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Abstract—AC power system state estimation process aims to
produce a real-time “snapshot” model for the network. Therefore,
a grand challenge to the newly built smart grid is how to
“optimally” estimate the state with increasing uncertainties,
such as intermittent wind power generation or inconsecutive
vehicle charging. Mathematically, such estimation problems are
usually formulated as Weighted Least Square (WLS) problems
in literature. As the problems are nonconvex, current solvers,
for instance the ones implementing Newton’s method, for these
problems often achieve local optimum, rather than the much
desired global optimum. Due to this local optimum issue, current
estimators may lead to incorrect user power cut-offs or even
costly blackouts in the volatile smart grid. Frequent topology
changes, poor measurement accuracy, and malicious attack can
further deteriorate the state estimate. To solve the problem,
in this paper, we propose utilizing historical data of Energy
Management System to efficiently obtain a good state estimate.
Specifically, kernel ridge regression is proposed in a Bayesian
framework based on robust Nearest Neighbors search. To enable
online data-driven SE, techniques such as dimension reduction
and k-dimensional tree indexing are employed with 1000 times
speed up in simulations. Further numerical results show that
the new method produces an state estimate excelling current
industrial approach.

Index Terms—Smart grid, state estimation, historical data,
robustness, k-nearest neighbors, kernel ridge regression, speed
up.

I. INTRODUCTION

Initiated by the U.S. government, the rapid-expanding smart
grid aims to evolve into an efficient, reliable and sustain-
able modern grid by adopting, integrating, and advancing
the communication and computing technologies already exist.
To achieve such an ambitious goal, namely the “smartness”
of the power grid, a highly accurate State Estimation (SE)
process [1], [2] is necessary in providing bases for many key
functionalities in the operation and control of smart grid.

However, the nonlinear measurement model of AC power
system renders the SE problem a highly nonconvex character,
which can not be optimally solved without great computational
expense. To deal with nonlinearity, one can approximate AC
power system with a DC model [3], [4], based on which
robust state estimation can be further applied to deal with bad
data [5]–[7]. One can also try to convexify the nonconvex
SE problem by convex relaxation [8]–[10]. However, those
technics usually come with an approximation cost, resulting
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in a relative poor estimate. Therefore, many successful and
widely used SE algorithms for the power grid are to directly
work with nonlinear measurement model, which is formulated
in the Weighted Least Square (WLS) [11]–[15] form, with
Newton’s method (i.e. [3]) to be the solver. By successively
finding a better approximation, Newton’s method can reach a
local optimum of the non-convex problem. However, obtaining
global optimum is not guaranteed. If the initial guess used in
Newton’s method is (by pure chance) close to global optimum,
then it is likely to find global optimum. Otherwise, it may
merely reach a local optimum and stop.

In traditional transmission network, it is possible to use
previous state estimate as a heuristic initial guess for SE,
based on the belief that no significant change appears in a
short time. However, such a belief will no longer hold in smart
grid, where intermittent generation (wind and solar farms) and
consumption (plug-in hybrid electric vehicles), and frequent
topological changes can lead to significant state shift in power
system operations. In such case, a previous state estimate
computed around 2 minutes ago [16] may not truly reflect
the operating point of the current power system and generates
suboptimal results accordingly. Although not suitable for smart
grids, utilizing the previous state estimate as a prior knowledge
for the current SE does reflect an important idea in power
systems analysis: using historical data in a smart way can
enhance real time analysis against uncertainties.

On the other side, recent advances in communications,
sensing, computing and control, as well as the targeted in-
vestments toward deploying advanced meter infrastructures
(AMIs) and synchrophasors have become drivers and sources
of data previously unavailable in the electric power industry.
Such a database is expected to exhibit exponential growth.
With vast amounts of data being generated in the power grids,
researchers and engineers need to address questions, such as
what patterns and trends to extract and how to use them
to improve power systems reliability, security, sustainability,
efficiency and flexibility.

This paper aims to utilize such valuable historical data
resources to improve SE accuracy against the ever-changing
hard-to-predict uncertainties in smart grids. Instead of using a
single data point (last state estimate), a key idea in this paper
is to use more historical data (i.e. state, topology, and mea-
surement) for robustness. Our preliminary work [17] proposes
a Bayesian approach based on historical data search, where a
group of measurement sets and the corresponding state esti-
mates are used in combination with the current measurement
in a kernel ridge regression [18] to pursue a good estimate
of current states. The proposed method is based on the idea
that two similar system measurement sets usually indicate two
similar operation conditions (system states). After collecting
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a group of similar measurements in the past, a supervised
learning framework is employed to map the historical data
to the current state estimate.

Although showing promising result in smart grids, [17]
implicitly places strong assumptions over historical data. For
instance, it assumes that the historical data are without 1)
topology changes [3], [19], [20], 2) bad data [7], [21], and
3) malicious attack [22]. Unfortunately, such assumptions is
frequently violated in practice [3], [7].

To enable robustness for the algorithm, in this paper, we
generalize system learning process. Instead of using only one
step, we propose three steps to systematically locate good
and robust nearest neighbor points. In particular, we firstly
utilize historical state and system topology information to deal
with topology changes. Secondly, historical measurements are
used to refine the data set against bad data. Subsequently, we
conduct a maximum agreement algorithm for collected states
to identify malicious attack. Then the resulting information
is used in a supervised learning process with Kernel Ridge
Regression, leading to a robust data-driven state estimate. Such
an estimate can also serve as an improved initial guess in
iterative algorithms for potential improvement.

