S = SR × SA consisting of N(S) empirical p-value ranges, we can compute an
upper-bound on the expected number of significant p-value ranges under the null hypothesis H0:

E [Nα(S)] = E

[ ∑
Ri∈SR

nα(Ri, SA)

]
=

∑
Ri∈SR

E [nα(Ri, SA)]

≤
∑

Ri∈SR

E
[
ntrueα (Ri, SA)

]
=

∑
Ri∈SR

∑
Aj∈SA

E [nα (pijk)] s.t. k = mtrue (Ri)

=
∑

Ri∈SR

∑
Aj∈SA

α

= αN(S).

(12)

We note that
E [Nα(S)] = αN(S) ⇐⇒ nα(Ri, SA) = ntrueα (Ri, SA) ∀ Ri ∈ SR,

otherwise,
E [Nα(S)] < αN(S).

Additionally, (12) follows from the property that the empirical p-values are identically distributed as Uni-
form[0,1] under the null hypothesis, and holds regardless of whether the p-values are independent. Under the
alternative hypothesis, we expect the all the likelihoods lijk (and therefore the corresponding p-value ranges
pijk) to be lower for the affected subset of records and attributes, resulting in a higher value of Nα(S) for
some α. Therefore a subset S where Nα(S) > αN(S) (i.e., a subset with a higher than expected number of
low, significant p-value ranges) is potentially affected by an anomalous process.

4.3 Evaluating Subsets

To determine which subsets of the data are most anomalous, FGSS utilizes a nonparametric scan statistic [9]
to compare the observed and expected number of significantly low p-values contained in subset S. We define
the general form of the nonparametric scan statistic as

F (S) = max
α

Fα(S) = max
α

φ(α,Nα(S), N(S)) (13)

where Nα(S) and N(S) are defined as in (8) and (9) respectively. Then our algorithm utilizes the Higher Crit-
icism (HC) nonparametric scan statistic [4, 9] to compare the observed and expected number of significantly
low p-value ranges contained in subset S. The HC statistic is defined as follows:

φHC(α,Nα, N) =
Nα −Nα√
Nα(1− α)

. (14)

Under the null hypothesis of uniformly distributed p-value ranges, and the additional simplifying assumption
of independence between p-value ranges, the number of empirical p-value ranges less than α is binomially
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distributed with parameters N and α. Therefore the expected number of p-value ranges less than α under H0

is Nα, with a standard deviation of
√
Nα(1− α). This implies that the HC statistic can be interpreted as

the test statistic of a Wald test for the number of significant p-value ranges. We note that the assumption of
independent p-value ranges is not necessarily true in practice, since our method of generating these p-value
ranges may introduce dependence between the p-values for a given record; nevertheless, this assumption
results in a simple and efficiently computable score function.

Although, we can use our nonparametric scan statistic F (S) to evaluate the anomalousness of subsets in
the test data, naively maximizing F (S) over all possible subsets of records and attributes would be infeasible
for even moderately sized datasets, with a computational complexity of O(2N ×2M ). However, [9, Corollary
2] demonstrates that a general class of nonparametric scan statistics, including (14), have the the linear-time
subset scanning (LTSS) property [16], which allows for efficient and exact maximization of (13) over all
subsets of the data. More specifically, for a pair of functions F (S) and G(Ri), which represent the “score”
of a given subset S and the “priority” of data record Ri respectively, the LTSS property guarantees that
the only subsets with the potential to be optimal are those consisting of the top-t highest priority records
{R(1) . . . R(t)}, for some t between 1 and N . This property enables us to search only N of the 2N subsets of
records, while still guaranteeing that the highest-scoring subset will be found.

The objective of maximizing (1) can be re-written, using (13), as

max
α

max
S

φ(α,Nα(S), N(S)). (15)

Furthermore, [9, Corollary 2] demonstrates that for a given α and subset of attributes SA we can compute

max
S

φ(α,Nα(S), N(S)) (16)

over all 2N subsets S = SR ∈ 2R × SA with the following steps:

(R1) Compute the priority for each record using

Gα(Ri) = n−α (Ri, SA)). (17)

(R2) Sort the records from highest to lowest priority.
(R3) For each of the subsets S = {R(1) . . . R(t)} × SA, with t = 1 . . . N , compute φ (α,Nα(S), N(S)).

