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Abstract

Analyzing genetic population structure is useful in gaining insight
about the evolutionary history of human populations. It gives us an un-
derstanding of the genetic similarities and differences between different
populations and helps study their isolation, migration and inter-mixing.

With modern genotype sequencing methods, new data sets about hu-
man population are becoming available. The Human Genome Diversity
Project (HGDP) includes population samples from 52 worldwide popula-
tions genotyped at hundreds of polymorphic loci. However, the sampling
of populations from across the world was not uniform, with some geo-
graphical regions such as the Indian subcontinent, the Americas and the
Pacific islands severely under-sampled. Newer data sets have focused on
genotyping samples from populations which were insufficiently sampled
previously. The Pacific Islanders are of interest anthropologically due to
their cultural diversity and evolutionarily due to their geographical loca-
tion.

In this work, we analyze the genetic population structure in the Pa-
cific islander populations using mStruct , a methodology based on mixed-
membership models that we developed previously. We present results
of the population structure analyses and our hypotheses about how the
populations have evolved from ancient populations. Our results show that
there is a large amount of genetic diversity present in the Pacific islanders,
and that it varies across the various islands of the Pacific, largely deter-
mined by geography. There is also some variation in genetic profiles that
correlates with local languages.

1 Introduction

Genetic population structure is the assignment of individuals to different groups
or clusters based on a genetic measure of similarity. Human genetic population
structure is of great interest for the study of human evolutionary history. Since
DNA is inherited, a study of genetic similarity and differences gives us clues
about human evolution after the origin of modern humans in Africa. Hypothe-
ses about human migration into different parts of the world can be made by
examining genetic population structure [1, 2]. Identifying population structure

1



has also shown been shown to be of importance in association studies, where it
can cause false positive results [3].

In the past few years, a lot of human genetic data has become available
through various international projects for scientific analysis. The HapMap
project [4] and the Human Genome Diversity Project (HGDP) [5] are two such
projects. The HapMap project has provided dense genotype data on small
groups of individuals of African, European and Asian origin. The HGDP project
has genotype data from 52 worldwide populations on 1056 individuals. These
projects have allowed researchers to perform many studies on human genetic
variation [6, 7]. They have enabled scientists to test various hypotheses about
human evolution [1].

However, despite their utility, there have been some criticisms of the data
sets, a major one being the presence of large regions of the world which are
severely under-sampled, prominent examples being the Indian subcontinent,
the Native American populations in North America, and the Pacific islander
populations from Oceania. Each of these populations is interesting for various
anthropological and evolutionary reasons. Pacific islander populations show
distinctive cultural variation, which leads to questions about their evolution and
migration into the various Pacific islands. These questions can be attempted
to be answered by studying the genetic population structure present in these
populations.

We analyzed the genetic population structure of Pacific islanders, using the
mStruct methodology [8]. mStruct is a mixed-membership model that allows
analysis of population structure in admixed populations while simultaneously
allowing for allele mutations. mStruct is described in more detail later in Sec-
tion 3.2.2. Our results show that there is a large amount of genetic diversity
present in the Pacific islanders, and that it varies across the various islands of
the Pacific according to geographical location and island size. Geography has
a strong impact on genetic similarity and differences. There is also some varia-
tion in genetic profiles that correlates with local languages. We also performed
model selection analysis to find the number of ancestral populations that gave
rise to the modern Pacific islander populations.

2 Related Work

The earliest genetic analyses of Pacific islander populations have been per-
formed by examining variation in mitochondrial DNA (mtDNA) [9, 10] and
non-recombining Y-chromosome markers [10, 11]. Since Y-chromosomes are in-
herited paternally (by sons) and mtDNA is inherited maternally, these analyses
provide an incomplete picture of evolutionary history. Autosomal microsatellite
genotype data from the HGDP was also used to study worldwide populations,
including a few Pacific islander populations [6, 12]. However the number of
Pacific islander individuals genotyped in these studies has been very small (∼50
individuals from two Melanesian populations). As a result, it has not been
possible to study the genetic variation in Pacific islander populations in depth.

