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Abstract

FMRI brain images are generated by the variation of multiple factors, such as subject, motor

task, and time frame. Just as this example demonstrates, in image analysis, much work has been

aimed at analyzing a set of images generated by variation of multiple factors. To perform image

analysis successfully, it is often necessary to model multiple factor frameworks found in image

sets. One leading method for multifactor analysis is Multilinear Principal Component Analysis

(MPCA), also called Tensorfaces, based on Higher-Order Singular Value Decomposition in tensor

algebra. While traditional dimension reduction methods use a single low-dimensional vector to

represent an original high-dimensional sample vector, MPCA uses multiple low-dimensional vec-

tors associated with multiple factors. This project extends Multifactor Kernel PCA (MKPCA), a

kernel-based version of MPCA, based on kernels that consist of multiple sub-kernels. Based on

multifactor analysis provided by MKPCA, in this project, we conducted experiments using a set

of 4D spatiotemporal fMRI brain images with two factors: 14 subjects and 4 motor tasks. Subject

parameters and motor-task parameters, obtained by decomposing the influences of the two factors,

were used for classifying fMRI images by subject and motor task, respectively. The classification

accuracy obtained by our experiments demonstrates the advantages of our proposed method over

current leading methods for multifactor analysis. In particular, MKPCA outperformed MPCA, as

MKPCA was able to provide more reliable analysis for nonlinear structures in real-world data sets.
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1 Introduction

In image analysis, we often aim to analyze a set of images generated by varying multiple factors. For

example, face images are generated by variation of multiple factors, such as subject, viewpoint, and

lighting condition. Another example includes fMRI brain images generated by the variation of subject

and motor task. Thus, for successful image analysis, it is often necessary to model multiple factor

frameworks found in image sets.

One leading method for multifactor analysis is Multilinear Principal Component Analysis (MPCA),

also called Tensorfaces [11] [13], based on tensor frameworks and tensor algebra. MPCA has been

used to analyze the interaction between multiple factors. After establishing multiple dimensions based

on multiple factors, MPCA computes a linear subspace that represents the variation of each factor.

By using MPCA, a data set is represented as a tensor product of multiple orthogonal matrices, where

the columns of each matrix span the subspace constructed by the variation of each factor. Similarly,

in MPCA, one image is represented as a tensor product of multiple factor-dependent parameters that

describe the features of multiple factors. In other words, MPCA can decompose the characteristics

of each sample vector into multiple parameters associated with multiple factors. For example, MPCA

separately parameterizes the subject and the motor task of each fMRI image. In the context of the clas-

sification of fMRI images by subject, the main advantage of MPCA results from its ability to obtain

each fMRI image’s subject parameter. These subject parameters represent the invariant characteristics

of each subject under other varying factors, such as motor task. Consequently, using MPCA, a single

subject’s fMRI images have identical subject parameters regardless of varying motor tasks, while differ-

ent subjects’ fMRI images have different subject parameters. Thus, these subject parameters have been

applied to the classification of fMRI images by subject. Similarly, the motor-task parameters of fMRI

images can be applied to classification by motor task. Recently, a kernel-based extension of MPCA

called Multifactor Kernel Principal Component Analysis (MKPCA) has been introduced [6] [7].

The diagram in Figure 1 summarizes the historical evolution of dimensionality reduction methods

from Principal Component Analysis (PCA) [9] to MKPCA. PCA is most often cited as the precursor to

several subspace methods that have been applied to dimensionality reduction. The basic methodology

of PCA is to project sample vectors into the linear subspace spanned by the principal directions with

the largest variance of data distribution. Kernel Principal Component Analysis (KPCA) [8], a nonlinear

variant of PCA, assumes that there exists a nonlinear map that makes mapped observations linearly

separable, and then applies PCA to them. Thus, the subspace achieved by KPCA is nonlinear in the

input space, which allows KPCA to be successfully applied to complex real-world data that are not

linearly separable. Another variant of PCA is aforementioned MPCA, an extension of PCA to multiple
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Figure 1: Historical evolution of dimensionality reduction techniques from PCA to MKPCA.

factor frameworks. Recently, by combining KPCA and MPCA, a more advanced subspace method

has been introduced, called MKPCA. MKPCA can be thought of as both a kernel-based extension of

MPCA and a multifactor extension of KPCA.