Similarly, for a given α, subset of records SR, and a subset of attributes S
′

A used to map each record to a
model, we can compute (16) over all 2M subsets S = SR × SA ∈ 2A with the following steps:

(A1) Compute the priority for each attribute using

Gα(Ai, S
′

A) =
∑

Ri∈SR

nα (pijk) s.t. k = m
(
Ri, S

′

A

)
,

(A2) Sort the attributes from highest to lowest priority.
(A3) For each of the subsets S = SR × {A(1) . . . A(t)}, with t = 1 . . .M , compute φ (α,Nα(S), N(S)).

Thus the LTSS property enables efficient computation of (16), over subsets of records or subsets of
attributes, for a given value of α, but we still want to consider “significance levels” α between 0 and some
constant αmax < 1. Maximizing F (S) over a range of α values, rather than for a single arbitrarily-chosen
value of α, enables the nonparametric scan statistic to detect a small number of highly anomalous p-values,
a larger number of subtly anomalous p-values, or anything in between. [9, Theorem 7] demonstrates that
when computing maxα Fα(S), only a small quantity of values can possibly be the maximizing value of α.
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More specifically, the values of α ∈ U(S, αmax) must be considered, where U(S, αmax) is the set of distinct
values {pmax(pijk) : vij ∈ S, pmax(pijk) ≤ αmax} ∪ {0, αmax}. Therefore,

max
S

F (S) = max
α

max
S

Fα(S)

= max
α∈U(S,αmax)

max
S

Fα(S)
(18)

can be efficiently and exactly computed over all subsets S = SR × SA, where SR ⊆ {R1 . . . RN}, for a given
subset of attributes SA. To do so, we consider the set of distinct α values U = U({R1 . . . RN} × SA, αmax).
For each α ∈ U , we follows steps R1-R3 described above. Similarly, (18) can be efficiently and exactly
computed over all subsets S = SR × SA, where SA ⊆ {A1 . . . AM}, for a given subset of records R. In this
case, we consider the set of distinct α values U = U(SR × {A1 . . . AM}, αmax). For each α ∈ U , we follow
the steps A1-A3.

4.4 Search Procedure

We propose the DAP search procedure that scales well with both N and M , utilizing the optimizations
described above to efficiently maximize over subsets of records and subsets of attributes. To do so, we first
choose a subset of attributes A ⊆ {A1...AM} uniformly at random. We then iterate between the efficient
optimization steps described above: optimizing over all subsets of attributes for a given subset of records,
mapping each record to its best fit model, and optimizing over all subsets of records for a given subset of
attributes. We first compute the minimizing mapping MAP = {map1, . . . ,mapN} for each record to its “best
fit” model, for the current subset of attributes A, as follows: mapi = arg minMAP:Ri99KM0,M1,...,MK

Nα(S =
A×Ri|mapi) ∀i. We then maximize F (S) over all subsets of records for the current subset of attributes A
and mapping MAP , and set the current set of records as follows: R = arg maxR⊆{R1...RN}F (R×A|MAP ).
We then maximize F (S) over all subsets of attributes for the current subset of records R and mapping MAP ,
and set the current set of attributes as follows: A = arg maxA⊆{A1...AM}F (R×A|MAP ) We continue iterating
between these steps until the procedure stops increasing. This ordinal ascent approach is not guaranteed to
converge to the joint optimum but multiple random restarts can be used to approach the global optimum.
Moreover, if N and M are both large, this iterative search is much faster than an exhaustive search approach,
making it computationally feasible to detect anomalous subsets of records and attributes in datasets that
are both large and high-dimensional. Each iteration (mapping of records, followed by optimization over
records and optimization over attributes) has a complexity of O(|U |(KNM + N logN + M logM)), where
|U | is the average number of α thresholds considered. In this expression, the O(KNM) term results from
aggregating over records and attributes for each model, while the O(N logN) and O(M logM) terms result
from sorting the records and attributes by priority respectively. Thus the DAP search procedure has a total
complexity of O(Y Z|U |(KNM +N logN +M logM)), where Y is the number of random restarts and Z is
the average number of iterations before the procedure stops increasing. Since each iteration step optimizes
over all subsets of records (given the current subset of attributes) and all subsets of attributes (given the
current subset of records), convergence is extremely fast, with average values of Z less than 3.0 for all of our
experiments described below.