2



Friedlaender et al. [13] studied the genetic variation in 41 populations from
islands in the Pacific using the STRUCTURE model by Pritchard et al. [14].
They found that genetic diversity within individual Pacific populations was
low, but due to high differentiation among Melanasian groups, the overall ge-
netic diversity of the region is very high. They observed that the amount of
differentiation varied between islands, and was dependent on island size and
topographical complexity. They found that patterns of differentiation loosely
track language distinctions in the Pacific populations. A long standing question
in the evolution of Pacific island populations has been about how fast Polynesian
populations moved through Melanesia and the amount of intermixing between
these two groups of populations [10, 15]. From their analysis, they concluded
that the Polynesian migration through Melanesia was relatively rapid and there
was only a modest amount of intermixing with the indigenous populations.

Our work is similar in methodology to the work by Friedlaender et al. [13].
In Shringarpure and Xing [8], we found that the mStruct model and STRUC-
TURE model often produce different summaries of population structure due to
their modeling differences. In this re-analysis of the data in Friedlaender et al.
[13], we found that our results mostly agree with Friedlaender et al. [13] with
minor differences. We find that the amount of genetic diversity varies across
different islands, with effects of both geography and language evident.

Recently, there has been also some work in using language phylogenies to
study the exapnsion of humans into the Pacific islands [15]. These methods use
information about language evolution and and similarity to address the question
of the mechanisms of the settlement of Pacific islands.

3 Materials and Methods

We used data published in an earlier study by Friedlaender et al. [13] for our
analysis. It is currently the largest set of genotype data for Pacific islander
populations publicly available. For analyzing the data, we used mStruct , a
method we developed previously in Shringarpure and Xing [8]. In the following
text, we describe the data used for analysis and briefly describe the motivation
and graphical model for mStruct .

3.1 The data

Friedlaender et al. [13] used data from 41 populations in the Pacific for their
study. They used 687 autosomal microsatellites in 952 individuals from 41
Pacific populations. Due to restrictions on data release, the data published
online does not contain individuals from Maori and Taiwanese populations (4
groups in total).

Microsatellites, or “short sequence tandem repeats” (sstr), are a class of ge-
nomic markers consisting of repeating sequences of small units of DNA, usually
1-6 base pairs in length. For example, a DNA sequence such as “CACACACA-
CACACA” is a microsatellite with repeating unit “CA” and a repeat count of 7.
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Microsatellites are highly polymorphic DNA markers due to their high mutation
rate [16, 17] and variation is indicated by a change in the number of repeats of
the unit. Each variant of a particular microsatellite is called an allele. Since
microsatellites can have a very large number of alleles, they are very informative
markers. Microsatellite loci have been used before in DNA fingerprinting [18],
linkage analysis [19], and in the reconstruction of human phylogeny [2]. By ap-
plying theoretical models of microsatellite evolution to data, questions such as
time of divergence of two populations can be attempted to be addressed [20, 21].

3.2 Admixture Models for Population Structure

Admixtures are useful for modeling objects (e.g., human beings) each compris-
ing multiple instances of some attributes (e.g., marker alleles), each of which
comes from a (possibly different) source distribution Pk(·|Θk), according to an
individual-specific admixing vector (a.k.a. ancestry vector) ~θ. The ancestry vec-
tor represents the normalized contribution from each of the source distributions
{Pk ; k = 1 : K} to the object in question. For a single data set, all the ances-
try vectors are assumed to be samples from an underlying structure prior with
parameter α. We will represent individuals as a collection of alleles indexed by
their locus, and also use an extra subscript e ∈ {1, 2} to allow for the diploid
nature of human chromosomes. Thus the allele at locus i in individual n, on
chromosome copy e is indicated by xi,ne

. Suppose, for every individual, the
alleles at each locus may be inherited from founders in different ancestral popu-
lations, with each ancestral population represented by a unique distribution of
founding alleles and parameters that determine the inheritance. Formally, this
scenario can be captured in the following generative process:

1. For each individual n, draw the admixing vector: ~θn ∼ P (·|α), where P (·|α) is
a pre-chosen structure prior.

2. For the marker allele at locus i, xi,ne ∈ xn

• 2.1: draw the latent ancestral-population-origin indicator zi,ne ∼ Multinomial(·|~θn)

• 2.2: draw the allele xi,ne |zi,ne = k ∼ Pk(·|Θk
i )).