In this project, we propose an extension of MKPCA based on kernel functions that can be success-

fully applied to structured data, such as fMRI images. When data samples are originally represented

as matrices or tensors, such as 2D or 3D images, MKPCA proposed in [6] and [7] merely vectorizes

these sample matrices or tensors and applies kernel functions to these vectors. For example, each fMRI

brain image is originally a 3rd-order tensor consisting of 3D voxels; however, traditional MKPCA

based on vectorization cannot take advantage of this 3rd-order structure in each fMRI image. To over-

come this limitation in previous work, we apply kernels that can make full use of structured data. Our

experiments aimed to classify fMRI images by subject and motor task using subject parameters and

motor-task parameters, respectively. We used the fMRI brain scan database from the fMRI Data Center

(fMRIDC) [3] with 14 subjects, four motor tasks, and 66 time frames.

2 Multifactor Analysis Based on Multilinear Algebra

Multilinear Principal Component Analysis (MPCA) [11] [12], also called Tensorfaces, is the appli-

cation of Higher-Order Singular Value Decomposition (HOSVD) [5] to multiple factor frameworks.

4



MPCA aims to decompose the characteristics of each data sample into multiple parameters associated

with multiple factors. In this section, we review PCA, on which MPCA is based, and MPCA.

2.1 Principal Component Analysis (PCA)

PCA [9] can be achieved using Singular Value Decomposition (SVD) [2]. Let X denote the d× n data

matrix whose columns represent n training sample vectors in Rd. We assume that these data samples

are centered at zero. As illustrated in Figure 2, the truncated SVD represents the data matrix X as

X = USVT , (1)

where U ∈ Rd×d′ denotes the left singular vector matrix, S ∈ Rd′×d′ denotes the singular value matrix,

and V ∈ Rn×d′ denotes the right singular vector matrix for d′ ≤ min(d, n). Here, U and V are

orthogonal matrices, and S is a diagonal matrix.

Since U is an orthogonal matrix, UTU = I, where I denotes an identity matrix. Thus, we can see

that U+ = UT , where + denotes the Moore-Penrose pseudoinverse. PCA performs dimensionality

reduction through the linear projection matrix U:

Y = U+X = UTX = SVT ∈ Rd′×n. (2)

The columns of U represent the eigenvectors of the covariance matrix XXT . Traditionally, when PCA

is used for classification, the last few eigenvectors are removed to improve performance; that is, the last

few columns of U are discarded by truncation.

In Figure 2, the parts represented in red show that vi, each row of the matrix V, can be thought of as

the low-dimensional representation of xi, each column of X:

xi = USvi. (3)

2.2 Multilinear Principal Component Analysis (MPCA)

MPCA is a multilinear extension of PCA. Just as PCA can be achieved using SVD, MPCA can be

achieved using Higher-Order Singular Value Decomposition (HOSVD) [5], a multilinear extension of

matrix SVD.

MPCA computes a linear subspace generated by varying each factor as well as the linear subspace

of the sample space itself. In this paper, we consider a set of fMRI images with two factors: ns subjects

and nm motor tasks. Since in general, MPCA vectorizes data samples, we assume that nx × ny × nz
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Figure 2: SVD of a data matrix X.

fMRI images with d(= nxnynz) voxels are vectored and reshaped as d-dimensional vectors. Let X ∈
Rd×ns×nm denote a 3rd-order tensor consisting of these vectored fMRI images for ns subjects and nm

motor tasks. For analyzing the multifactor structure, HOSVD represents a tensor X in terms of tensor

products:

X = Z ×1 Uv ×2 Us ×3 Um. (4)

In (4), Z ∈ Rd′×n′
s×n′

m is called a core tensor, and Uv ∈ Rd×d′ , Us ∈ Rns×n′
s , and Um ∈ Rnm×n′

m are

orthogonal matrices, where d ≥ d, ns ≥ n′
s, and nm ≥ n′

m.

