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Abstract

One of the machine learning challenges posed by the robot soccer domain is
to learn the opponents strategies. A team that may be able to do it efficiently
may have the advantage to adapt its own strategy as a response to the oppo-
nent’s strategy. In this work, we propose a similarity function to compare two
teams, and consequently their strategies, by the ability of one team to mimic the
behavior of the other. The proposed function can be used to classify opponents
as well as to decompose an unknown opponent as a combination of known oppo-
nents. We apply the proposed function to classify opponent’s defense strategies
in real world data from the RoboCup Small Size League collected during the
RoboCup 2007, RoboCup 2008 and USOpen 2009. We also use this similarity
function to discover patterns in the logs of these championships, such as, similar
teams and the number of major defense strategies.

*This work was done under supervision of my advisor Manuela M. Veloso. A part of this work
was published in AAMAS 2010 [Trevizan and Veloso, 2010].



Figure 1: The CMDragons robots (built by Michael Licitra) posed and in a game.

1 Introduction

A multi-agent, dynamic and adversarial domain offers several challenges for machine
learning, for instance, learning how the environment evolves and how the adversary
behaviors. One example of such domain is robot soccer, in special the RoboCup Small
Size League (SSL) [Kitano et al., 1998, Naruse et al., 2010].

The SSL consists of two teams, each one with five robots, that play robot soccer
on a field of 6 by 4 meters with global overhead perception and control (Figure 1).
Also, the robots must conform to the specifications about their size and shape and
they are equipped with kicking devices. SSL robots are typically fast, cruising at
speeds of 1-2 m/s while the ball moves at over 4 m/s, and occasionally much faster.
The main difference between SSL and the other RoboCup robot soccer leagues are:
(i) the allowed use of cameras placed over the field, for shared global perception;
and (ii) the allowance of a centralized computer to coordinate the robots, therefore
the overall team is autonomous. For this work, we use the logs captured by the
CMDragons team [Bruce et al., 2007], the SSL team of Carnegie Mellon University,
during 3 championships: RoboCup 2007, RoboCup 2008 and USOpen 2009.

Our approach to classify opponent’s strategies uses features extracted from the
game logs, such as distance from the ball to the robots and from the CMDragons goal
to the robots, and is composed by two steps: (i) segmentation of games into episodes;
and (ii) the comparison of episodes. ! In the first step, we segment games in a set
of small time series called episodes. Each episode encompasses a defense attempted
by the opponents and it is obtained by selecting the time intervals in which the game
logs registered the employment of an attack strategy by CMDragons. This procedure

n this work we focus in the defense strategies, however all the techniques developed can be
directly applied to analyze attack strategies.



assumes that when a team is attacking, the opponent’s response is to employ a defense
strategy.

In the second step of our approach, we compare two sets of episodes A and B
by representing them as matrices E4 and E® and computing the error of expressing
E4 using only a conical combination of the column of EZ. Formally, we compute
d = miny |[E4 — EBW||r such that w;; > 0, where || - || is the Frobenius norm,
and define d as a (nonsymmetric) similarity measure from A to B. This measurement
can be seem as the ability of team B to mimic the behavior of team A. We can also
use the obtained matrix W in the computation of d to explain the behavior of A as a
function of B. This is specially interesting when E4 is the set of episodes generated
by a new and unknown opponent and EP is the set of all the episodes seen so far.
Then W represents a decomposition of the unknown opponent’s strategy as a function
of the strategies already known.

The remainder of this paper is organized as follows. In Section 2 we discuss the
previous approaches for learning opponent’s strategies. In Section 3 we present the
data set used in this work. Our approach to learn defense strategies based in the
previous games is developed in Sections 4 and 5. In Section 6 we test our proposed
approach by presenting a set of experiments, involving classification and pattern dis-
covery. Section 7 brings a few conclusion remarks and future research directions.

2 Related Work

Using logs of the RoboCup Simulation Soccer League, Visser and Weland [2003] tackle
a similar problem: classify the behavior of the goalkeeper and the pass behavior of
the opponent players. Their approach uses decision tress to label non-overlapping
intervals of a given time series. For instance, in the goalkeeper experiments the
labels used are: the goalkeeper backs up, the goalkeeper stays in the goal and the
goalkeeper leaves the goal. Using the same technique and a different set of labels,
they also analyze the pass behavior of the opponent player.