Depending on how ancestral populations and the way of inheritance of an-
cestral alleles are modeled, we can have different probability distributions for
Pk(·|Θk) in the last sampling step above, and thereby different admixtures of
very different characteristics. Below we describe STRUCTURE , a popular ad-
mixture model for summarizing population structure. We then describe the
motivation behind the mStruct model and the modeling, inference and parame-
ter estimation procedures.

3.2.1 The STRUCTURE model

In STRUCTURE , the ancestral populations are represented by a set of population-
specific allele frequency distributions. Thus the distribution Pk(·|Θk) from
which an observed allele can be sampled is a multinomial distribution de-
fined by the frequencies of all observed alleles in the ancestral population, i.e.,
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Figure 1: Graphical models with plate representation for STRUCTURE and mStruct . The
subscript ‘e’ indicating chromosome copy is dropped for ease of notation.

xi,ne
|zi,ne

= k ∼ Multinomial(·|~βk
i ). Thus in the STRUCTUREmodel, ancestral

populations and modern populations have the same alleles, and inheritance of
an ancestral allele to a modern allele is as a perfect copy. Figure 1(a) shows the
plate representation of the STRUCTURE graphical model.

But a serious pitfall of using such a model, as pointed out by Excoffier
and Hamilton [22], is that there is no mutation model for individual alleles
with respect to the common prototypes, i.e., every unique allele measurement
at a particular locus is assumed to correspond to a unique ancestral allele,
rather than allowing the possibility of it just being derived from some common
ancestral allele at that locus as a result of a mutation. This often results in an
overestimation of the amount of genetic differences between populations.

3.2.2 The mStruct model
In Shringarpure and Xing [8], we proposed to represent each ancestral popula-
tion by a set of population-specific mixtures of ancestral alleles (MAA). In a
MAA for population k, for each locus (locus i for instance) we define a finite set
of founders with prototypical alleles µk

i ≡ {µk
i,1, . . . , µ

k
i,Li

} that can be different
from the alleles observed in a modern population; each founder allele is asso-
ciated with a unique frequency βk

i,l, l ∈ {1, · · · ,  Li}, and a unique (if desired)
mutation model Pm from the prototype allele parameterized by rate δk

i,l. Un-
der this representation, now the distribution Pk(·|Θk

i ) from which an observed
allele can be sampled becomes a mixture of inheritance models each defined on
a specific founder; and the ensuing sampling module that can be plugged into
the general admixture scheme outlined above (to replace step 2.2) becomes a
two-step generative process:

• 2.2a: draw the latent founder indicator ci,ne |zi,ne = k ∼ Multinomial(·|~βk
i );

• 2.2b: draw the allele xi,ne |ci,ne = l, zi,ne = k ∼ Pm(·|µk
i,l, δ

k
i,l),

where Pm() is a mutation model that can be flexibly defined based on the type
of genetic marker being studied.
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Figure 1(b) shows a graphical model representation of the mStruct model.
For simplicity of presentation, in the model described above, we assume that
for a particular individual, the genetic markers at each locus are conditionally
iid samples (given the ancestry proportion) from a set of population-specific
fixed-dimensional mixture of inheritance models, and that the set of founder
alleles (but not their frequencies) at a particular locus is the same for all an-
cestral populations (i.e., µk

i ≡ µi). We shall also assume that the mutation
parameters for each population at any locus are independent of the alleles at
that locus (i.e., δk

i,l ≡ δk
i ). Also, our model assumes Hardy-Weinberg equilibrium

within populations. The simplifying assumptions of unlinked loci and no linkage
disequilibrium between loci within populations can be easily removed by incor-
porating Markovian dependencies over ancestral indicators Zi,ne and Zi+1,ne of
adjacent loci, and over other parameters such as the allele frequencies ~βk

i in
exactly the same way as in STRUCTURE .