The matrix Uv can be calculated as the left singular vector matrix of X(v), where the matrix X(v) ∈
Rd×nsnm is obtained by flattening a tensor X in the mode-1, i.e., the voxel mode. In other words, if a

vector xi,j ∈ Rd denotes a vectorized fMRI image of subject i with motor task j, as shown in Figure 3,

a matrix X(v) can be written as

X(v) = [x1,1, x2,1, · · · , xns,1, x1,2, · · · , xns,nm ] . (5)

Note that Uv is technically the same as U in (1), where n = nsnm.

Similarly, Us and Um can be calculated as the left singular vector matrices of X(s) ∈ Rns×nmd and

X(m) ∈ Rnm×nsd, respectively. Here, X(s) and X(m) are the mode-2 (or the subject mode) and mode-3

(or the motor-task mode) flattening matrices of the tensor X . Just like X(v) in (5), the two matrices

X(s) and X(m) can be formulated in terms of xi,j:

X(s) =


xT
1,1 xT

1,2 · · · xT
1,nm

xT
2,1 xT

2,2 · · · xT
2,nm

...

xT
ns,1 xT

ns,2 · · · xT
ns,nm

 and (6)
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X(m) =


xT
1,1 xT

2,1 · · · xT
ns,1

xT
1,2 xT

2,2 · · · xT
ns,2

...

xT
1,nm

xT
2,nm

· · · xT
ns,nm

 . (7)

After calculating the three orthogonal matrices Uv, Us, and Um, a core tensor Z can be calculated as

Z = X ×1 U
T
v ×2 U

T
s ×3 U

T
m. (8)

In Figure 3(a), the parts represented in red show that each sample vector xi,j can be formulated as

xi,j = Z ×1 Uv ×2 s
T
i ×3 m

T
j , (9)

where a vector si ∈ Rn′
s is the i-th row vector of Us and a vector mj ∈ Rn′

m is the j-th row vector of

Um. These two vectors si and mj represent the subject and motor-task parameters of xi,j , respectively.

While the HOSVD of X is formulated in terms of tensors and tensor products as shown in (4), the

equivalent of (4) can be formulated in terms of matrices and Kronecker products:

X(v) = UvZ(v)(Us ⊗Um)
T , (10)

where ⊗ denotes the Kronecker product and Z(v) denotes the mode-1 (voxel mode) flattening matrix of

a core tensor Z . Similarly, the equivalent of (9) can be derived as

xi,j = UvZ(v)(si ⊗mj) (11)

using matrices and the Kronecker product instead of tensors and tensor products. Figure 3(a) and

Figure 3(b) compare the two equivalent formulations of HOSVD in a tensor framework and in a matrix

framework, respectively.

MPCA clearly defines the generalization of parameter decomposition to out-of-sample data. The

representation of each labeled training sample defined in (11) is generalized to the representation of

any unlabeled test sample x:

x = UvZ(v) (s⊗m) . (12)

Note that x’s labels for the two factors are not given, and thus, each factor-dependent parameter is

unknown. However, although both s and m are unknown, we can calculate s⊗m, the joint parameter

of x:

s⊗m = Z+
(v)U

T
v x (13)

using Uv and Z(v) achieved by training. The joint parameter s⊗m in (13) can be easily decomposed by

rank-(1, 1, · · · , 1) approximation using the alternating least squares method [13]. Rank-(1, 1, · · · , 1)
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Figure 3: Two equivalent formulations of Higher-Order SVD. x2,1 represents a vectorized fMRI image

for subject 2 and motor task 1. s2 represents the subject parameter for subject 2, and m1 represents the

motor-task parameter for motor task 1.
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approximation aims to calculate s ∈ Rn′
s and m ∈ Rn′

m as the left and right singular vectors, respec-

tively, corresponding to the largest singular value of a matrix smT ∈ Rn′
s×n′

m .

