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Abstract

We develop a probabilistic latent-variable model to discover semantic frames—types of events or
relations and their participants—from corpora. Our key contribution is a model in which (1) frames
are latent categories that explain the linking of verb-subject-object triples in a given document context;
and (2) cross-cutting semantic word classes are learned, shared across frames. We also introduce an
evaluation methodology that compares to FrameNet, interpreting the learned model as an alternative
frame lexicon.

1 Introduction

Semantic frames—types of events or relations and their participants—are a key development in linguistic
theories of semantics (Fillmore, 1982) and, sometimes called “scripts” or “schemata,” have figured heavily
in natural language understanding research (Schank and Abelson, 1977; Lehnert and Ringle, 1982). There
has been a recent surge in interest in finding frames in text data, including: frame-semantic parsing (Das
etal., 2010; Gildea and Jurafsky, 2002) following the conventions of FrameNet (Fillmore and Baker, 2001),
and discovery of narrative structure (Chambers and Jurafsky, 2009).

In this paper, we seek to discover semantic frames—types of events or relations and their participants—
from corpora, using probabilistic latent-variable models. This approach focuses on verbs with their subjects
and objects and is inspired by models of selectional preferences and argument structure. Building on the
framework of topic models (Blei et al., 2003), we further leverage document context, exploiting an assump-
tion that relatively few frames are expected to be present in a single document. Our key contributions are in
a new model in which (1) frames are latent categories that explain the linking of verb-subject-object triples
in a given document context; and (2) cross-cutting semantic word classes are learned, shared across frames.

Because there are many ways to define frames, we believe a data-driven approach that does not require
human annotation is attractive, especially when considering a new domain of text, or exploratory data anal-
ysis of a corpus. We explore models built on a range of datasets, highlighting differences in what kinds of
frames are discovered.

We also seek to evaluate what is learned by comparing to existing lexical resources, introducing a novel
evaluation methodology that compares to FrameNet, interpreting the model posterior as an alternative lexi-
con.

We begin by describing our models and relating them to models in the literature (§2). We discuss
inference in §3 and experiments in §4, concluding with example results (§5) and FrameNet comparison (§6).




2 Models

Verbs, subjects, and objects constitute a basic syntactic encoding of actions, events, and their participants.
We are interested in a modeling a dataset of document-VSO tuples,

(DocID, wert) qp(subi) w(obj))

We present two models to capture document and syntactic contextual information in the generation of
text.

2.1 ‘“Model 0’: Independent tuples

Previous work in model-based syntactic distributional clustering, usually aimed at modeling selection pref-
erences, has modeled syntactic tuples as independent (or rather, conditionally independent given the model
parameters). Pereira et al. (1993) and Rooth et al. (1999) model a corpus of (verb, object) pairs with a
latent variable for each tuple, and different word distributions for for each argument and class. (Rooth et
al. experiment with different syntactic relations, but always use pairs; e.g. (verb, subject).)

To situate our model, we slightly generalize these approaches to (verb, subject, object) triples, and add
symmetric Dirichlet priors, as follows. qﬁgcarg ) denotes a word multinomial for argument type arg and frame
f; and there are three argument types (verb, subject, object), treated completely separately.

e Frame lexicon: Dirichlet prior 5. For each f = 1..F’, sample three word multinomials: (;55:)), gbgcs), gb;o) ~
Dir(B)
o Tuple data: For each tuple i = 1..N,

e Draw its frame indicator f; (from a fixed prior),

v
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e Draw the three words from their repsective multinomials: w'”) ~ qﬁ(fj); wgs) ~ qbgcf); wﬁo) ~ qﬁgcf)

This approach models every tuple independently, with no document or other context; the only thing shared
across tuples are the per-class argument word distributions. More recent work extends the Rooth approach to
model other syntactic relation pairs (Séaghdha, 2010) and web-extracted triple relations (Ritter and Etzioni,
2010). These works make several variations to the probabilistic directed graph, giving the verb a more
central role; we instead stick with Rooth’s symmetric setup.

2.2 Model 1: Document-tuples

We would like to use document context to constrain the selection of frames. Following the intuition of
latent Dirichlet allocation (Blei et al., 2003)—that each particular document tends to use a small subset of
available latent semantic factors (“topics”)—we propose that a document’s frames are similarly drawn from
a sparsity-inducing Dirichlet prior. Our document-tuple model uses the same frame lexicon setup as above,
but enriches the document generation:

e [ frames, and Dirichlet priors «, 8

e Frame lexicon: For each frame f € 1..F, and argument position a € {1, 2, 3},
e Draw word multinomial qbgca) ~ Dir(B)
e Document-tuple data: For each document d € 1..D,

e Draw frame multinomial 65 ~ Dir(«)



e For each tuple ¢ in the document,

e Draw frame indicator f; ~ 6,4
e Draw word triple: for each argument position a € {1, 2, 3},
e Draw wl(a) ~ gbgff)

Note that in the limiting case as & — oo, Model 1 collapses into the independent tuple model, where
document context is irrelevant. In our experiments, we fit o with posterior inference, and it prefers to
have relatively low values, giving orders of magnitude better likelihood than a high a—implying that the
document-level sparsity assumption better explains the data than an independent tuple hypothesis.

From one perspective, LDA’s “topics” have been renamed “frames.” Computationally, this is a minor
difference, but from an NLP persepctive, is very important, since we are asking the latent variable to do
something else than LDA has it do—it now models syntactic argument selection as well as document-level
effects.