Another work in the simulation soccer is given by Fard et al. [2007]. They pro-
posed an approach to learn opponent’s strategy that relies on modeling the opponent
as an automaton. One automaton is learned for each previously played opponent
by using a predefined payoff matrix, that is designed by an expert, and solving a
Prisoner’s Dilemma game instance. This payoff matrix is defined through high-level
features, such as intercept, pass, shoot and dribble and relate the payoff of playing one
of this simple strategies with the opponent response (also represented using the same
simple strategies). The major difference between this approach and our approach is
the usage of domain expert that is consulted for each new team that is considered.
Therefore, this approach is not able to automatically analyse an unknown opponent.

For SSL, an alternative approach is given by Bowling et al. [2004] which does not
model the opponent’s behavior. Instead, their approach to adapt to the opponent
is based on the outcome of the attack strategies employed so far. Although this
technique has had success when employed in the real games of the SSL, it does not
consider previous games against different teams. That is, the authors do not provide a
method to relate two teams that play similarly in order to reuse the learned responses.

A more similar approach to the one proposed in this paper is given by Riley and
Veloso [2000]. This approach, which is applied to simulation soccer, uses a discretiza-



tion of the observed features, for instance the position of the robots and the ball, and
decision trees to classify opponents. The limitation of this method is the assumption
that all opponent’s strategies are known a priori.? Thus, they focus in the problem
of how to classify an employed defense strategy as one of the known strategies. This
is the major difference with respect to our approach, since we do not assume any a
priori knowledge of the opponent’s strategy.

Another work related to SSL and pattern recognition is given by Vail and Veloso
[2008]. Instead of classifying opponent’s strategies, they focus in the problem of
activity recognition. More specifically, a framework using conditional random fields,
a temporal probabilistic graphical model, is developed to classify robots by a set
of predefined roles, including attacker, marker and defender. This framework could
be extend to classify opponent’s strategy, however, it would be necessary to provide
labeled data to the algorithm. That is, as in [Riley and Veloso, 2000], the opponent’s
strategies should be known a priori.

Similar to [Vail and Veloso, 2008], Ball and Wyeth [2003] classify the roles of each
opponent and instead of using conditional random fields, a naive bayes classifier is
applied. Their experiments consist in classifying the roles of the robots of RoboRoos,
a SSL team that the authors had access to the ground truth roles. The authors also
suggest a method to classify opponent teams by adding a layer to their system that
builds a model of the opponent team based on the empirical probability distribution
of the roles of each opponent robot. No experiment is provided for team classification.
Although in their approach no a priori knowledge about the opponent’s strategy is
necessary, the proposed method requires labeled data about the robots roles. That
is, it is necessary a series of examples of robots playing in the role of a goalkeeper, an
attacker, a defender, etc.

3 The Data Set

The data set used in this work is the collection of 13 games played by the CMDragons
team during the RoboCup 2007, RoboCup 2008 and USOpen 2009. Each logged game
is a multivariate time series in which a new data point encompasses an interval of %
seconds (about 16 milliseconds). These time series contain 198 features, most of them
continuous, such that x and y position, velocity, acceleration and orientation of the
robots and the ball and some discrete features, for instance, state of the game and
score. All these features are available to both teams, either directly through the referee
system, for example the state of the game and score or indirectly through the vision
system of each team. Therefore, our data set represents CMDragons perspective of
the game, that is, all the indirect measurements are made through the CMDragons
vision system, and therefore are subjected to noise and failure [Bruce et al., 2000].
Besides the features available to both teams, the data set also contains the features
defining the CMDragons internal state, such as: current team strategy and current
role of each robot.
In this work, we focus only in the following 23 features:

e distance from each robot to the ball (10);

2In [Riley and Veloso, 2000], the opponent’s strategy is called opponent class.



e distance from each robot to their defense goal (10);
e distance from the ball to each goal (2); and

e CMDragons strategy (1).

All features, except from the current CMDragons strategy, are computed features,
that is, they are obtained by applying a function to one or more features in the
original game logs. For instance, the distance from a robot to the ball is computed
by using the Euclidean distance between the position of the robot and the ball. The
motivation to use computed features instead the original features is to build a new
set of features that is: (i) invariant to flipping the image obtained by the vision
system vertically and/or horizontally; and (ii) invariant to the robots id [Stone, 2000].
Property (i) guarantees that the learned patterns are independent of the side in which
CMDragons started the game as well as the left and right orientation in the field.
The second property is obtained by anonymizing the robots and sorting the distances
between robots (CMDragons and opponents) and landmarks. For example, instead of
representing the distance between teammate ¢ and the ball, we represent the distance
between the ball and the i-th closest teammate to the ball.