After decomposing the joint parameter s⊗m into s and m, one can use only the subject parameter

s for the classification of x by subject, assuming that s does not depend on the type of motor task.

Similarly, m can be used for classifying x by motor task.

3 A Kernel-Based Extension of Multifactor Analysis

In this project, we propose the method for classifying fMRI images by subject and motor task using a

kernel-based extension of multifactor analysis. We also propose kernel functions that can be success-

fully applied to structured data, such as 3D fMRI images.

3.1 Multifactor Kernel Principal Component Analysis (MKPCA)

MKPCA [6] [7] is a recently proposed variant of PCA. Since MKPCA is the combination of KPCA and

MPCA, it offers the virtues of both KPCA and MPCA. Based on the observation that the covariance

matrices in every factor space of MPCA are formulated with inner products, one can apply the kernel

trick to MPCA and consequently obtain MKPCA.

(6) enables us to calculate the matrix X(s)X
T
(s). If we let

[
X(s)X

T
(s)

]
r,c

denote the (i, j) entry of

X(s)X
T
(s), this entry is calculated as

[
X(s)X

T
(s)

]
r,c

=
nm∑
i=1

xT
r,ixc,i. (14)

Similarly, X(m)X
T
(m) can be calculated as

[
X(m)X

T
(m)

]
r,c

=
ns∑
i=1

xT
i,rxi,c. (15)

Since the left singular vector matrices of X(s) and X(s)X
T
(s) are identical, the orthogonal matrix Us

in (9) can be calculated as the left singular vector matrix of X(s)X
T
(s), as well as X(s). Similarly, the

orthogonal matrix Um in (9) can be calculated as the left singular vector matrix of X(m)X
T
(m), as well

as X(m).

In order to extend MPCA’s formulations introduced in Section 2.2 to a nonlinear feature space, we let

X̄ denote a data tensor whose mode-1 vectors represent nonlinear mappings of fMRI images: ϕ(x1,1),

ϕ(x2,1), · · · , and ϕ(xns,nm). [6] and [7]show that although the nonlinear map ϕ(·) is not defined

9



explicitly, MPCA can be performed in the feature space if a kernel function k(·, ·), which defines the

inner product in the feature space, is given. To review this idea, first, let us show that the nonlinear

versions of factor-dependent parameters can be calculated only based on k(·, ·) without any explicit

use of ϕ. From (14) and (15), we can see that both matrices X(s)X
T
(s) and X(m)X

T
(m) are formulated

in terms of inner products of pairs of training images. Thus, we can apply the kernel trick and replace

(14) and (15) with the flowing nonlinear versions:

[
X̄(s)X̄

T
(s)

]
r,c

=
nm∑
i=1

k(xr,i,xc,i), (16)

[
X̄(m)X̄

T
(m)

]
r,c

=
ns∑
i=1

k(xi,r,xi,c). (17)

Using (16) and (17), we can directly calculate X̄(s)X̄
T
(s) and X̄(m)X̄

T
(m), respectively, without any use of

ϕ(·). Thus, the subspace matrices Ūs and Ūm can be calculated by the SVD of X̄(s)X̄
T
(s) and X̄(m)X̄

T
(m),

respectively.