The document-level mixing is potentially useful for applications, because it gives a hook into a vast
literature of topic models that jointly model text with many types of document-level metadata such as time,
space, arbitrary metadata, etc. (e.g. Blei and Lafferty (2006); Eisenstein et al. (2010); Mimno and McCallum
(2008)) In this respect, this model could be seen as a “semantic” or “syntactic tuple” topic model, along
the lines of previous work that has added various forms of sentence-internal structure to LDA’s document
generation process, such as bigrams (Wallach, 2006), HMM’s (Griffiths et al., 2005), or certain forms of
syntax (Boyd-Graber and Blei, 2008).

2.3 Model 2: Cross-cutting semantic classes

The frames in Model 1 share no word statistics with one another, so each has to relearn lexical classes for
its arguments. We address this by introducing a latent word class variables c for every token. Every frame
has preferences for different classes at different argument positions, so word classes can be shared across
frames.

The Model 2 generative process is:

e ( word classes, F' frames, and Dirichlet priors o, 3,71, Y2, V3

e Frame lexicon:

e Foreachclassc € 1..C,
e Draw word multinomial ¢, ~ Dir(f)
e For each frame f € 1..F, and argument position a € {1, 2, 3},

e Draw the “linker” Ly, ~ Dir(v), a multinomial over word classes: Ly, € Simplex(C').
e Document-tuple data:

e For each document d € 1..D, draw frame multinomial §; ~ Dir(«a)
e For each tuple ¢ for document d,
e Draw frame indicator f; ~ 6,4
e Draw word triple: for each argument a € {1, 2, 3},
o (if a is null in this tuple, skip)
e Draw class ¢(®) ~ Ly, q
e Draw word w(®) ~ Dea)
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Figure 1: Probabilistic directed graphs for prior work and our models. Dirichlet priors are omitted for
brevity. Blue variables are latent, and resampled through collapsed Gibbs sampling; green variables are
observed.

frames classes

Figure 2: Example fragment of the sparse linking array Ly, . as a labeled bipartite graph. For example,
the S-labeled edge connecting frame 1 and class 1 indicates L1271 > 0 (assuming subject corresponds to
a=2).



Central to this model is the “linker” Ly, ., a multidimensional array of dimensions (F,3,C), which
says which word classes are likely for a given frame-argument combination. We show a schematic diagram
in Figure 2, where edges represent high (or just significantly nonzero) probabilities. A word class that is
a subject for one frame may be an object for another. A frame may have multiple classes for an argument
position, though in practice the number is relatively small, due to the Dirichlet prior (and, as we will see, it
naturally turns out sparse when the prior is fit to the data).

Note that Model 1 can be seen as a version of Model 2 with a deterministic linker: every (f, a) pair is
bound to one single, unique class; i.e. a point mass at ¢ = 3(f — 1) + a — 1. This further corresponds to
a perfectly sparse stick-breaking prior on L ,, suggesting non-parametric extensions of Model 2 for future
work.

Titov and Klementiev (2011)’s model of semantic frames also uses cross-cutting word classes, em-
bedded in a more complex model that also learns clusters of syntactic relations, and recursively generates
dependency trees. Grenager and Manning (2006) and Lang and Lapata (2010) present related models for
unsupervised PropBank-style semantic role labeling, where a major focus is grouping or clustering syntactic
argument patterns.

Finally, while we do not enforce any relationship between syntactic argument position and the classes,
in practice, most classes are exclusively either verbs or nouns, since words that can be verbs often cannot
appear as nouns.

3 Inference

Through Dirichlet-multinomial conjugacy, we can use collapsed Gibbs sampling for inference (Griffiths and
Steyvers, 2004; Neal, 1992). The Gibbs sampling equations are instructive. For Model 1, it is:

a p(f|dwa) o< p(f|d) [ [ p(w'®|fa)
d/f \w a

This diagram of CPT factors shows the two soft constraints the Gibbs sampler works to satisfy: the left
term p(f|d) tries to ensure document-frame coherency—it exerts pressure to select a frame used elsewhere
in the document. The second term p(w|fa) exerts pressure for syntactic coherency—to choose a frame that
has compatibility with all the syntactic arguments. Thus Model 1 combines selectional preferences with
document modeling.

Model 2’s Gibbs sampling equations are

/ p(fldea) o p(£]d) [ [ o(c!|fa)

d I e 1w ] pe®|faw) o p(c™)] fa)p(w®|c®)

In these factor diagrams, the boxes correspond to the maximal dimensional count tables the sampler has to
maintain; for example, the tables C(d, f) and C(f, a,w) for Model 1. They are only the maximal, not all,
count tables, since some rollups also have to be maintained for CGS denominators; e.g. C(d) and C(f,a)
here.

We resample the symmetric Dirichlet priors «, 3, v1, 72, v3 with slice sampling (Neal, 2003) every 100
iterations, using a vague hyperprior. We found the choice of hyperprior (either vague gamma or improper
uniform) made little difference.
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Figure 3: QQ-plots of 500 slice sampling chains, showing their distribution converging to the true posterior.
Each plot is the QQ-plot of 500 different chain states, all at the same iteration, against the exhaustively
calculated posterior.

The slice sampler was run for 10 iterations for each parameter, a number chosen based on a simulation
experiment: from a fixed a, we generated a Dirichlet-multinomial dataset (10 groups, 10 observations
each), then ran 500 independent slice sampling chains for the variable log(«), assessing the cross-chain
distribution of states at a single timestep against the true posterior (the latter computed with near-exact grid
approximation on the DM likelihood) via QQ-plots shown in Figure 3. MCMC theory says that after burn-in
you can stop the chain to have a single independent draw from the posterior, which implies these QQ-plots
will become flat; it appears 7 iterations was enough in this experiment. We chose here a very bad initializer
a = el9, compared to the true MAP ¢%?; a good initialization at & = e! had posterior convergence after
just 2 iterations. (This analysis technique was inspired by Cook et al. (2006)’s Bayesian software validation
method.)