To verify if the considered features can represent well the data set, we apply
Principal Component Analysis (PCA) to it [Hastie et al., 2005]. Given a set of points
D, PCA consists in an orthogonal linear transformation of D to a new coordinate
system such that the i-th coordinate, also known as i-th principal component, is the
direction of the i-th greatest variance of D. Another concept associated to PCA is
energy: the energy of the first k£ principal components is the sum of the first k£ largest
eigenvalues of D. By normalizing the energy, it is possible to quantitatively asses how
well the first & principal components can represent D.

On Table 1 we show the first four principal components of our data set which
correspond to approximately 91% of the total energy. For each principal component,
we present the 10 largest weight in absolute value, i.e., the 10 original features of
the data set that contribute the most for the given principal component. As one
may notice, the proposed features are responsible for most of the first four principal
components. This gives evidence that it is sufficient to only use the proposed features.

Using this set of features, we want to learn the defense strategy of the opponent.
One possible approach is to analyze the time series defined by the games as a whole.
However, these time series might contain several realizations of the opponent’s defense
strategy. Therefore, we segment each time series in non-overlapping episodes.

Definition 1 (Episode) Given a time series T representing a game, an episode is
a mazimal segment S of T such that on each time step of S: (i) the game is on; (ii)
the ball is in the defensive field of the opponent; and (iii) the current strategy being
employed by CMDragons is an attack strategy. Also, if the size of S is smaller than
Smin OT Size greater than Spqs, then S discarded.

The game is on from the moment the game restarted until either a goal is scored,
the ball leaves the field or a fault is made by a robot and it is a variable in the game
logs. In order to obtain episodes that contains just one realization of an opponent’s
defense strategy, we need to make one more assumption since we do not have access
to the internal state features of the opponents. This assumption, that reassembles a



1st principal comp. | 2nd principal comp. | 3rd principal comp. | 4th principal comp.

name ‘ weight name ‘ weight name ‘ weight name ‘ weight
d4(o,b) 0.5002 | dz(o,g) 0.6973 | do(o,g) -0.4941 | ds(o,g) -0.5013
d4(o,g) 0.5001 | da(o,b) 0.6971 | d1(o,g) -0.4938 | dz(o,b) -0.5005
dsz(o,b) 0.4983 | di(o,b) 0.0780 | do(o,b) -0.4936 | d4(o,b) 0.4988
ds(o,g) 0.4981 | do(o,b) 0.0779 | di(o,b) -0.4933 | d4(o,g) 0.4985
d2(o,g) | 0.0387 | do(o,g) 0.0774 | dz(o,g) 0.1096 | p.(03) -0.0292
dz2(o,b) 0.0387 | d1(0,g) 0.0773 | dz(o,b) 0.1093 | py(04) 0.0025

P2 (00) -0.0146 | d4(o,b) | -0.0296 | p.(03) -0.0331 | pu(ts) -0.0018

Dz (03) -0.0047 | d4(o,g) -0.0295 | dy(t,g) -0.0019 | dz2(o,g) 0.0018
di(o,g) 0.0045 | ds(o,b) -0.0260 | do(t,g) -0.0019 | d2(o,b) 0.0018
do(0,g) 0.0044 | ds(o,g) -0.0259 | d4(t,b) 0.0018 | px(t1) -0.0017

Table 1: The 10 largest weight in absolute value of the first four principal compo-
nents of our data set including the proposed features. These principal components
correspond to approximately 91% of the total energy of the data set. The proposed
features are highlighted. For the name of the features, the following pattern was
used: o and ¢ represents, respectively, an anonymous opponent and an anonymous
teammate, if an index ¢ is used, the it refers to the i-th opponent (or teammate); b
represents the ball; g represents the defense goal; p,(a) represents the position X of
a (similarly for p,(a)) and d;(a,b) represents the distance between a and i-th closest
b to a.

zero-sum game assumption, is that the opponent always employs a defense strategy
as a response to a CMDragons attack. Therefore, by the definition of episode and this
assumption, each episode contains one realization of the opponent’s defense strategy.
Another implicit assumption in this work is that all information necessary to charac-
terize the defense strategy in an episode e is contained in e. That is, the order of the
episodes is irrelevant.

For all experiments in this paper, we use Sy, = 100 and s, = 3000. Also, we
represent each episode by the mean and standard deviation of each one of its features.
Therefore if an episode has ¢ timesteps and f features, it will be represented as a point
in R?/ instead of a point in Rf**. This representation simplifies the processes of
comparing two episodes since the episodes can have different length (time duration).