3.2.3 Other Modeling Issues

Apart from the graphical model, there are certain other issues that need to be
discussed before inference and estimation. Below we discuss the issue of what
mutation model to use, how to decide what the ancestral alleles are and how to
set the mutation parameters of the ancestral populations.

Microsatellite mutation model The choice of a suitable microsatellite mu-
tation model is important, for both computational and interpretation purposes.
Below we discuss the mutation model that we use and the biological interpre-
tation of the parameters of the mutation model. We begin with a stepwise
mutation model for microsatellites widely used in forensic analysis [23].

This model defines a conditional distribution of a progeny allele b given its
progenitor allele a, both of which take continuous values:

p(b|a) =
1
2
ξ(1− δ)δ|b−a|−1, (1)

where ξ is the mutation rate (probability of any mutation), and δ is the fac-
tor by which mutation decreases as distance between the two alleles increases.
Although this mutation distribution is not stationary (i.e., it does not ensure
allele frequencies to be constant over the generations), it is commonly used in
forensic inference due to its simplicity. To some degree δ can be regarded as
a parameter that controls the probability of unit-distance mutation, as can be
seen from the following identity: p(b+ 1|a)/p(b|a) = δ.

In practice, the alleles for almost all microsatellites are represented by dis-
crete counts. The two-parameter stepwise mutation model described above
complicates the inference procedure. We propose a discrete microsatellite mu-
tation model that is a simplification of Eq. 1, but captures its main idea. We
posit that: P (b|a) ∝ δ|b−a|. Since b ∈ [1,∞), the normalization constant of this
distribution is:
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Figure 2: Probability distribution for various values of parameter δ

∞∑
b=1

P (b|a) =
a∑

b=1

δa−b +
∞∑

b=a+1

δb−a

=
1− δa

1− δ
+

δ

1− δ

=
1 + δ − δa

1− δ
,

which gives the mutation model as

P (b|a) =
1− δ

1− δa + δ
δ|b−a|. (2)

We can interpret δ as a variance parameter, the factor by which probability
drops as a fuction of the distance between the mutated version b of the allele a.
Figure 2 shows the discrete pdf for various values of δ.

Determination of founder set at each locus: According to our model as-
sumptions, there can be a different number of founder alleles at each locus. This
number is typically smaller than the number of alleles observed at each marker
since the founder alleles are “ancestral”. In principle, some alleles may be lost
when modern populations are derived from ancestral populations. However,
since such alleles will never be observed in the data, we will choose not to model
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them. To estimate the appropriate number and allele states of founders, we fit
finite mixtures (of fixed size, corresponding to the desired number of ancestral
alleles) of microsatellite mutation models over all the measurements at a par-
ticular marker for all individuals. We use the Bayesian Information Criterion
(BIC) [24] to determine the best number and states of founder alleles to use at
each locus, since information criteria tend to favor smaller number of founder
alleles which fit the observed data well.

For each locus, we fit many different finite-sized mixtures of mutation dis-
tributions, with the size varying from 1 to the number of observed alleles at
the locus. For each mixture size, the likelihood is optimized and a BIC value is
computed. The number of founder alleles is chosen to be the size of the mixture
that has the best (minimum) BIC value. We can do this as a pre-processing
step before the actual inference or estimation procedures. This is possible since
we assumed that the set of founder alleles at each locus was the same for all
populations.

Choice of mutation prior: In our model, the δ parameter, as explained ear-
lier, is a population-specific parameter that controls the probability of stepwise
mutations. Being a parameter that controls the variance of the mutation distri-
bution, there is a possibility that inference on the model will encourage higher
values of δ to improve the log-likelihood, in the absence of any prior distribution
on δ. To avoid this situation, and to allow more meaningful and realistic results
to emerge from the inference process, we impose on δ a beta prior that will be
biased towards smaller values of δ. The beta prior will be a fixed one and will
not be among the parameters we estimate.