The hyperparameter sampling substantially improves likelihood. Interestingly, most of the movement
tends to happen early in the MCMC chain, then the hyperparameter stabilizes as the rest of the model is
still moving. For one experimental setting (a subset of CRIMENY T, described below), we checked if the
outcome was initializer dependent by starting three different MCMC chains that were identical except for
three different «v initializers: Figure 4. Reassuringly, they all converged on the same region of values. This
robustness to initialization was exactly what we wanted.

For larger datasets, we implemented a parallelized sampling scheme for f and ¢ similar to Newman
et al. (2009) where individual processors use stale counts and synchronize once per iteration by sending
count update messages to all other processors.!

In experiments, we ran the Gibbs sampler for at least 5,000 iterations, and up to 20,000 as time permitted.

! We use from 12 to 64 CPU cores in some cases. Implementation is in Python/C/MPIL.
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Figure 4: o parameter values over time, when being resampled, from three very different initial positions
a = 0.01, 1, 100. The left plot shows the entire history; the right shows from iteration 200 until the end.
This is Model 1 on a subset of the CRIMENYT corpus.

4 Experiments

4.1 Datasets

We use datasets from the New York Times, Wall Street Journal, and the Brown corpus for experiments. The
New York Times Annotated Corpus (Sandhaus, 2008) contains articles from 1987 to 2007 that have been
extensively categorized by hand, each having multiple labels. We use it to extract two subcorpora. First,
inspired by examples in the crime reporting domain of extracting narrative event structures (Chambers and
Jurafsky, 2009) and work on the FrameNet corpus (Fillmore and Baker, 2001), we select news articles for
which any category labels contain any of the words crime, crimes, or criminal, resulting in a targeted corpus
of articles (CRIMENYT). We wanted to see if the model can learn specific types of actions and noun classes
for that domain. Second, we take a uniformly drawn subsample of all articles (UNIFNYT).

The NYT article texts are processed with the Stanford CoreNLP software? using default settings; we use
its sentence segmentation, tokenization, part-of-speech tagging, lemmatization, parsing, and dependency
conversion (the CCprocessed version).

Finally, we also performed experiments on two pre-parsed corpora from the Penn Treebank (Marcus
et al., 1994), cointaining tokenizations, part-of-speech tags, and parses: The Wall Street Journal (all sec-
tions; WSJPTB), and the PTB’s subset of the Brown corpus—consisting mainly of literature and essays
(BROWNPTB). We used the Stanford software to convert PTB constituent structures to dependencies and
produce lemmatizations. These are substantially smaller than the NYT datasets; see Table 1.

From the dependencies, we extract active voice verb-subject-object tuples of form (w(®), w(®) w(),
(w™, w® null), or (W™, null, w(®), by finding instances of a verb word w(*) with POS tag beginning
with VB, and having a noun dependent with relation nsubj or dobj. If both an nsubj and dobj child exist,
take them both to form a full VSO triple; otherwise make a VS_ or V_O pair. (Most are incomplete: in
CRIMENYT, 19% of tuples are VSO, while 43% are VS_ and 38% are V_O.) If multiple nsubj’s exist, we
arbitrarily take only one; similarly with dobj. (It may be better to take all possible tuples in this situation.)

nttp://nlp.stanford.edu/software/corenlp.shtml
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Corpus #Docs | #Sent | #Tok | #VSO
CRIMENYT 27k | 789k | 20M | 1.3M
UNIFNYT 60k | 24M | 14M | 5.3M
WSsIPTB 2,312 49k | 1.2M 78k
BROWNPTB 192 24k | 459k 27k

Table 1: Datasets used in experiments. The number of documents and VSO tuples are relevant to the model;
the number of sentences and original tokens are not. The tuple count includes partial tuples (missing either
subject or object).

correct? text and VSO tuple

In less than an hour , the police and rescue unit (
workers )g,p; [ found Jyepp, the (‘organ )p; in the tall
grass of the field , packed it in ice and took it to the
hospital .

Mrs. ( Bissell )syp; , she said , never [ learned ],erp
what her husband did with the money .

RIGHT: for “workers,” only
use single head word of the
noun phrase

RIGHT

INCOMPLETE: “he” should
be subject of “defrauded” | Asked why he had [ defrauded ],.,; the insurance (
since SD uses content verb as | company ).; and been partners with the mob . ..

head

Guilty on Five Charges Mr. Garcia was found guilty
WRONG: lists are a known | onall five charges against him : ( theft ),,4; of heroin
problem case for current | , possession with intent to [ distribute ],¢-5 heroin ,
parsers narcotics conspiracy and two ( counts ),,; of money
laundering .

Table 2: Example extracted tuples and our annotations in their original sentences (in tokenized form).

We performed error analysis of the parser and syntactic extraction, by selecting a random sample of
extracted V-S-O tuples from the CRIMENY T corpus to manually assess for accuracy. A subset are shown
in Table 2. We annotated 40 tuples, in context in their respective sentences, consulting the Stanford De-
pendency papers (De Marnefte et al., 2006; de Marneffe and Manning, 2008), which have clear linguistic
definitions of the grammatical relations, their conventions for analyzing compound verbs, etc. Out of 40
tuples, we found 30 had the subject and/or object arguments correct; 6 had one or both wrong; and 4 were
incomplete (missing either subject or object)—75% precision.