Table 2 presents the number of episodes, the average and standard deviation of
the episodes length extracted from the game logs against each opponent. CMDragons
are also included in the table by using the same definition of episodes and consid-
ering CMDragons as the opponent team. Instead of inferring when CMDragons are
employing a defense strategy, we use the ground truth that is contained in the game
logs. As one may notice, the team BSmart-07 has less episodes than the amount of
goals scored by CMDragons, 5 episodes against 10 goals. This is possible because the
definition of episodes does not encompass direct kicks from CMDragons’ defense field
to the opponent’s goal and attacks that lasted less than 100 timesteps.

For the remainder of this paper, we denote by f the number of features considered
in the classification task and E4 the matrix with the episodes of team A. Therefore
if there are m episodes of team A in the game logs, then A € R2f*™_ We also denote



Goals Number Length of

scored by of the episodes

CMDragons | episodes | Avg. \ S.Dev.
BSmart-07 10 5 94.40 | 25.70
Skuba-08 5 9 149.44 | 137.52
Botnia-07 10 10 125.20 | 114.93
Kiks-08 10 17 145.76 | 116.48
WrightEagle-07 10 30 125.60 | 135.79
EagleKnight-07 9 16 141.28 | 145.84
PlasmaZ-08 2 79 105.74 | 104.56
PlasmaZ-07 5 84 95.09 | 99.71
Fantasia-08 9 96 174.10 | 174.45
Zjunlict-08 ) 97 111.60 | 96.14
GaTech-09 10 112 224.35 | 258.13
Zjunlict-07 7 120 126.26 | 119.33
RoboDragons-07 8 138 184.47 | 162.83
CMDragons-09 - 53 57.11 36.49
CMDragons-07 - 196 71.29 47.53
CMDragons-08 - 275 82.31 70.39

Table 2: Statistics about the episodes for each team CMDragons played against in the
RoboCup 2007, RoboCup 2008 and USOpen 2009. The table is ordered by ascending
number of episodes.

by n the total number of episodes in the game logs and E € R2/*" the matrix with
all episodes. In the next two sections we explore the definition of episodes to develop
a measurement to compare episodes and to find the most relevant episodes in the
CMDragons game log.

4 Comparing Defense Strategies

In this section, we develop a measurement to compare two episode matrices. The
first question worth notice is if this measure should be symmetric. We illustrate this
problem with the following example: consider three teams (A, B and C) and three
defense strategies (s1, s2 and s3); the probability Pr(current strategy is Y|team = X)
is:

S1 S92 S3
A 1 0 0
B|1/2[1/2] 0
C[1/31/3]1/3

The team that most resembles the behavior of A is B since in expectation it has
more episodes of type s; than C' and both A and B do not play strategy s3. On the
other hand, C' is the best team to mimic B since it plays strategies s; and s,. Thus,
the measurement to compare two teams does not necessarily need to be symmetric.



As one may notice, the previous example can be solved by using the KL-divergence,
that is, to compute D(P||Q) = > .1 P(z)log %, where P and @ are probability
distributions over X. 3 However, in the problem of learning the opponent’s strategies,
the set X' is unknown since we do not know all possible strategies.

To overcome this problem, we propose a measurement that compares how well one

team can simulate/mimic another one.

Definition 2 Function s(-;-). Let EA and E® be the episode matrices for team A
and team B respectively, then s(A; B) = miny |[EA— EBW/|| such that w;; > 0, where

| - [|F is the Frobenius norm (|E|| = /32>, e?j).

The intuition behind the function s(-,-) is that, the smaller s(A, B) is, the better
team B can simulate team A. This because, if s(4, B) is small, then the norm of
EA — EBW is small, therefore it is possible to reconstruct the episode matrix E4
with low error by using conical combinations of the episodes of B (columns of EZ).
Also, each column w; of the matrix W can be seem as an unnormalized probability
distribution over the episodes of B. If B plays according to w; then the Euclidean
norm between the episode i of A and the expected episode of B is minimized. The
function s(-, -) is non-symmetric and in the previous example it gives the same result:
B minimizes s(A,-) and C minimizes s(B,-).

In order to compute the function s(-, -), we cast the proposed minimization problem
as a quadratic programming problem. First, notice that ||E||r = /tr(E'E) since FE
is a matrix defined over the reals. Moreover, for our purposes we can use s(A, B)?
instead of s(A, B) since s(A,B) > 0 for all A and B. Thus we solve the following
program

. EIA _ EB 2
min | Iz
= mmi/ntr((EA — EBW)(EA — EBW))
= min tr(EAEA) — 2tr(EY EBW) + tr (W EBEBW)

which shows that the problem is a quadratic program in W. In all these forms,
the only constraints of the programs are w;; >= 0.