4.5 Self-Similarity

We believe records generated by the same anomalous process are expected to be similar to each other. The
self-similarity of the detected subsets can be ensured by enforcing a similarity constraint. We augment the
above the DAP search procedure by defining the “local neighborhood” of each record in the test dataset,
and then performing an unconstrained DAP search for each neighborhood, where F (S) is maximized over
all subsets of attributes and over all subsets of records contained within that neighborhood. Given a metric
d(Ri, Rj) which defines the distance between any two data records, we define the local neighborhood of
Ri as {Rj : d(Ri, Rj) ≤ r}, where r is some predefined distance threshold. We then find the maximum
score over all similarity-constrained subsets. The DAP constrained search procedure has a complexity of
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O(Y Z|U |N(hKM + h log h + M logM)), where h is the average neighborhood size (number of records)
corresponding to distance threshold r.

4.6 Randomization Testing

The step of the algorithm is optional as it includes randomization testing to compute the statistical signifi-
cance of the detected subset S. To perform randomization testing, we create a large number T of “replica”
datasets under the null hypothesis, perform the same scan (maximization of F (S) over self-similar subsets of
records and attributes) for each replica dataset, and compare the maximum subset score for the original data
to the distribution of maximum subset scores for the replica datasets. More precisely, we create each replica
dataset, containing the same number of records as the original test dataset, by sampling uniformly at random
from the training data or by generating random records according to our Bayesian Networks representing Hk

where k = 0 . . .K. We then use the previously described steps of the DAP algorithm to find the score of the
most anomalous subset F ∗ = maxS F (S) of each replica. We can then determine the statistical significance
of each subset S detected in the original test dataset by comparing F (S) to the distribution of F ∗. The
p-value of subset S can be computed as Tbeat+1

T+1 , where Tbeat is the number of replicas with F ∗ greater than
F (S) and T is the total number of replica datasets. If this p-value is less than our significance level fpr,
we conclude that the subset is significant. An important benefit of this randomization testing approach is
that the overall false positive rate is guaranteed to be less than or equal to the chosen significance level fpr.
However, a disadvantage of randomization testing is its computational expense, which increases run time
proportionally to the number of replications performed. Our results discussed in §5 directly compare the
scores of “clean” and anomalous datasets, and thus do not require the use of randomization testing.

4.7 DAP Algorithm

Inputs: test dataset, training dataset(s), αmax, r, Y .

1. Learn Bayesian Networks (structure and parameters) from the training dataset(s).

2. For each data record Ri and each attribute Aj , in both training and test datasets, compute the
likelihood lijk given the Bayesian Networks M0, . . . ,Mk.

3. Compute the p-value range pijk = [pmin(pijk), pmax(pijk)] corresponding to each likelihood lijk in the
test dataset.

4. For each (non-duplicate) data record Ri in the test dataset, define the local neighborhood Si to consist
of Ri and all other data records Rj where d(Ri, Rj) ≤ r.

5. For each local neighborhood Si, iterate the following steps Y times. Record the maximum value F ∗ of
F (S), and the corresponding subsets of records R∗ and attributes A∗ over all such iterations:

(a) Initialize A← random subset of attributes.

(b) Repeat until F (S) stops increasing:

i. Minimize MAPi = arg minmap:Ri99KM0,M1,...,MK
Nα(S = A×Ri|mapi) ∀i.

ii. Maximize F (S) = maxα≤αmax
Fα(R×A|MAP ) over subsets of records R ⊆ {R1 . . . RN}, for

the current subset of attributes A, and set R← arg maxR⊆{R1...RN} F (R×A|MAP ).

iii. Maximize F (S) = maxα≤αmax
Fα(R×A|MAP ) over all subsets of attributes A, for the current

subset of records R, and set A← arg maxA⊆{A1...AM} F (R×A|MAP ).