S Example Results

Here we focus on inspecting the posterior results from Model 2 on the CRIMENY T dataset, with 400 frames
and classes.

Table 3 shows one particular interesting frame, which we intepret as “legislation.” We show its argument
linking patterns by listing, for each argument position, the most common classes appearing there. These
linking probabilities (L ¢ q . = p(c|fa)) are show in the left column—the linkers are quite sparse, with most
of the probability mass contained in the shown classes.

For each class, we show the most common words. Interestingly, the frame distinguishes different types
of actions and actors where laws or procedures are the object. In fact, it nearly describes a sequential “script”



f=286: Legislation
a,c, top words interp.
p(clfa)
pass have enact impose adopt extend eliminate increase toughen abolish
281)45) 242 amend need use establish change fail strike consider restore ease passage/enactment
violate change break enforce follow use challenge practice write obey | enforce-ment and
E(\)/)Zl) 34 adopt impose revise draft apply teach reform amend ignore uphold changes
pass support approve oppose vote sign introduce propose veto consider | political considera-
E(\)/)l I 163 reach include block sponsor favor want reject back push get tion
apply permit challenge give interpret bar strike impose limit involve rec- | | = | .
E(\)/)O‘l) 10 ognize uphold OOV adopt justify regulate seek place define hold judicial review
have OOV do find take expect see allow use create begin view produce L
8)04) 241 place suffer add like start study face generic/light verbs
state Congress government system OOV court York city judge law county
(s) 71 | Jersey Government Legislature State official California legislator country | jurisdictions
(0.60) States
Senate Legislature House Congress Republicans lawmaker Pataki gover- L
(s) 188 | nor Clinton Bush assembly Democrats OOV leader legislator Administra- leglsmuve and exec-
0.14) tion Cuomo Council administration group utive branches
law statute rule guideline order system regulation ordinance Constitution .
.. . .. S . kinds/aspects of
(0) 42 | curfew Act ban restriction policy code provision legislation requirement .
. laws, regulations
(0.80) agreement limit
penalty discretion parole use number limit period punishment system
(o) 332 | power OOV approval sale provision test type time judge release protection | (same as above)
(0.09)
bill measure legislation amendment provision proposal law ban version
(0) 395 | vote package penalty veto Senate agreement issue abortion language pas- | procedural terms
(0.06) sage action

Table 3: Example frame (“Legislation”) learned from CRIMENYT.

of actions of the process of creating, enforcing, and modifying laws—but the model has no knowledge of
anything sequential. This happens simply because there are several sets of actors that perform actions upon
laws, and the model can picks up on this fact; the model can see individual events in such a process, but not
the structure of the process itself.

Every word class, of course, can be used multiple times by several different frames. We were curious if
the model could find word classes that took the subject position in some frames, but the object position in
others—Chambers and Jurafsky (2009) demonstrate interesting examples of this in their learned schemas.
Our model does find such instances. Consider class ¢ = 99, a “victim” class: {girl boy student teen-ager
daughter victim sister child}. It appears as an object for a “violence/abuse against victim” frame where the
most common verb class has top words {rape assault attack meet force identify see ask}, while it is a subject
in a frame with a wider variety of generic and communication verbs {say be go come try admit ask work
agree continue refuse}.

There are many more interesting examples. A sampling of other word classes, with our interpretations,
include:

e c=3 (v) stages in a process, esp. criminal process: serve face receive await stand enter spend complete
accept get violate avoid post deny reduce give finish begin grant draw revoke jump

e c=4 (v) argumentation: prove demonstrate avoid reflect reach undermine carry mean affect force satisfy;
with the message/argument as subject: (c=67) {case decision arrest ruling action} and (c=120) {issue



view race theme record kind promise}

e c=16 (v) physical pursuit and apprehension/confrontation: force approach try flee follow threaten know
drag tell escape take find walk hold knock grab order push admit break describe leave climb

e c=17 (obj) effects: effect impact role consequence anything implication case value connection impor-
tance link interest root basis significance bearing

e c=19 (obj): verdicts/sentences: sentence penalty punishment execution term order conviction leniency
life fine clemency verdict sentencing factor date death circumstance

e c=44 (obj) games & pastimes: role game part OOV basketball card ball football music song baseball
sport host piano soccer golf tape politics guitar tennis bottom season

e =46 (subj,obj) societal ills: problem violence crime issue situation activity abuse behavior flow criminal
kind fear tide cause corruption spread threat case root type crisis

To guard against a cherry-picking bias, we include an easy-to-read report of all frames, classes, and linkings
online.’

Some classes are very general, and some are very specific. One interesting thing to note is that some
classes have a more topical, and less syntactically coherent, flavor. For example, c=18: {film viewer program
network movie show producer station audience CBS television camera actor fan}. It appears often for only
one frame, and is split 2:1 between subject and object position. Essentially, the syntactic positioning is being
ignored: p(c|f,a = subj) is only twice as likely as p(c|f,a = obj), whereas for most noun classes this
ratio is in the hundreds or thousands. This word class functions more like an LDA topic. Is it appropriate
to interpret it as a “topic,” or does it correspond to entities active in a Fillmorean-style frame of “Television
Show”? By leveraging both document and syntactic context, we believe our model uncovers semantics for
situations and events.

6 Comparison to FrameNet

We are primarily interested in the quality of our induced frame lexicon. Evaluation is difficult; one automatic
measure, held-out likelihood, may not always correlate to subjective semantic coherency (Chang et al.,
2009). And while subjective coherency judgments are often collected to evaluate word clusters or argument
compatibilities, it is unclear to us exactly what task setup would directly support analyzing frame quality.
Our primary goal is to achieve a better understanding of what our model is and is not learning.