Using the function s(-,-) to compute the difference between two episode matrices
we can classify teams according to the distance to the teams that we already know.
Also, we can use this measurement to find patterns in the data set and relations
between the teams that we have played before. In section 6 we explore these ideas
through a series of experiments and in the next section we extend the usage of s(-,-)
to find the main defense strategies in our data set.

5 Main Defense Strategies

In this section we look to all the episode at once, in order to find a small set of
the most relevant episodes. In other words, we want to find a matrix D € R2/x*

3For the KL-divergence, we consider 0log % =0for ¢ >0 and clog% = o0, for ¢ > 0.



where k£ < n such that it is possible to reconstruct E, with low error, by using linear
combinations of the columns of D. Clearly, there is a trade off between k and the
reconstruction error and in this section such trade off is explored.

Using D, it is possible to decompose each episode as a function of the columns D.
The advantage of this new representation is mainly computational: we can compute
an approximation of s(A, B) by using the new representation of E4 and E® and since
this new representation is smaller than the original, a speed up can be obtained.

The problem of finding D such that D € R2/*F k ; 0, is equivalent to find a rank
k approximation of the matrix E. This can be found by solving a similar optimization
problem as the one presented in Section 5: ming w ||E — DW/||F such that rank(D)
= k.

This problem can be solved optimally through the singular value decomposition
of E (SVD decomposition). The SVD decomposition of a matrix M € R™*™ is the
product UXV’, where U € R™*™ is unitary, ¥ € R™*" has nonnegative real numbers
on the diagonal and zeros otherwise, and V' € R™*" is unitary. * This factorization
always exists for matrices defined over the reals and Y = UX*V’, where ©* has only
the first (largest) k values of ¥, is the rank k matrix that minimizes |M — Y|
[Horn and Johnson, 1990]. In our case, D equals the first k columns of U and W is
the first k& rows of X*V".

Besides the mathematical interpretation of D obtained using the SVD decompo-
sition, this approach does not offer an interpretation in the robot soccer domain since
each b;; can be negative. This implies that features whose meaning requires a positive
value, such as the standard deviation the closest robot to the ball, can have negative
values in this new representation.

In order to get a direct interpretation in our domain, we can enforce that D is
composed by subset of the columns of E, i.e., D is a submatrix of E. The hard-
ness of this new problem, referred in the literature as column-based low-rank matrix
approximation [Drineas et al., 2006] and CX-decomposition [Hyvonen et al., 2008], is
unknown [Drineas et al., 2006]. The best approximation algorithm for this problem
is proposed by [Drineas et al., 2006]: given k, € and 4, it finds D and W such that:

|E=DWr < (1 +|E - Eylr

with probability at 1 — ¢ where D has O(%) columns of E and E}, is the best
rank-k approximation of F (with no constraint).

In the next section we explore these two decompositions to estimate how many
defense strategies exist in our data set. This estimation is also used to speed up the
classification task in the experiments presented in the next section.

6 Experiments

We perform 5 experiments to evaluate our proposed similarity function s(-,-). In
the first experiment we use the s(-,-) to find similarities between teams and in the
second experiment we estimate the number of strategies contained in our game logs.
Experiments 3 and 4 evaluate the accuracy of classifying teams according the proposed

4We assume that the values %;,4 € {1,...,min{m,n}}, are in descending order.



CMDragons—07

CMDragons—08

G- Skuba—08 —m= PlazmaZ—08 — = Fantasia—08 -a«——— Zjunlict—07 -«——— PlasmaZ—07
1 (RR1: 5x0) (F: 2x4) (RR2: 9x0) (SF: 7x2) (F: 5x5)
Zjunlict—08 Botnia—07
(SF: 5:0) (RRS: 10x0)
Kiks—08
(RR3: 10x0)

G, EagleKnight—07 — RoboDragons—07 «—# GaTech—09 -«——— WrightEagle—07 «4—— BSmart—07
(QF: 10x0) (RR3: 8x0) (F- 10x0) (RR2: 10x0) (RR4: 10x0)

CMDragons—09

Figure 2: Relations obtained between teams by using the proposed similarity function
s(+,+). In the graph, the solid arrows A — B represent that B = argmin, s(4, z) and
can be interpreted as ” B is team that can better simulate A”. Underneath each team
name and in parentheses is the score of the game between CMDragons and the given
team. It is also depicted the phase of the championship in which the game was played:
RR stands for round-robin, QF for quarter-finals, SF for semi-finals and F for final.

similarity function. The last experiment explores the approximated computation of
s(+, ) proposed in Section 5.