While Ūs and Ūm can be directly calculated using (16) and (17), Ūv cannot be calculated in this

manner. This is because X̄(v)X̄
T
(v) cannot be formulated only in terms of the inner product while

X̄(s)X̄
T
(s) and X̄(m)X̄

T
(m) can, as shown in (16) and (17). However, using the kernel trick, the factor-

dependent parameters of out-of-sample data can be calculated without solving for Ūv in MKPCA. The

nonlinear version of (13) can be derived as

s̄⊗ m̄ = Z̄+
(v)Ū

T
v ϕ(x). (18)

By flattening in the voxel mode, (8) can be revised as

Z̄(v) = ŪT
v X̄(v)(Ūs ⊗ Ūm). (19)

Since X̄(v) can be decomposed as X̄(v) = ŪvS̄vV̄
T
v using SVD, Ūv can be denoted as

Ūv = X̄(v)V̄vS̄
−1
v , (20)

where V̄v and S̄v can be directly calculated by the SVD of the kernel matrix K:

K = X̄T
(v)X̄(v) = V̄vS̄

2
vV̄

T
v . (21)

Using (20) and (21), Z̄(v) in (19) can be revised as

Z̄(v) = S̄−T
v V̄T

v X̄
T
(v)X̄(v)(Ūs ⊗ Ūm) = S̄−1

v V̄T
v K(Ūs ⊗ Ūm). (22)
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Note that Z̄(v) can be directly calculated because all of the matrices on the right side in (22) can be

solved. Consequently, using (19) and (20), (18) can be derived as

s̄⊗ m̄ = Z̄+
(v)Ū

T
v ϕ(x) = Z̄+

(v)S̄
−T
v V̄T

v X̄
T
(v)ϕ(x) = Z̄+

(v)S̄
−1
v V̄T

v k, (23)

where the column vector k is defined as k = [k(x1,1,x), k(x2,1,x), · · · , k(xns,nm ,x)]
T . Note that

in MKPCA, the joint parameter s̄ ⊗ m̄ can be calculated using the kernel matrix K and the vector

k, without the use of ϕ. Just as in (13), rank-(1, 1, · · · , 1) approximation using the alternating least

squares method [13] can be applied to parameter decomposition in (23).

In sum, although a nonlinear map is not defined, by using the kernel trick, factor-dependent param-

eters can be achieved for both training samples and test samples. Consequently, by combining KPCA

and MPCA, the more advanced subspace method, MKPCA, is derived.

3.2 Kernels for Structured Objects

If the various parts of each sample vector have different meanings and should be dealt with differently,

we need to define kernels on structured objects. For example, the elements of strings, trees, and graphs

are discrete structures. If a sample vector x can be split into two parts x1 and x2, two different kernels

can be used for these parts. In literature, kernel functions for structured data, such as R-convolution

kernels [4] and ANOVA kernels [10], have been proposed for this purpose.

An fMRI brain tensor X ∈ Rnx×ny×nz consists of 3D voxels, and thus, this tensor can be decomposed

into vectors in three different ways: mode-1, mode-2, and mode-3 vectors as shown in Figure 4. Let

xi,j , yi,j , and zi,j denote mode-1, mode-2, and mode-3 vectors of the tensor X , respectively.

Each original fMRI brain image is a 3rd-order tensor consisting of 3D voxels. To make full use of

the tensorial structures in fMRI images, we need to define a kernel function between a pair of fMRI

brain tensors. However, traditional MKPCA merely vectorizes these 3rd-order tensors and ignores the

original structures in fMRI images. In other words, MKPCA uses a kernel function k(·, ·) between two

vectors to represent a kernel function ktensor(·, ·) between two tensors:

ktensor(X ,X ′) = k(vec(X ), vec(X ′)), (24)

where vec(·) denotes vector unfolding, and X and X ′ denote 3D fMRI tensors.