3.3 Inference and Parameter Estimation

For notational convenience, we will ignore the diploid nature of observations in
the analysis that follows. With the understanding that the analysis is carried
out for an arbitrary nth individual, we will drop the subscript n. Also, we
overload the indicator variables zi and ci to be both, arrays with only one
element equal to 1 and the rest equal to 0, as well as scalars with a value
equal to the index at which the array forms have 1s. We will let K be the
number of populations, and N be the number of individuals. In other words:
zi ∈ {1, . . . ,K} or zi = [zi,1, . . . , zi,K ], where zi,k = I[zi = k], and I[·] denotes
an indicator function that equals to 1 when the predicate argument is true and
0 otherwise. A similar overloading is also assumed for the ci variables. For
generalization across different types of markers, we shall use f(xi|µi,ci

, δi,zi
) to

denote P (xi|ci, zi, µi, δi). Different mutation models can be used in mStruct by
varying the form of the function f().

The joint probability distribution of the the data and the relevant variables
under the mStruct model can then be written as:
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The marginal likelihood of the data can be computed by summing/integrating
out the latent variables. However, a closed-form solution to the summation/integration
is not possible, and indeed exact inference on hidden variables such as the an-
cestry proportions ~θ, and estimation of model parameters such as the mutation
parameters δ under mStruct is intractable. Pritchard et al. [14] developed an
MCMC algorithm for approximate inference for their admixture model underly-
ing Structure. While it is straightforward to implement a similar MCMC scheme
for mStruct , we choose to apply a computationally more efficient approximate
inference method known as variational inference [25].

3.3.1 Variational Inference

We use a mean-field approximation for performing inference on the model. This
approximation method approximates an intractable joint posterior p() of all
the hidden variables in the model by a product of marginal distributions q() =∏
qi(), each over only a single hidden variable. The optimal parameterization of

qi() for each variable is obtained by minimizing the Kullback-Leibler divergence
between the variational approximation q and the true joint posterior p. Using
results from the Generalised Mean Field theory [26], we can write the variational
distributions of the latent variables in mStruct as follows:

q(~θ) ∝
KY

k=1

θ
αk−1+

PI
i=1 〈zi,k〉

k

q(ci) ∝
LY

l=1

 
KY

k=1

�
βk

i,lf(xi|µi,l, δ
k
i )
�〈zi,k〉

!ci,l

q(zi) ∝
KY

k=1

 
e〈log(θk)〉

 
LY

l=1

βk
i,lf(xi|µi,l, δ

k
i )

〈ci,l〉
!!zi,k

.

In the distributions above, the ‘〈·〉’ are used to indicate the expected values of
the enclosed random variables. A close inspection of the above formulas reveals
that these variational distributions have the form q(~θ) ∼ Dirichlet(γ1, . . . , γK),
q(zi) ∼ Multinomial(ρi,1, . . . , ρi,K), and q(ci) ∼ Multinomial(ξi,1, . . . , ξi,L), re-
spectively, of which the parameters γk, ρi,k and ξi,l are given by the following
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equations:

γk = αk +
I∑

i=1

〈zi,k〉

ρi,k =
e〈log(θk)〉

(∏L
l=1 β

k
i,lf(xi|µi,l, δ

k
i )〈ci,l〉

)
∑K

k=1

(
e〈log(θk)〉

(∏L
l=1 β

k
i,lf(xi|µi,l, δk

i )〈ci,l〉
))

ξi,l =

∏K
k=1

(
βk

i,lf(xi|µi,l, δ
k
i )

)〈zi,k〉

∑K
k=1

(∏K
k=1

(
βk

i,lf(xi|µi,l, δk
i )

)〈zi,k〉
)

and they have the properties: 〈log(θk)〉 = ψ(γk) − ψ(
∑

k γk), 〈zi,k〉 = ρi,k and
〈ci,l〉 = ξi,l, which suggest that they can be computed via fixed point iterations.
(The digamma function ψ() used above is the first derivative of the logarithm
of the gamma function Γ().) It can be shown that this iteration will converge
to a local optimum, similar to what happens in an EM algorithm. Empirically,
a near global optimal can be obtained by multiple random restarts of the fixed
point iteration. Typically, such a mean-field variational inference converges
much faster than sampling [26]. Upon convergence, we can easily compute an
estimate of the map vector ~θ for each individual from q(~θ).