6. Output S∗ = R∗ ×A∗.
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5 Evaluation

In this section, we compare the detection performance of the DAP algorithm to FGSS-MM algorithm in-
troduced in §3. We consider datasets from the domain of computer system intrusion detection (network
intrusion detection and masquerade detection) in order to evaluate both method’s ability identify anomalous
patterns given a set of known models. These datasets are described in §5.1 and §5.2 respectively, along with
the evaluation results for each domain. In §5.3, we consider the we simulate a realistic pattern discovery
scenario and compare the methods’ ability to continually discovery novel anomalous patterns.

We define two metrics for our evaluation of detection power: area under the precision/recall (PR) curve,
which measures how well each method can distinguish between anomalous and normal records, and area under
the receiver operating characteristic (ROC) curve, which measures how well each method can distinguish
between datasets which contain anomalous patterns and those in which no anomalous patterns are present.
In each case, a higher curve corresponds to better detection performance.

To precisely define these two metrics, we first note that three different types of datasets are used in
our evaluation. The training dataset only contains records representing typical system behavior (i.e., no
anomalous patterns are present) and is used to learn the null model. Each test dataset is composed of
records that represent typical system behavior as well as anomalous groups, while each normal dataset has
the same number of records as the test datasets but does not contain any anomalous groups.

For the PR curves, each method assigns a score to each record in each test dataset, where a higher score
indicates that the record is believed to be more anomalous, and we measure how well the method ranks
true anomalies above non-anomalous records. The list of record scores returned by a method are sorted and
iterated through: at each step, we use the score of the current record as a threshold for classifying anomalies,
and calculate the method’s precision (number of correctly identified anomalies divided by the total number
of predicted anomalies) and recall (number of correctly identified anomalies divided by the total number of
true anomalies). For each method, the the PR curve is computed for each of the 50 test datasets, and its
average PR curve are reported.

For the ROC curves, each method assigns a score to each test and normal dataset, where a higher score
indicates that the dataset is believed to be more anomalous, and we measure how well the method ranks the
test datasets (which contain anomalous groups) above the normal datasets (which do not contain anomalous
groups). For each method, the algorithm is run on an equal number of datasets containing and not containing
anomalies. The list of dataset scores returned by a method are sorted and iterated through: at each step,
we compute the true positive rate (fraction of the 50 test datasets correctly identified as anomalous) and
false positive rate (fraction of the 50 normal datasets incorrectly identified as anomalous). The ROC curve
is reported for each method .

To compute the PR and ROC curves, each method must return a score for every record in each dataset,
representing the anomalousness of that record. Both DAP and FGSS-MM find the top-k highest scoring
disjoint subsets S, by iteratively finding the optimal S in the current test dataset and then removing all of
the records that belong to this group; we repeat this process until we have grouped all the test data records.
In this framework, a record Ri can only belong to one group, and thus the score of each record Ri is the
score of the group of which it is a member. For all of the results described in this paper, we utilize the
similarity-constrained search procedure (a maximum radius of r = 1 and an αmax of 0.1) for both the DAP
and FGSS-MM methods.

5.1 KDD Cup Network Intrusion Data

The KDD Cup Challenge of 1999 [10] was designed as a supervised learning competition for network intru-
sion detection. Contestants were provided a dataset where each record represents a single connection to a
simulated military network environment. Each record was labeled as belonging to normal network activity
or one of a variety of known network attacks. The 41 features of a record, most of which are continuous,
represent various pieces of information extracted from the raw data of the connection. As a result of the
provided labels, we can generate new, randomly sampled datasets either containing only normal network
activity or normal activity injected with examples of a particular intrusion type. The anomalies from a given
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Figure 2: KDD Network Intrusion Data: ROC curves (measuring performance for distinguishing affected vs.
unaffected datasets). Curves that are higher and more left correspond to better performance.

Figure 3: KDD Network Intrusion Data: PR curve (measuring performance for distinguishing affected
vs. unaffected data records). Higher curves correspond to better performance.
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intrusion type are likely to be both self-similar and different from normal activity, as they are generated by
the same underlying anomalous process. These facts should make it possible to detect intrusions by identi-
fying anomalous patterns of network activity, without requiring labeled training examples of each intrusion
type.