We propose a method to compare the similarities and differences between a learned frame model and
a pre-existing lexicon. Chambers and Jurafsky (2011b) compare their learned frames to MUC templates
in the domain of news reports about terrorist activities. Seeking a resource that is more general, more
lexicon-focused, can be used to compare different corpus domains we turn to FrameNet (Fillmore and Baker,
2001; Ruppenhofer et al., 2006), a well-documented lexical resource of actions/situations and their typical
participant types. In this section we present an analysis of wordset-to-wordset similarity alignments, that we
use to analyze verb clusters.

The downloadable FrameNet 1.5 dataset consists of 1,020 frames, each of which is associated with a
number of lexical units, that, when used, can evoke their respective frames. A lexical unit is essentially a
word sense; it is associated with a single frame, and also a lexeme, which consists of a word lemma and
part-of-speech category. In the FrameNet annotations, the frame-evoking word is known as the farget; some
of the frame’s roles (called frame elements) then are bound to words and phrases in the annotated sentence.

Most of FN’s lexical units are verbs, nouns, or adjectives. In this work we focus on the verbs, which
in FN’s annotated data often take their grammatical subject and object as frame arguments. FN may not

*http://brenocon.com/dap/materials/
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Figure 5: Quantities in a Venn comparison of two wordsets, as used in Table 4. Note “N” actually means it
appears fewer than 5 times in the FrameNet annotated data.

have been constructed with this purpose in mind, but by viewing FN as a database of verb clusters and
typical argument types, it has a structure comparable to our Model 1, and, to a lesser extent, Model 2. And
while FrameNet was constructed to go beyond just verbs—in contrast to another similar frame resource,
VerbNet—we find that extracting a verb and argument clusters from FN in this way yields a reasonable-
looking dataset.

FN has 11,830 lexical units, 4,605 of which are verbs. We group lexical units by frame, and filter to
frames that have 5 or more verbs as lexical units. This leaves 171 frames with 1829 unique verb lemmas.
(We ignore multiword lexemes as well as non-verb lexemes.)

6.1 Comparing verb wordsets

How can we analyze the similarity and differences of two different word clusterings? Our notion of “cluster-
ing” need not be a proper partition: it merely consists of some number of wordsets, which may overlap and
not necessarily cover the entire vocabulary. (These are often referred to as “word clusters,” but for clarity we
always use “wordset.”) Many lexical resources and unsupervised models can be discretized and converted
into this representation.

We perform a basic analysis, comparing the verb wordsets implied by FrameNet to our model. Verb
wordsets (verbsets) are extracted from FrameNet by taking the set of verbs for each frame, so there are 171
verbsets. We discretize our model by taking, for every word class, the words having a count of at least 5
in the Gibbs sample being analyzed. We observed that words with smaller counts than this tended to be
unrelated or marginally related to the others—their presence may be due to the randomness inherent in any
single Gibbs sample.

The similarity measures are as follows. For two wordsets A and B, the Dice coefficient is

2|AN B|
DiceSim(A,B) = ———:
| Al +[B|
This is in fact equivalent to the F1-measure, and monotonic in Jaccard similarity; see the appendix for
details. Let A; be the FrameNet verbset for FN frame 4, and B; be a model’s verbset. We compute all
DiceSim(A;, Bj) similarities, and for each FN frame, find the best model match 7,

arg max DiceSim(A;, Bj)
J

and show the best matches in Table 4. This is done with CRIMENY T with 400 frames and classes.
The best match, for FrameNet’s “Change position on a scale,” clearly has a common semantic theme
shared between the FrameNet and model verbsets. The model fails to get several words such as “decline,”

11
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but does have several other words that seem plausible candidates to add to FrameNet here: “plunge,” “sink,”
“surge.”

We show in Table 5 the matches against the different corpora. Interestingly, different corpora are better
at recovering different types of frames.

One big issue with this metric is that FrameNet is not designed to have complete lexical coverage for a
particular role, so it is unfair to penalize our model for learning novel words not in FrameNet for a particular
role. On the other hand, some of the learned new words are sometimes clearly not semantically related.
When a model’s wordset scores are low, we don’t know whether it’s because it’s actually semantically
incoherent, or if FrameNet had poor coverage in its area. It is important to analyze specific instances that
make up the quality measure, as in Table 4.

Our method may be more useful as part of a semi-automated system to suggest new additions to a
resource like FrameNet; to do this well, it may be interesting to explore building supervision in to an earlier
stage of the model, rather than in posthoc analysis as we develop it here. One possibility is to use the data
as infomed priors: have assymetric Dirichlet priors with higher values for roles seen in the FrameNet data.

7 Verbs and MUC

Besides FrameNet, it may be worth comparing to a verb clustering more like the Levin (1993) classes; for
example, Sun et al. (2008) and Sun and Korhonen (2009) construct a set of 204 verbs in Levin-style clusters
and evaluate clustering methods against them.

It would be useful to conduct a thorough evaluation comparing to Chambers and Jurafsky (2011a),
which induces frames with several stages of ad-hoc clustering on unlabeled newswire data, and compares
its learned frames to frames and extractions from MUC-4, a domain of newswire reports of terrorist and
political events. We took initial steps in this direction, including a clean-up of the original data that makes it
easier to use, and we have made freely available for futher research.* Unfortunately, due to the complexity of
MUC data, there is a large amount of ambiguity on how to conduct an evaluation. We uncovered a number of
discrepancies between the evaluation done by (Chambers and Jurafsky, 2011a) versus the previous work they
compare to (Patwardhan and Riloff, 2007); after a number of email exchanges with all previous co-authors,
Chambers modified his evaluation implementation and reports minor changes to their evaluation numbers.
We have assembled a document with evaluation methodology clarifications from Chambers, Patwardhan,
and Riloff, and posted it online.’