3.3.2 Parameter Estimation

The parameters of our model are the ancestral alleles µ, the mutation parameters
δ, the ancestral allele frequency distributions β, and the Dirichlet hyperpara-
meter that is the prior on ancestral populations, α. For the hyperparameter
estimation, we perform empirical Bayes estimation using the variational Ex-
pectation Maximization algorithm described in [27]. The variational inference
described in Section 3.3.1 provides us with a tractable lower bound on the log-
likelihood as a function of the current values of the hyperparameters. We can
thus maximize it with respect to the hyperparameters. If we alternately carry
out variational inference with fixed hyperparameters, followed by a maximiza-
tion of the lower bound with respect to the hyperparameters for fixed values
of the variational parameters, we can get an empirical Bayes estimate of the
hyperparameters. The derivation, details of which we will not show here, leads
to the following iterative algorithm:

1. (E-step) For each individual, find the optimizing values of the variational
parameters (γn, ρn, ξn;n ∈ 1, . . . , N) using the variational updates de-
scribed above.

2. (M-step) Maximize the resulting variational lower bound on the likelihood
with respect to the model parameters, namely α, β, µ, δ.

The two steps are repeated until the lower bound on the log-likelihood converges.
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3.4 Experiments

We ran mStruct on the dataset for values of K (the number of ancestral popu-
lations) ranging from K=2 to K=10. For each value of K, 20 runs were started
from random values of the initial parameters to account for local optima. For
each value of K, the run with the maximum likelihood was chosen for the final
analysis of population structure and model selection.

4 Results and Discussions

Figure 3 shows the inferred population structure for the Pacific islander pop-
ulations. Figure 4 shows the map of the Melanasian islands to enable us to
understand the influence of geography and languages on population structure.
In the figure, the stippled regions are Oceanic-speaking groups and Papuan-
speaking regions have a grid or stripes. Papuan-speaking populations are also
labeled in bold italics. The orange dots indicate inland groups while shore loca-
tions are yellow dots. The pies alongside each population label show the average
ancestry proportion for that population, with 6 ancestral populations. We will
first address the question of model selection and then analyze the population
structure as inferred by models with different number of ancestral populations.

4.1 Model selection

The question of model selection occurs in most statistical analyses. In the
case of population structure analyses, it takes the form of deciding the correct
number of ancestral populations that gave rise to the modern populations we
now observe. mStruct infers ancestry proportions for a given sample for a user-
defined number of ancestral populations K. The question of what value of K is
optimal must therefore be solved outside of the mStruct analysis. In this case,
we use the Bayesian Information Criterion (BIC) [24] to decide the optimal
number of ancestral populations. It is important to note, however, that we use
the variational lower bound to the log-likelihood to compute BIC.

Figure 5 shows the plot of BIC vs K for values of K ranging from 2 to 10.
We observe that the value of BIC is minimum for K=3. The best run for K=3
shows an ancestry map with three main components. The brown component
denotes Baining ancestry. The green component is dominant in the Ata and
Mamusi populations and the blue component is largely present in populations
from New Ireland and Bougainville, together with a few populations from New
Britain. This suggests that the population of the Melanasian islands was due
to three groups of individuals in different islands. This is in agreement with
the “Pause and Pulse” scenario of Pacific settlement described in Gray et al.
[15], rather than the gradual drifting of a single group of individuals to settle
all islands as in the “Slow Boat” scenario described by Kayser et al. [10].
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Figure 3: Population Structure of Pacific Islanders for K=2 to K=6, with the value of K
indicated by the side. The black lines separate the populations from each other. Below each
population name is the island it is located on. For values of K=7 and larger, the model
quickly finds a local optimum and no noticeable population structure is inferred, so no results
are presented.
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Figure 4: Map of the Melanasian Islands. The stippled regions are Oceanic-speaking; Papuan-
speaking regions have a grid or stripes. Papuan-speaking populations are labeled in bold
italics. The orange dots indicate inland groups while shore locations are yellow dots. The pies
alongside each population label show the average ancestry proportion for that population,
with 6 ancestral populations.
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Figure 5: Bayesian Information Criterion (BIC) plot for different values of K, the number of
ancestral populations. The value of K with minimum BIC is the best one according to the
criterion.