We should note that there have been critiques of this KDD Cup network intrusion dataset; including
the comprehensive critique offered by [12]. We acknowledge and agree with the concerns raised by [12],
but explain why the results we show below are valid despite them. The general concern addressed in
[12] is the transparency surrounding the consistency and veracity (realistic nature) of the synthetic data
generating process. This general indictment is supported by specific examples: there is no mechanism to
examine the realism of the background data and its inherent false alarm rate; real data is not well behaved,
therefore the data generating process may not handle complications like fragmented packets; the reported
data rates over the network appear to be low, based on the data generating scenario; the network sessions
that included intrusion activity may not have also included a realistically amount of normal network activity,
which could make detection of intrusions much easier; the proportion of each attack type may not resemble
the proportion in a realistic network environment. To assess the relevance of these issues to our purposes,
we must consider the data corpus’s original intention. The data sponsor wanted the ability to develop a
single empirical measurement from data, allowing for to evaluating and comparison of approaches on the
task of network intrusion detection. Therefore, if the data corpus is found to fall prey to the above concerns,
the performance (i.e., ability to identify intrusions and disregard background data) of a detection algorithm
on this data corpus may be an inaccurate measure of its performance in the wild. However, the methods
evaluated are created to be a general algorithms for identifying anomalous patterns, and are not necessarily
designed to serve as an intrusion detection systems. Therefore, we are not necessarily making claims on how
well the methods would serve if incorporated into intrusion detection systems in the wild, just on the specific
challenge presented in the KDD Cup. Essentially, we require a scenario rich with patterns of anomalies and
background data, to compare these methods’ relative ability to identify the anomalous patterns. In order to
construct the anomalous patterns we do not utilize the data as presented by the KDD Cup challenge, but
instead sample from it to produce our own data sets conforming to the challenge of pattern discovery.

To create instances of the anomalous pattern discovery challenge we generate test datasets of size N =
10000, of which pr = 2.5% of its records are examples of each of the seven intrusion types; the remaining
records (N − (7 × pr)) are examples of normal network activity. For each of the five intrusion types, we
generate normal datasets of size N = 10000, of which pr = 2.5% of its records are examples of each of the
other six intrusion types. We also generate separate training datasets of up to 100, 000 records for the other
six intrusion types and normal system activity. Finally, we must generate a training dataset for FGSS-MM
that is a collection of all the records from these separate training datasets. This leave-one-out detection
scheme will allow for generalizing ability of both methods to discovery novel anomalous patterns.

Additionally, [1, 9] notes that using all 41 features makes the anomalies very individually anomalous,
such that any individual record anomaly detection method could easily distinguish these records from normal
network activity. In this case, methods that search for groups of anomalies also achieve high performance,
but the differences between methods are not substantial. Thus, following [1, 9], we use a subset of 22 features
that provide only basic information for the connection, making the anomalies less obvious and the task of
detecting them more difficult. We also use the same five common attack types as described by [9], and
discretize all continuous attributes to five equal-width bins.

In Figure 2 and 3 respectively, we compare the ROC and PR curves for each of the seven leave-one-out
detection scenarios. We observe that in each of the ROC scenarios and PR scenarios, our DAP algorithm
experiences from comparable detection power to drastic improvements in detection power. These results are
consistent with our understanding of the data and both methods, because by modeling a mixture of various
intrusions and normal system activity FGSS-MM will frequently still consider subsets belonging to known
data pattern as anomalous. However, the DAP produces a conservative estimate of the anomalousness of each
subset it considers. This conservative estimates comes as a result of modeling each component of the mixture
separately, and then mapping of each record to the model that minimizes its contribution to a subset’s score.
Thus, DAP only indicates a subset S as anomalous when even its conservative estimate of the score F (S) is
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Figure 4: RUU Masquerade Detection Data: ROC curves (measuring performance for distinguishing affected
vs. unaffected datasets). Curves that are higher and more left correspond to better performance.