6.1 Experiment 1: Relation between teams

In the first experiment, we relate the teams that played against CMDragons as well
as CMDragons by finding, for each team A, argming s(A4, B). The result of this
experiment is depicted in Figure 2, where each solid arrow A — B represents that
B = argmin, s(A, z). Asshown in Figure 2, we obtain a disconnected graph composed
by two directed graphs, G; and Gs5. By looking at the score of each game, one may
hypothesize that the teams are separated by their defense strength. That is, teams
in G have a better defense than teams in G5, since CMDragons scored less goals on
the teams in G; than in the teams in G5. In order to verify if this hypothesis is true,
in Table 3 we present statistics about the games played by CMDragons against each
of the teams.
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Sorting the teams by ascending average time to score a goal (ATSG), we obtain
that Go contains the teams with the second to the seventh smaller ATSG and Gy
contains the team with smallest ATSG and the teams with the eighth and higher
ATSG. This shows a strong evidence that the hypothesis is true, i.e., we clustered
the teams between strong defense and regular defense with the exception of only one
team. Also, the statistics in Table 3 corroborates with most of the relations obtained,
for instance: in 7 out of the 11 relations, the ratio between the two different attack
strategies employed by CMDragons is no more than 0.10 different; Skuba-08 and
PlasmaZ-08 have the two largest ATSG, PlasmaZ-07 and Zjunlict-07 have the fourth
and fifth largest ATSG.

6.2 Experiment 2: Estimating the number of defense strate-
gies

In the second experiment, we estimate how many defense strategies are in our data set.
To perform this, we use the Bayesian information criterion (BIC) [Hastie et al., 2005].
The BIC criterion is defined as: given a penalty A > 0 and the matrices D € R2/x*
and W € R¥*" BIC(A,D,W) = ||E — DW||% + Afklogn. This value is the score
of the model, and we want to find a model with small score, since it is composed by
the error of approximating E by D and W plus a regularization term that penalizes
large models, i.e., large values of k. Therefore, for a fixed A we can vary the value of
k and find the one that minimizes BIC(\, D, W).

Figure 3 presents, for different values of A, the value k that minimizes BIC(\, D, W)
for the two approaches presented in Section 5, namely, SVD-decomposition and CX-
decomposition, to find the matrix D and W given E and k. This plot gives evidence
that there are between 7 to 17 different defense strategies in our data set since this
range of values lies in the transition phase between the under-constraint (small \)
and over-constraint (large \) value of BIC.

6.3 Experiment 3: Classification according to the defense strat-
egy

The third experiment consists of classifying the teams by their defense strategy. For
a given percentage p, we randomly select p episodes of each team ¢, denoting these
episodes as T, and use them to classify the remainder episodes. The remainder
episodes R are grouped by team, such that each set of episodes R’ has only samples
of the team i. We classify R’ as team j if 77 = argmin, s(R?, z).

Besides the classification accuracy, we also present a second measurement called
rank. The rank of a team i is the position of 7% when all matrices T are sorted, in
ascending order, by the value of s(R%,T7). Therefore if the rank of i is 1, then R’
is correctly classified, since 7% has the minimum value of s(R,T7) for all T7. Table
4 presents the result of 25 executions of this experiment for p equals 30%, 40% and
50%.

This experiment shows that we can perfectly classify 7 out of 16 of the teams,
namely Fantasia-08, Zjunlict-08, GaTech09, Zjunlict-07, RoboDragons-07, CMDragons-
07 and CMDragons-08, using 40% and 50% of the data as training. Also, the average
rank for EagleKnight-07, CMDragons-09, PlasmaZ-08 and PlasmaZ-07 is at most
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30% for training