However, as noted earlier, this conclusion is not a high-confidence one for two
reasons - firstly that we use a variational lower bound as an approximation to the
log-likelihood in computing BIC and secondly that the BIC criterion is a purely
statistical tool for model choice which does not take any prior knowledge about
anthropology, geography or biology into account. For analyzing population
structure, we will not focus on just the model chosen by the BIC criterion,
but use other models too since the models with larger value of K allow for
easier visual interpretation. We shall show later that the claims we make about
genetic diversity based on inferred ancestry vectors can also be quantitatively
substantiated.

4.2 Population Structure

From the population structure graph in Figure 3, we can make various inferences
about the genetic diversity based on the geography of the region and the lan-
guages in the region indicated in Figure 4. First, the most prominent signature
of population structure visible in all the maps is a distinct population compo-
nent for the Baining populations. As shown by heterozygosity analyses of the
Pacific islanders in [13] and studies of mtDNA, X and Y chromosomes [28], the
Baining populations are highly differentiated from the rest of the Pacific islander
populations. The three Baining subpopulations are groups speaking different
dialects, but their language (of Papuan origin) is not shared by another Pacific
islander population nearby. As a result, there are no other populations genet-
ically identical to the Baining but most Oceanic speaking populations on New
Britain show a significant portion of Baining ancestry. This suggests that the
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Baining populations might be one of the older populations of Melanesia.
Figure 3 contains the population labels for all the populations together with

their island labels. When we examine the population structure at higher values
of K (K=5 and 6), we see that the amount of genetic diversity in an island
varies according to the size of the island. New Britain, which is the largest
of the Melanasian Islands has the maximum genetic diversity in terms of the
number of different profiles of ancestry proportions. However, this conclusion is
based only on visual inspection. We can try to examine this statistically using
the low-dimensional representation provided by the ancestry vectors. Table 1
shows the average between-population distance for each island, computing us-
ing a euclidean distance measure. The average between-population distance is
one way of measuring the genetic diversity present within a set of population
(where populations are defined by geographic labels). For different numbers
of ancestral populations, we can see that the largest island, New Britain, has
the largest average between-population distance. Bougainville has the second
largest between-population distance (except when K=2, when the distance is
larger for New Guinea). This agrees with the conclusions made by inspection
of the population structure.

Island (No. of groups)/K→ 2 3 4 5 6
Bougainville (4) 0.029 0.055 0.059 0.135 0.121
Micronesia (1) - - - - -

Mussau (1) - - - - -
New Britain (20) 0.226 0.383 0.376 0.469 0.344
New Guinea (2) 0.041 0.051 0.047 0.045 0.037
New Hanover (2) 0.020 0.049 0.040 0.038 0.062
New Ireland (6) 0.027 0.034 0.030 0.049 0.065

Polynesia (1) - - - - -

Table 1: The variation of average between-population distance across islands for different
numbers of ancestral populations. The numbers in parentheses next to the island names
indicate the number of population groups present on each island.