high, which increases our confidence the true anomalous nature of S. Although, this conservative estimate
increases the our confidence in the true nature of high scoring subsets, it resulted in discrepancy in detection
ability between FGSS-MM and DAP for the apache and neptune PR scenario. Records corresponding to
the these intrusions are either “extremely” or just “slightly” anomalous given normal system activity; these
extremely anomalous records are more individually anomalous than any intrusion type considered. Both
methods are able to easily detect the extremely anomalous apache2 and neptune records, but the DAP
algorithm’s conservative estimate of the subset containing the slightly anomalous apache2 and neptune
records in the ranking. In this particular case, he FGSS-MM was rewarded for its possibly inflated estimate
of the anomalousness of the subsets it considered. However, as overwhelming majority of these results
demonstrate the DAP procedure maintains significantly higher power discover a novel anomalous pattern.

5.2 R-U-U (Are you you?) Masquerade Data

This R-U-U Masquerade dataset [19] was the result of supervised learning experiment for masquerade de-
tection. The data was generated by creating a host sensor for Windows based personal computers which
monitored and logged information concerning all registry-based activity, process creation and destruction,
window GUI and file accesses, as well as DLL libraries’ activity. For each of these activities, the sensor
collects detailed process characteristics: process name and ID, the process path, the parent of the process,
the type of process action (e.g. type of registry access, process creation, process destruction, window title
change, etc.), the process command arguments, action flags (success or failure), registry activity results,
and time stamp. All the information collected by each low-level action is summarized in nine attributes. To
collect normal activity, this sensor was placed on the person computers of eighteen computer science students
at Colombia University for on average four days. To collect masquerade data, the activity of forty computer
science students were recorded as they participated in a ‘capture the flag’ exercise and individually followed
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Figure 5: Anomalous Pattern Discovery: Measures how many false positives a method reports as it attempts
to incrementally discover each novel anomalous pattern.

a particular malicious attacker scenario for fifteen minutes.
The challenge of masquerade detection in this particular scenario is captured by a systems ability to

determine that someone other then a known user is utilizing the system, based on the low-level activity
patterns generated. Therefore for each of the eighteen normal users we set-aside the first half of their
activity data to learn models of activity patterns. We select two legitimate users and from the second half
of the first user’s activity data, we select twenty-five disjoint fifteen-minute chunks; all users and chunks of
activity are chosen at random; these twenty-five chunks are used as our normal datasets. Next we select
twenty-five masqueraders at random, and their fifteen-minutes of activity are used as our test datasets. We
repeat this process 50 times, and compute the average ROC curves for the DAP and FGSS-MM methods
found in Figure 4. For each iteration of this process, we must learn a mixture model of the two legitimate
users by combining their training data.

Figure 4 demonstrates that both methods a very capable of distinguishing between the activity of a
masquerader and one of two known users, although DAP has slightly better performance on average. We
think this high performance was a result of two factors in the experiment: fifteen-minute provides more
than enough information to make the masquerader’s activity appear extremely anomalous and by only
modeling two users FGSS-MM does not significantly compromised. Therefore, future work could measure
each method’s power a function of how many legitimate user are modeled and how much time the test
datasets cover. We hypothesis, that as the number of legitimate users increase and the time represented in
the test dataset decrease, FGSS-MM will experience a faster decay in power as compared to DAP.

5.3 Incremental Anomalous Pattern Discovery

As we described in Section 3, the real benefit of anomalous pattern discovery is the continual (incremental)
discovery of novel anomalous patterns. Therefore using the Kdd Cup data from Section 5.1, we compare the
ability of DAP and FGSS-MM to iteratively find a novel patterns as a function of how many false positives
are detected at each iteration. Figure 5 shows the average results over 50 random test data sets created in
the same manner as described in 5.1. What we see is that the DAP curve is a lower-bound on the FGSS-MM
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Figure 6: Anomalous Pattern Discovery Run Time: Measures how may minutes each algorithm required to
accomplish the discovery task.

curve indicating that it demonstrates superior discovery ability. Additionally, we compare the run-times of
these methods and observe in Figure 6 that DAP is significantly faster (approximately 4x), at the discovery
task.