Accuracy Rank
Avg ‘ S.Dev | Avg ‘ S.Dev

40% for training

Accuracy Rank

Avg

‘ S.Dev | Avg ‘ S.Dev

50% for training

Accuracy Rank
Avg ‘ S.Dev | Avg ‘ S.Dev

BSmart-07 0.04 ] 020 | 7.60] 440 | O 0 [912] 358 [0.12] 033 | 7.36 | 543
Skuba-08 0 0 728 | 1.92 0 0 |68 | 234 | 0 0 6.02 | 1.97
Botnia-07 020 | 040 | 692 | 513 |0.12| 033 | 7.40 | 555 | 0.32 | 0.47 | 5.32 | 4.67
Kiks-08 0 0 |612] 258 | 0 0 552 | 2.97 | 0 0 532 | 2.64
WrightEagle-07 0 0 540 | 2.94 | 008 | 027 | 5.12 | 2.68 | 0.24 | 043 | 4.24 | 2.69
EagleKnight-07 | 0.64 | 048 | 2.08 | 1.86 | 0.96 | 0.20 | 1.16 | 0.80 | 0.76 | 0.43 | 1.48 | 1.12
PlasmaZ-08 0.60 | 050 | 1.56 | 0.76 | 0.32 | 0.47 | 1.88 | 0.72 | 0.44 | 0.50 | 1.72 | 0.73
PlasmaZ-07 0.68 | 047 | 1.32 | 047 | 044 | 050 | 1.68 | 0.74 | 0.60 | 0.50 | 1.48 | 0.65
Fantasia-08 0.96 | 020 | 1.04 | 0.20 | 1.00 0 100 | 0 1.00 0 1.00 | 0
Zjunlict-08 100 | 0 100 | 0 1.00 0 100 | 0 1.00 0 100 | 0
GaTech-09 100 | o 100 | o 1.00 0 100 | o 1.00 0 100 0
Zjunlict-07 100 | 0 100 | 0 1.00 0 100 | 0 1.00 0 1.00 | O
RoboDragons-07 | 1.00 | 0 100 | 0 1.00 0 100 | 0 1.00 0 100 | 0
CMDragons-09 | 0.40 | 0.50 | 2.00 | 1.11 | 0.28 | 045 | 2.16 | 1.06 | 0.32 | 0.47 | 1.96 | 0.97
CMDragons-07 | 1.00 | 0 100 | 0 1.00 0 100 | 0 1.00 0 1.00| 0
CMDragons-08 | 1.00 | 0 100 | 0 1.00 0 100 | 0 1.00 0 100 | 0

Table 4: Statistics about the classification experiment.

For each percentage of the

data used for training, we classified each team in the remainder of the data (testing
data). This table presents the average and standard deviation of the classification
accuracy and the average and standard deviation of the rank for 25 executions of this
experiment. The rank of a team A is defined as the position of s(A’, A) in the sorted
vector of s(A’,-), where A’ are the instances of A in the test data. This table is sorted
by the number of episodes of each team (see Table 1).
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Figure 3: Value k that minimizes the BIC regularization criterion for different values
of \.

2, i.e., the proposed measurement s(-,-) ranked the correct answer as the second
most similar team. For the remaining 5 teams, namely Skuba-08, Kiks-08, Botnia-07,
WrightEagle-07 and BSmart07, the classification accuracy is not satisfactory since the
average rank for these teams is at least 4. One explanation to this poor performance
for these teams is that they are the 5 teams with the least amount of episodes in our
data set (Table 2).

6.4 Experiment 4: Classification of random mixture of teams

The fourth experiment is an extension of the previous one. Instead of using teams R’
with only samples of team ¢ for testing, a random mixture of the teams R is used.
The testing set R is built by selecting 15 random episodes of team i and one episode
of each team j # i. Therefore, the probability of an episode in R is from team jis % if
i=j and 3—10 otherwise. Given the values of s(f%i, -), we define the induced probability
distribution P(R’ is the team j) as proportional to m, where TV is the matrix
with the training episode for team j. Table 5 contains the results of this experiment.
The KL-divergence between the original distribution and the obtained Pis smaller,
i.e. differ less, than the uniform distribution (random guess) in half of the cases. By
looking at the mode of P, ie. argmax,, P(R’ is the team ), we observed that for all
teams, except CMDragons08, the mode of P is either GaTech-09 or Fantasia-08. This
is interesting since these two teams are the centers of each graph in Figure 2.
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’ | KL-divergence | Mode | Pr(Mode) | Pr(real Mode) |