We did perform a headroom test for MUC extraction accuracy, by looking at all role-filler instances in
the text, and checking how often they corresponded to a nominal subject or object according to the Stanford
dependency parser plus our syntactic extraction rules. This was 42% of the time (on the DEV data, an upper
bound on recall. Many of the MUC instances (as well as FrameNet annotations) use noun-noun, implicit,
and other syntactic indicators of semantic relations. A full generative model would have to accomodate a
number of other syntactic paths (and perhaps surface patterns), which could be expanded as an expanded
set of a argument type variables—this could be seen as analogous to the clustering over syntactic paths and
tags in Chambers and Jurafsky (2011a), or the syntactic path generation in Titov and Klementiev (2011).

8 Conclusion

We have illustrated a probabilistic model that learns frames from text, combining document and syntactic
contexts in a Dirichlet-multinomial latent variable model. Many further extensions are possible. First,
document context could be enriched with various metadata—a document’s context in time, space, and author

*http://brenocon.com/mucd_proc/ and http://github.com/brendano/mucd_proc
Shttps://docs.google.com/document /pub?id=1erEEsWIOV0SapEecbnlAMy69Fy6TgSIdYVTIsKRaF8vM
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FN frame | Dice | In both Only in FN Only in model
lummet, skyrocket, . shoot, represent, plunge, return, ap-
Change P . y decline, rocket, mushroom, advance, P plung P
ition 0.320 tumble, dwindle, dou- drop, reach  w=16) pear, show  [o=16]
post ’ ble, rise, triple, fall P, - be, exceed, hover, sink, stabilize,
on a scale [X=0]
[B=12] surge  [N=19]
comment, attest, relate, address, insist, respond, decline, appear, describe,
assert, suggest, ex- il testify. indicat
. =29 ify, indi =10,
Statement | 0.265 | plain, add, note, say, | &8¢ M= estify, indicate  j0=10] .
. aver, pout, conjecture, avow, gloat | be, deny, refuse, continue, emphasize,
caution, report  /B=9]
[X=5] refer  /N=6]
translate, prepare, get, read, study,
Text cre- 0227 write, type, pen, com- | utter, say, chronicle, author  /m=4; contribute  jo=14
ation ’ pose, draft  /B=5; jot [x=1] promote, edit, censor, deliver, submit,
research [N:115]h T
ive, visit, telephone, notify, thank,
urge, beg, summon, | command, demand, request, order, & P y
. lead jo=22;
Request 0.218 | implore, ask, tell | plead m=5/ . o
warn, convince, invite, quote, defy,
[B=6] entreat, beseech /x=2/ .
Cross-examine  [N=i4] _
slay, Tiquidate, massacre, smother, blow, shoot, hit, torture, injure, intim-
starve, murder, slaugh- . .
o . butcher, dispatch ~ /m=8/ idate  jo=18]
Killing 0.206 | ter, drown, kill, lynch, . . o .
. crucify, asphyxiate, annihilate, gar- | harm, cheat, guard, strangle, kidnap,
assassinate  [B=7] . .
rotte, behead, decapitate  x=6; dismember  /n=22]
reveal, show, contra- . . . emerge, conclude, relate, describe,
. attest, verify, testify, evidence, corrob- . .
. dict, support, prove, . discover, examine  [0=25/
Evidence | 0.200 . orate, disprove  [M=9] . . .
confirm, indicate, evince  xei point, focus, imply, exist, result, deter-
demonstrate  /B=s; - mine  /N=29] 1 1 N
. use, set, contradict, ease, evade, soften
violate, flout, break, | conform, breach, comply, adhere
. [0=14]
Compliance 0.185 | observe, follow, obey | /m=4] ;
loosen, adopt, rewrite, strengthen, re-
[B=6] contravene [x=1] ..
vamp, administer  /N=34]
secure, await, terminate, want, de-
. win, acquire, obtain, et [m=1 mand, seek =
Getting 0.182 . 4 & =t and, see [0=01 .
gain  [B=4] [X=0] owe, dole, trade, need, withhold, guar-
_ . . antee  /N=29]
satisfy, shock, offend, | unsettle, distress, rattle, frighten, con- despise, love, divide, back, bring,
Experiencer 0176 infuriate, puzzle, re- | fuse,sting [M=4s want  j0=24]
obj ’ assure, scare, enrage | mortify, displease, exhilarate, discon- force, transfix, owe, haunt, involve,
[B=17] cert, astound, hearten /x=48] persuade  [N=39
head, thwart, Iead, avoid, pass, harass
. . hinder, obstruct, im- | inhibit, interfere  /m=2; [0=16]
Hindering | 0.170 . .
pede, hamper  /B=4] trammel, constrain, encumber /x=3; insure, overstep, harm, suspend, mon-
itor, intercept  [N=18]
notice, calm, stereotype, rattle, recog-
. comprehend, understand, presume, . . yp &
conceive, suspect, | . . . . nize, like  jo=14
Awareness | 0.167 imagine, believe, think  jm=6/ .
know  /B=3/ dig, remember, figure, spell, prefer,
reckon [x=1]
suppose  [N=9]
give, question, telephone, thank, Iead,
. inform, tell, notify, as- | confide, advise [m=2 visit  j0=24
Telling | 0.163 | ™orm. tell, notily, as ) =21 fo=24 .
sure  [B=4] apprise  [x=1] warn, convince, invite, remind, quote,
defy  n=14]
L. . initiate, launch, commence, swing | quit, cut, run, attend, skip, fix /o=11;
Activity start, begin, enter K .
0.162 [M=4] finish, complete, reform, disrupt, rock,
start [B=3]
[X=0] offer  /n=16]
emerge, swerve, angle, veer, criss- | jump, accord, move, begin, stay, ex-
Path 0.160 dip, drop, reach, edge | cross, snake [M=17] plode  [o=10
shape ’ [B=4] traverse, ascend, undulate, slant, slow, figure, rebound, tend, constitute,
zigzag, ford x=7; range  [N=8]
. L. cane, pummel, bruise, clout, hammer, blow, starve, murder, intimidate, im-
hit, torture, injure, .
Cause whip  /M=36] press, ambush  j0=17
0.157 | bludgeon, hurt, stab, .
harm . electrocute, spear, pelt, cudgel, | harm, cheat, guard, strangle, kidnap,
strike, batter  /B=87 . .
squash, horsewhip  /x=117 dismember  /N=22/