In addition to evaluating the performance of DAP to FGSS-MM, we can also measure how often the
DAP algorithm finds the globally optimal subset. Recall that DAP iteratively optimizes over subsets of
attributes, model mappings, and records until the subset scores no longer increases; additionally, for a given
subset of attributes, the model mapping and records are optimal. Therefore, by exhaustively considering all
subsets of attributes, and computing their subsequent optimal model mapping and records, we can discover
the globally optimal subset. We define the approximation ratio as the largest value p such that the DAP
algorithm achieves a score within (100 − p)% of the global maximum score (computed by exhaustively
searching over the attributes) at least p% of the time. For example, an approximation ratio of 95% would
signify that DAP achieves a score within 5% of the global maximum with 95% probability. Results were
computed for values of N ∈ {10, 100, 10000} and M ∈ {1, 2, 4, 8, 10, 12, 16}, considering 100 datasets for each
combination of N and M, each randomly sampled from the KDD Cup normal network activity data. For
values of M > 16, it was computationally infeasible to run the exhaustive search to completion. For each
scenario, the DAP search achieved a approximation ratio of 100% (finding the exact global optimum for each
of the 100 datasets we evaluated). These results empirically demonstrate that very little, if any, detection
ability is lost when using the DAP algorithm to iteratively maximize over subsets of records and attributes.
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6 Conclusion

This paper has presented significant contributions to the literature by presenting the challenge of anomalous
pattern discovery. We formalize the pattern discovery problem as a search over subsets of data records and
attributes given a collection of known pattern types, and present the Discovering Novel Anomalous Patterns
(DAP) algorithm, which efficiently discovers anomalous patterns in general categorical datasets. From this
formulation, we can demonstrate that the current state-of-the-art for anomalous pattern detection, i.e. the
Fast Generalized Subset Scan (FGSS) [9], is a special case of the DAP method. The DAP algorithm utilizes
a systematic procedure to map dataset values to an unbiased measure of anomalousness under each of the
known pattern types, empirical p-value ranges. The algorithm then utilizes the distribution of these empirical
p-value ranges under the known types in order to find subsets of data records and attributes that as a group
significantly deviate from their expectation as measured by a nonparametric scan statistic. We demonstrate
that by using a nonparametric scan statistics that satisfies the linear-time subset scanning property, we
can search efficiently and exactly over all subsets of data records or attributes while evaluating only a linear
number of subsets. These efficient optimization steps are then incorporated into an iterative procedure which
jointly maximizes over subsets of records and attributes. Additionally, similarity constraints can be easily
incorporated into our DAP framework, allowing for the detection of self-similar subsets of records which
have anomalous values for some subset of attributes.

We propose a simple extension of FGSS, FGSS Mixture Model (FGSS-MM), and provide an extensive
comparison between DAP and FGSS-MM on real-world two computer system intrusion datasets: network
intrusion detection and masquerade detection. Both settings were motivated by the necessity to maintain
models of multiple known pattern types. In network intrusion data, DAP learned a model to describe known
and benign activity as well as a known and malicious activity, with the ultimate goal of discovery novel
malicious activity. In the masquerader data DAP learned separate models of activity from two system users,
both legitimate, with the ultimate goal of identifying when a masquerader was utilizing the system based
solely on the activity generated. In the network intrusion detection setting DAP consistently outperforms
the FGSS-MM, while in the masquerade detection setting DAP provides a slight increase in power to detect.
DAP also demonstrates improved ability to continually discover novel anomalous patterns, the essential goal
of this work.

In future work, we plan to extend DAP to better model real-valued attributes. DAP can only handle
categorical attributes, which forces it to discretize real-valued attributes when evaluating mixed datasets.
This constraint only exists because our current method for obtaining record-attribute likelihoods, modeling
the conditional probability distribution between attributes with a Bayesian Network and using Optimal
Reinsertion [14] to learn the network structure, can only handle categorical attributes. By discretizing real-
valued attributes, we may lose vital information that would make the task of discovery anomalous patterns
easier. Therefore we are currently investigating extensions of DAP which better exploit the information
contained in real-valued attributes. We believe that augmenting a Bayesian Network, learned only from the
categorical attributes, with a regression tree for each continuous attribute will increase the power of DAP
to detect patterns.
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