GaTech-09 0.3753 GaTech-09 0.1625 0.1625
Fantasia-08 0.4174 Fantasia-08 0.1457 0.1457
RoboDragons-07 0.4745 GaTech-09 0.1369 0.1313
CMDragons-08 0.4791 CMDragons-08 0.1382 0.1382
CMDragons-07 0.5342 GaTech-09 0.1341 0.1208
Zjunlict-08 0.6400 Fantasia-08 0.1370 0.0921
Zjunlict-07 0.6711 Fantasia-08 0.1257 0.0887
CMDragons-09 0.7012 GaTech-09 0.1468 0.0822
Kiks-08 0.7502 GaTech-09 0.1636 0.0722
PlasmaZ-08 0.8111 Fantasia-08 0.1387 0.0675
WrightEagle-07 0.8418 Fantasia-08 0.1316 0.0583
PlasmaZ-07 0.8560 Fantasia-08 0.1379 0.0587
Skuba-08 0.8900 Fantasia-08 0.1505 0.0591
EagleKnight-07 1.0590 GaTech-09 0.1155 0.0367
BSmart-07 1.1018 GaTech-09 0.1215 0.0315
Botnia-07 1.1302 Fantasia-08 0.1410 0.0306

Table 5: Results of the classification experiment using random mixture of the teams.
For each team A, it was select 15 random episodes of A and one episode of each
other team. The remaining of the data set is used for training. The first column
contains the KL-divergence between the original distribution and the one obtained
by our proposed method. The KL-divergence between the original distribution and
the uniform distribution is 0.7254, therefore, our method performs better than the
random guess for the 8 teams (top 8 lines). The second column contains the mode
of the induced probability distribution, i.e., the team that has maximum probability
and the third column its probability; and the fourth column presents the induced
probability of the mode of the original distribution (the team on each line). The
induced probability distribution was obtained by averaging 25 runs of the experiment.
This table is sorted by ascending KL-divergence.
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Class. Accuracy Rank Running time (secs)

Avg. ‘ S.Dev. Avg. ‘ S.Dev. | Avg. ‘ S.Dev.
Exact computation | 0.53 0.50 3.49 | 4.21 6.09 3.86
SVD decomp., k=17 | 0.52 0.50 3.69 | 420 | 5.82 4.11
CX-decomp., k=17 0.33 0.47 5.14 | 4.63 | 4.81 3.74
SVD decomp., k=12 | 0.51 0.50 3.68 | 417 | 5.04 4.80
CX-decomp., k=12 0.35 0.48 485 | 442 | 461 3.47
SVD decomp., k=7 0.46 0.50 3.77 4.17 4.44 6.36
CX-decomp., k=7 0.34 0.48 4.78 | 4.38 3.67 5.20

Table 6: Statistics about classification, rank and running time using the exact com-
putation of s(-, ), the SVD decomposition approximation and the CX-decomposition
approximation. The statistics were obtained by 25 runs of the experiment. The set-
tings of this experiment is the same as the third experiment (Table 4) using 50% of
the data for training. To make the table easier to read, the result for different team
were combined.

6.5 Experiment 5: Approximating the value of s(-;-)

In the last experiment we compare the approach presented so far, i.e., the exact com-
putation of s(-,-), with the approximated approach suggested in Section 5: to use a
rank k approximation of the episodes matrix to decrease the number of features de-
scribing each episode. For this experiment, 50% of the data set was used as training
set and remaining 50% as testing set. The chosen values of k, namely 17, 12 and 7, are
based in the second experiment (Figure 3). The results are presented in Table 6 and
as expected, the classification accuracy, the rank and the running time decrease as k
decreases. One may also notice that the exact computation and the SVD decomposi-
tion for k = 17 approaches achieve almost the same classification accuracy and rank,
however the SVD approach is about 0.2 seconds faster than the exact computation
approach.

7 Conclusions and Future Work

In this paper we have introduced a novel approach to compare team strategies. This
approach relies on the best approximation, according to the Frobenius norm, of the
matrices representing the episodes in our data set of each team. Therefore, we consider
that a team A is similar to a team B, if the episode matrix of A is best approximated
by a conical combination of the episodes in the episode matrix of B.

We presented experiments, using real data from the RoboCup 2007, RoboCup 2008
and USOpen 2009, showing how classification can be performed using the proposed
measurement. We also applied this measurement to find similarities in the defense
strategies of the teams in our data set. The obtained patterns are corroborated by
the presented statistics of the games played by CMDragons against these teams.

Possible future research directions include extending the proposed approach to
handle episodes represented as time series instead of the representation by mean and
standard deviation used in this work. This extension is non-trivial since each episode
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has different lengths (time duration). The trivial extension of applying the same
definition of s(-,-) in episode tensors, i.e., matrices in R/ XtXn where ¢ the length
of the episode, does not work, thus additional research is needed to find a suitable
approach.

A second general direction for further investigation is to explore adaption accord-
ing to the opponent. That is, to use of the knowledge from the previous opponents
when playing against an unknown opponent through the proposed decomposition of
the unknown strategies.
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