Table 4: FN verbset single best matches to Model 2 on CRIMENYT, F' = C' = 400, having a best-Dice
score at least 0.15. We break down the set comparison as per Figure 5, showing up to several words words
from each subset. The full set size is given in square brackets. B = in both wordsets. M = “missed”: not in this

model wordset. X = not in model’s vocabulary. O = in otherlfgames. N = “new”: not in our FN verb extraction, i.e. appears

fewer than 5 times in the FrameNet annotated data.
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FN frame m m = 2 O O =)
Change pos. on a scale 10 10 57 49 18 32 37
Statement 11 31 26 34 260 28
Cause chg. of pos.onscl. | 14 13 18 26 11 12
Body movement 18 15 10 12 14 21
Awareness 27 11 16 15
Motion directional 23 18 14 13
Appearance 14 17 10 14 14
Becoming 15 12 10 13 16
Evidence 12 20 19
Arriving 13 11 12 21
Causation 14 22 1210
Using 18 20 16
Path shape 15 16 16 12
Getting 13 18 15
Cause harm 14 11 15 16
Self motion 10 13 12 15
Motion 13 16 14
Request 21 18
Change posture 1210 12
Becoming aware 10 11 12 11 12
Coming to be 18 12 12
Cause change 10 14 11 15
Manipulation 10 13 12 13
Ingest substance 11 12 11
Compliance 18 17
Coming to believe 16 11 10
Perception experience 13 12 11
Departing 14 11
Removing 13 12
Contingency 16 15
Cotheme 16 10 13
Bringing 12 13 10
Categorization 14 11
Topic 10 14 15
Placing 10 12 10
Communicate categ’n 13 1210
Reveal secret 15 12 12
Activity start 11 16
Text creation 22
Expectation 11 10
Experience bodily harm 11 10
Cause motion 11
Leadership 14 10 10
Experiencer obj 11 17 12
Cause expansion 13 15
Posture 10 10 11
Perception active 10 10
Birth 11 10 10
Cooking creation 14 10
Activity stop 16 11
Traversing 11
Giving 12 11
Ride vehicle 18
Building 13 12
Contacting 14 11
Filling 10
Killing 20 15
Telling 16 16
Cause impact
Reasoning 12 11

Table 5: For a FrameNet frame’s verbset, its single-best-match Dice scores (multiplied by 100) against several different models
and datasets. Scores less than 0.1 are not shown; greater than 0.2 are bolded. 60 frames are shown, in decreasing order of average
match score across datasets/models. All runs are Model 2, with F' = C' = the number in parentheses.
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attributes can easily be incorporated in the graphical models framework. Second, the restrictions to verb-
subject-object syntactic constructions must be relaxed in order to capture the types of arguments seen in
semantic role labeling and information extraction.

9 Appendix

9.1 Dice, F-measure, and set similarity

® Let A be the set of found items, and B the set of wanted items. Prec = |AB|/|A|, Rec = |AB|/|B].
Their harmonic mean, the F'1-measure, is the same as the Dice coefficient:

2 2
(4, B) 1/P+1/R |A|/|AB|+ |B|/|AB|
, 2|AB
Dice(A, B) = !AH!’H
B 2|AB|
(IAB[+ A\ B|) + (JAB| + B\ A)
[AB|

|AB|+ 5|4\ B| + 5B\ 4]

This illustrates Dice’s close relationship to the Jaccard metric,

AB
Jacc(A, B) = ]f|1 5 ‘B]

B |AB|
~ |AB|+|A\ B| +|B\ 4]

Andinfact J = D/(2 — D) and D = 2J/(1 + J) for any input, so they are monotonic in one another. The
Tversky index (1977) generalizes them both,

o [AB|
Tversky(A, Biow B) = BT alAN B+ BB\ A

where « and (5 control the magnitude of penalties of false positive versus false negative errors. All weighted
F-measures correspond to when o + 8 = 1.

9.2 Appendix: Dirichlet-multinomial conjugacy and the DM

Consider the two-stage model
0 ~ Dir(a), = ~ Multinom(6)

where « is a real-valued vector Dirichlet parameter, and x is a vector of outcome counts. Let A = >, oy;
this is the concentration parameter.

p(z|a) = [ p(x|0)p(H|c)db is the Dirichlet-multinomial, a.k.a. Multivariate Polya distribution or Dirichlet-
compound multinomial. It is a distribution over count vectors, just like the multinomial, except it has the
capacity to prefer different levels of sparseness vs. non-sparseness.