In previous work, both R-convolution kernels [4] and ANOVA kernels [10] aim to define kernels

between composite objects by building on similarity measures that assess their respective parts. The

R-convolution is defined as

kR(x,x
′) =

∑
R

D∏
d=1

kd(xd,x
′
d), (25)
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Figure 4: Three vector spaces of a 3rd-order tensor. (a) mode-1 vectors. (b) mode-2 vectors. (c) mode-3

vectors.

where the sum runs over all possible ways in which we can decompose x into x1, · · · ,xD and x′ into

x′
1, · · · ,x′

D. (25) shows that during the process of hierarchical merging, larger structures are formed

through the continuous merging of smaller structures. This continuous merging is performed by the

following order of operators: the kernel functions kd(·, ·), the products
∏

, and the sums
∑

. More

specifically, in (25), D vectors are ultimately reduced to just a single scalar through a hierarchical

merging process that is greedy, in that most similar pairwise vectors are merged by the kernel function

during the earliest phase. Subsequently, in the second phase, most similar pairwise function outputs

are merged as scalar products, and these scalar products are then all summed up in the final phase.

ANOVA kernels provide similar observations. Based on these observations, in this project, we invent

the following kernel k3rd(·, ·) that aims to sufficiently represent the three vector spaces of 3rd-order

tensors of fMRI images:

k3rd(X ,X ′) =

ny∏
i

nz∏
j

kx(xi,j,x
′
i,j) +

nx∏
i

nz∏
j

ky(yi,j,y
′
i,j) +

nx∏
i

ny∏
j

kz(zi,j, z
′
i,j), (26)

where x′
i,j , y

′
i,j , and z′i,j are mode-1, mode-2, and mode-3 vectors of the tensor X ′, as shown in Figure

4.
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4 Experimental Results

In this section, we demonstrate that the proposed method is appropriate for dimensionality reduction of

fMRI data with multiple factors.

4.1 fMRIDC Database

We used the fMRI brain scan database from the fMRI Data Center (fMRIDC) [3] with 14 subjects, four

motor tasks, and 66 time frames. Each frame image consists of 64 × 64 × 22 voxels, and one of the

images is shown in Figure 5. Each 3D fMRI scan in the original data set has the NIFTI format with

a raw data file (.img) and a header (.hdr) file. We converted each scan to a 3D tensor using Spatial

Transformations 8 (SPM8) [1], which is one of the most powerful tools to analyze biomedical images

such as fMRI, PET, SPECT, EEG, and MEG.

For preprocessing, each 3D temporal fMRI image was vectored and normalized to zero mean and

unit variance. After vectorization and normalization, we applied 4D discrete wavelet transform (DWT)

using Haar wavelet to each 4D spatiotemporal fMRI image.

4.2 Classification by Subject and Motor Task

We compare the performance of MKPCA using our proposed kernel function k3rd(·, ·) to other di-

mensionality reduction methods including PCA, MPCA, KPCA, and MKPCA using an RBF kernel

kRBF(·, ·). To test the quality of dimensionality reduction, we conducted two classification tests: the

classification of test images by subject and motor task. We compared the classification rates of all of

the methods based on rank-1 classification, i.e., 1-NN classification. To measure the distances in the

parameter spaces, we used the Euclidean distance. In order to show the statistical significance of the

differences between the results of the aforementioned methods, a One-Way Analysis of Variance test

was conducted for the results of leave-one-out cross-validation.

For truncated SVD reviewed in Section 2.1, we used energy thresholding to retain top-m eigenvectors

such that

min
m

∑m
j=1 λj∑n
j=1 λj

≥ t, (27)

where λj is the eigenvalue corresponding to the j-th eigenvector for λ1 ≥ λ2 ≥ · · · ≥ λn. Here, n is the

total number of eigenvectors and t is the user specified threshold. In other words, energy thresholding

is for using a linear subspace that consists of the minimum numbers of basis vectors whose cumulative

energy defined in (27) were above t. In our experiments, we set 0.95 as the threshold for PCA and

13



Figure 5: 3D fMRI data in the fMRIDC database
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Average accuracy F p-value