Within islands, genetic profiles (in terms of the ancestry proportions) vary
according to geography and language. This effect can be most prominently
seen in the genetic profiles observed in the island of New Britain. In general,
geographical proximity determines the amount of similarity in ancestry propor-
tions. Within New Britain, the Oceanic-speaking Kove and Papuan-speaking
Anem, which are geographically adjacent, have considerably similar genetic pro-
files despite their language differences. Of particular interest are the Ata and
the Mamusi populations, which are genetically almost identical despite the fact
that they speak different languages. This might be explained by the hypothesis
that the Mamusi are originally a Papuan-speaking population who later adopted
an Oceanian language [13]. Of the Nakanai populations, the Bileki subpopu-
lation, which is geographically close to the Ata and the Mamusi but speaks a
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different language, has a genetic profile similar to its neighbours while the ge-
netic profile of the Loso subpopulation matches more closely that of the other
Oceanic-speaking groups. This is not observed in the STRUCTURE analysis
by Friedlaender et al. [13] but is in general agreement with the high correlation
between geographic adjacency and genetic similarity.

The high correlation between geographic adjacency and genetic similarity is
more evident in the smaller islands of New Ireland and Bougainville, where the
population groups are not geographically far apart. Among the various popu-
lations on New Ireland we see only a gradual variation between genetic profiles
due to their geographic adjacency. We also see that despite New Hannover be-
ing a distinct island, its proximity to New Ireland means that genetically its
inabitants are quite similar to the population groups in New Ireland. A similar
gradual change in genetic profiles is seen in the populations of the Bougainville
island despite the presence of linguistic diversity on the island. Thus we see
that both geography and language have an effect on population structure but
geography has a much stronger footprint on genetic profiles than linguistic sim-
ilarity.

However, the analysis does show certain caveats that must be taken into
account in a study of population structure using mStruct . One possible problem
is when one of the inferred ancestral populations out of K populations has very
little contribution to the genetic profiles. This happened for the case of K=4 in
our analysis in Figure 3.

Another problem we observe is that for values of K higher than 6, the mStruct
model quickly falls into a local optimum and none of the 20 runs produce any
detectable stratification. This phenomenon is likely due the the high degree of
freedom the model is allowed in fitting its parameters. Since mStruct hypothe-
sizes the presence of populations which are truly “ancestral” (in terms of having
lesser genetic diversity than modern populations), it is not advisable to set the
number of ancestral populations to a very high number. A possible tradeoff
might be to allow only small amounts of mutation when setting the number
of ancestral populations to a higher value. In this scenario, mStruct will infer
ancestral populations which are relatively “young” and have genetic diversity
intermdiate that of the truly ancestral populations and the modern populations.
However, in the current experiements, we have set the prior on the mutation
parameters so that that mutation parameters have non-zero values. Setting the
mutation priors to encourage low values usually results in the mStruct model
collapsing to STRUCTURE due to the construction of the model.

An interesting question that we were unable to address in this work due to
scarcity of data is the migration of Polynesian populations through Melanasia.
The version of data publicly available has only 11 Samoan individuals from
Polynesia and any hypotheses made from such a small sample are likely to be
inaccurate.
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5 Conclusions and Future work

We analyzed data from 37 populations in the Pacific islands. Our analysis
revealed considerable genetic diversity in the region. We also found that the
diversity varied across islands depending on island size and geography. We
also found that language had a small but noticeable effect on the population
structure of the region while geography was a major determinant of genetic
similarity.

With more data from the Polynesian populations, we might be able to ad-
dress the question of migration of the Polynesian populations and their inter-
action with other populations in the Pacific. Geographical data regarding the
populations will also help in answering this question using mStruct .

The hierarchical labeling of populations by regions and islands suggests that
a more accurate representation of the populations would be in the form of a
tree structure. Such a representation, while computationally expensive, would
be more informative than current models, and would enable us to represent
relationships between populations more naturally and accurately.

It is important to note, however, that graphical models in population genetics
have been largely used as a tool for exploratory analyses of population data.
They are usually validated on simulated population data due to lack of ground
truth. Criterion such as perplexity or held-out likelihood, which are commonly
used in statistics and machine learning, are usually not applicable to problems in
which real genetic data is analyzed. Therefore, conclusions made from analyses
using these models cannot be accepted as truth on their own, and must be
supported by knowledge from history, archaeology and anthropology.
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