-\ version of this appendix was published at http://brenocon.com/blog/2012/04/
f-scores-dice-and-jaccard-set-similarity/.
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First note the Dirichlet density

— FA ap—1 _ L ap—1
p(fla) = T[Tar 0y, = Bl Hekz (1

where B(«) is the multivariate Beta function

B(a) = /He,‘jk—lde — Hrljfk

Now derive the DM PMF:
plala) = / p((0) p(6la) do @
= /Multinom(:c;@) Dir(0; o) do 3)

) e )e

Because of conjugacy (i.e., the densities play nicely under multiplication), we can combine them into the
integral of a new unnormalized Dirichlet, and rewrite into closed form.

_ N' 1 xk+ak—1
plafa) = Hﬂfk!@/nek do &)
_ N! Bla+z)
el Bl ©
N T(4) T(ay + )
DM(x,a)_ka! F(A+N)H T (o) (N
—
n. seq prob of a seq having counts &

where A = > aj and N = ) x. To calculate this, one would rewrite the “number of sequences term”
using N! = I'(N + 1) and 3! = I'(zf, + 1) then use the log-gamma function for everything. To calculate
the log-probability of only a single sequence, omit the initial term N!/[]xy!; we call this a “single path
DM” or “DM1":

I'(A4) 11 [(ay + zp)

DM(ws0) = 57 T(ar)

(®)
Note the DM gives, for small « priors, a bowed-out preference to count vectors that lie on the extremes
of the N-simplex—just like the Dirichlet with small « prefers bowed-out points on the 1-simplex. This
can be seen as a preference for “bursty” behavior. A multinomial cannot do this: you only can specify the
mean, then the variance is fixed. In the DM, you control both mean and variance (= inverse concentration),
allowing burstiness a.k.a. over/under-dispersion. See Figure 6 for an illustration.

For a single DM draw where N = 1, instead of representing the draw as a sparse count vector x, we can
represent it instead as an integer ID, z € {1..K}. In the PMF, all the combinatorics drop away, leaving:

Gz
A

which is simply the Dirichlet mean parameter. When there’s only one draw there’s no such thing as bursti-
ness or not.

DM (z;a) =
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DM with high alpha0 --
preference for uniformity
[alphaO=inf same as multinom]

[]

DM with low alpha0 --
preference for burstiness

2,0,0

1,1,0 1,0,1

020 01,1 002 |:| |:| O

Figure 6: For two throws of a three-sided die, the six possible outcomes are laid out as shown on left
(reminiscent of a simplex). Center: The PMF of a two-draw multinomial, mean parameter p = (%, %, %)
Area of box corresponds to probability of the outcome. Right: The PMF of a Dirichlet-multinomial, with
the same mean, but a low concentration A. No multinomial can represent this distributiom.

It is also easy to derive the posterior predictive distribution for a Dirichlet-Multinomial hierarchical
model. We want to know the probability of the next draw z given the previous draws z_;, using our entire
posterior beliefs about §. Represent z_; as count vector i = (n1..nk), i.e. ng =3, 1{z; = k}:

p(elz-i) = [ p(:16) POl ) a0 ©)
= /Multinom(z; 0) Dir(0;d + i) do (10)

The second step used Dirichlet-multinomial conjugacy. Now this is just the 1-draw DM (i.e. the mean of the
conjugately-updated Dirichlet),

p(z|z—i, @) = DM (z; @ + 1) (11)
o, +ny

= 12

A+ N (12

9.3 DM PMF in LDA hyperparameter sampling

Going through the full DM is not necessary to derive the collapsed Gibbs sampling equations, but it is
necessary for hyperparameter sampling, which requires evaluating the likelihood of the entire dataset under
different hyperparamters o«. LDA under collapsing can be viewed as a series of DM draws:

e For each d, sample vector zy;. 4,—q, ~ DM Path(a)
e For each k, sample vector wy;, .,y ~ DM Path(3)

where “DMPath” indicates choosing one random sequence having the counts of one DM draw; its PMF is
the DM 1 function of its count vector. (This could be computed by proceeding through a Polya urn pro-
cess a.k.a. (finite) Chinese restaurant process.) Therefore, for their Gibbs update steps, the hyperparameter
likelihoods are:

p(z | a) = [[ DM Path(z(; a,—ay; ) (13)
d

p(w |z, B) = [ [ DMPath(wy, .,—ry; B) (14)
k
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Figure 7: Correlation of running pseudolikelihood (evaluated during Gibbs sampling) to actual likelihood
(evaluated exactly via the DM PMF (section 9.2)), for one MCMC run (small dataset, Model 1). Left: shown
for all iterations where likelihood was evaluated. Right: shown for iterations 500 and later, with lines drawn
between successive iterations.

For the other models, analogous formulations are available as well. We were initially tempted to try to
compute the likehoods with per-token local conditionals similar to what is used for the z Gibbs updates,

[T p(wilzi, 8) p(zilz—i; @)

which is easy to compute, but unfortunately wrong: it is actually a pseudolikelihood approximation to the
likelihood (Besag 1975). Since it is possible to compute the actual likelihood closed-form log-gammas, we
do so.

However, it does turn out the running-sum pseudolikelihood is a good approximation, as shown in Fig-
ure 7, for correlating to likelihood across MCMC samples, thus could be used to aid MCMC convergence
diagnosis in situations where full likelihood evaluation is computationally expensive or difficult to imple-
ment.
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