PCA 0.846 31.570 1.528E-7

MPCA 0.893

KPCA using kRBF (·, ·) 0.853

MKPCA using kRBF (·, ·) 0.909

MKPCA using k3rd(·, ·) 0.922

Table 1: Subject classification accuracy

Average accuracy F p-value

PCA 0.890 52.081 2.539E-6

MPCA 0.934

KPCA with kRBF (·, ·) 0.920

MKPCA with kRBF (·, ·) 0.950

MKPCA with k3rd(·, ·) 0.960

Table 2: Motor-task classification accuracy

KPCA. For the three methods based on parameter decomposition, MPCA, MKPCA using kRBF(·, ·),
and MKPCA using k3rd(·, ·), the percentages of cumulative energy in the voxel mode was set to 0.95

again, while the percentages of cumulative energy in the other modes were fixed at 1.0.

Only subject parameters were compared for all the three methods based on parameter decomposition,

MPCA, MKPCA using kRBF(·, ·), and MKPCA using k3rd(·, ·), when classifying fMRI images by sub-

ject without use of motor-task parameters. Similarly, for classification by motor task, only motor-task

parameters obtained by each method were compared without use of subject parameters. On the other

hand, PCA and KPCA use a single low-dimensional vector to represent an fMRI image thus, these

low-dimensional vectors were compared by the rank-1 recognition rate for classification.

For KPCA, we used the RBF kernel function defined in (28), and set σ for this function to 100:

kRBF(x,x
′) = exp

(
−∥x− x′∥2

σ

)
. (28)

For MKPCA, we tested two different kernels: one is the RBF kernel with σ = 100 and the other is the

kernel k3rd(·, ·) defined in (26). Again, the RBF kernel with σ = 100 was applied to kx(·, ·), ky(·, ·),
and kz(·, ·) in (26).

Tables 1 and 2 show the results of classification by subject and motor task, respectively, using One-

Way Analysis of Variance. If we set the significance level to 1%, since the p-values are less than 0.01

15



in both tables, we can think that the proposed method, MKPCA using k3rd(·, ·), obtained statistically

significantly higher accuracy than the comparative methods.

As shown in Tables 1 and 2, two versions of MKPCA using kRBF (·, ·) and k3rd(·, ·) outperformed all

of the other methods for classification by both subject and motor task. This may be because MKPCA

offers the combined virtues of both multifactor analysis and kernel-based methods. One advantage of

MKPCA is MKPCA’s ability to achieve subject parameters and motor-task parameters. Since ideally,

these two types of parameters are independent from one another, subject and motor-task parameters

can be successfully applied to classification by subject and motor task, respectively. Also, MKPCA

uses nonlinear kernels, and thus MKPCA is appropriate for complex real-world data samples that are

not linearly separable. The advantages of nonlinear methods are demonstrated in Tables 1 and 2 by the

fact that KPCA and MKPCA outperformed PCA and MPCA, respectively.

Tables 1 and 2 also demonstrate that MKPCA using k3rd(·, ·) outperformed MKPCA using kRBF (·, ·).
This is because the kernel function k3rd(·, ·) sufficiently represents the hierarchical structures of fMRI

samples, while the RBF kernel ignores these structures.

5 Conclusion and Future Work

We propose a kernel-based extension of multifactor analysis based on kernels on structured data. We

applied our proposed method to fMRI brain scans and analyzed their classification accuracy. Since

MKPCA offers the virtues of both multifactor analysis and kernel methods, MKPCA can obtain more

reliable experimental results than other baseline methods. Therefore, the main advantage of MKPCA

is that it can learn both a multiple factor framework and a nonlinear structure in a data distribution.

Moreover, our proposed kernel function for structured data improved the performance of MKPCA; this

is because fMRI images are represented by tensorial structures.

Since we do not need to limit the applications of MKPCA only to fMRI data, we will perform more

experiments using other structured data with multiple factors, such as 2D face images generated by

variation of subject, viewpoint, and illumination.
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