While resulting in a highly accurate state estimate as one
will see in the simulation result, the new method faces a large
computational overhand preventing its online application. For
instance, the similarity evaluation over high dimensional power
system measurement vectors is time consuming, especially
in a large electric power grid. Besides, the time required to
exhaust all historical data points is formidable, preventing
any streaming estimation process with real-time guarantees
for sustainable grid services [23].

To reduce the computational burden, the structure of power
system measurement data is examined via singular value
decomposition (SVD). We observe an important phenomenon.
Thanks to the roughly periodic pattern of power system, the
measurement data are highly clustered, creating the potential
for speed up. A direct and natural idea is to reduce the
measurement complexity (dimensionality) over measurement
space. Random mapping is proposed in this paper [24], [25]
to achieve dimension reduction quickly, and be adaptive to
the new incoming data. To further reduce the computation
over the space of time, we propose to organize/index the
clustered data into a tree structure. In such a structure, the
time for similarity check can be dramatically reduced due to
data grouping. For instance, once a sub-tree is chosen, all the
other sub-trees can be ignored, resulting in a log-reduction
over time. The proposed method is advantageous in practical
scenarios because it reorganizes the historical information in
a form that can provide information in a compact way.

Whereafter, the performance of the data-driven SE approach
is verified by simulations on the standard IEEE 300-bus test
case [26], [27]. Provided with enough historical data, the
new method can improve the performance of the traditional
approach in a short time. 1000 times speed up is achieved,
making our method feasible for online application.

The rest of the paper is organized as follows: Section II
reviews the WLS state estimation and defines the problem
of Data-Driven State Estimation; Section III describes the

Nearest Neighbors approach; Section IV shows how to reduce
computation time for online applications; Section V illustrates
the simulation results and section VI concludes the paper.

II. POWER SYSTEM STATE ESTIMATION

In this section we briefly review the state estimation (SE)
problem in power systems. In general, the state estimation
problem is a nonlinear problem that needs to be solved by
implementing iterative algorithms.

A. Current Model

The following Static AC power system model is usually
assumed in static SE:

z = h(x) +w, (1)

where the vector x

x = (|v1|ejδ1 , |v2|ejδ2 , · · · , |vn|ejδn)T (2)

represents the power system states, w is an m × 1 vector
denoting the additive measurement noises, presumably inde-
pendent Gaussian random variables with zero means, i.e., u ∼
N (0,Σ), where Σ is a diagonal matrix, with the ith diagonal
element σ2

i . z is an m×1 vector denoting the set of telemetered
measurements, such as power flows and voltage magnitudes.
h(·) is a vector of nonlinear functions relating the states x
to the measurements z. In practice, the measurement set z is
usually made redundant to guarantee the observability of the
whole system.

The goal of power system SE is to find an estimate (x̂) of the
true states (x) that best fits the measurement set z according
to the measurement model in (1). This is usually achieved by
minimizing the following criterion:

x̂ = argmin
x

Lp(x) =
m∑
i=1

(
zi − hi(x)

σi

)p

, (3)

where the parameter p (p ≥ 0) is used to achieve desired
performance. For example, for p = 2, the above problem
corresponds to the conventional Weighted Least Square (WLS)
SE. For p = 1, the above problem reduces to the Weighted
Least Absolute Value (WLAV) SE [3], which is well-known
as robust to bad data.

1) WLS State Estimation: As we already discussed, the
optimization problem in (3) is highly nonconvex, due to
the non-convexity of the cost function in (3). Thus, it is
very difficult to solve the problem optimally. In practice, the
state estimation problem is usually solved by using Newton’s
method, which is essentially a local search algorithm. For
instance, if we set p = 2, then the problem becomes equivalent
to:

x̂ = argmin
x

J2(x) = (z − h(x))TΣ−1(z − h(x)). (4)

After obtaining an initial guess x(0), Newton’s method
updates the estimate according to the following rule:

x(i+1) = x(i) − J ′
2(x

(i))

J ′′
2 (x

(i))
∆x, ∀i ∈ N , (5)
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where i is the iteration index, ∆x is the step size, and N is
the set of natural numbers.

Notice that, such a local search method is highly sensitive
to the initial guess. As a result, for smart grid SE, the simple
industrial initial guess approach (use the last SE result) may
not be able to provide a good initial guess for the Newton’s
method to converge to the global optimum. In the next section,
we are going to discuss a new systematic approach to obtain
a robust data driven SE.

B. Problem Setup

Now we consider a new SE method to lessen the error in a
static SE. We assume the availability of a database recording
the historical measurements, topologies, and state estimates.

• Problem: Obtain a data-driven state estimator
• Given:

– a sequence of historical measurement column vec-
tors: z1, z2, · · · , zk, · · · zQ, where k is the time
index, and Q is the total number of data points in
the database;

– a sequence of historical state estimates column vec-
tors: x1,x2, · · · ,xk, · · · ,xQ;

– a sequence of historical measurement function sets:
h1,h2, · · · ,hk, · · · ,hm;

– the current measurement column vector: zcurrent;
– the current measurement function set: hcurrent.

• Find: Robust State Estimate without solving (3).

Fig. 1: Flow chart

III. ROBUST DATA-DRIVEN APPROACH

Mathematically, the proposed Robust Data-Driven SE algo-
rithm can be decomposed into two parts:

• A minimization problem to obtain a group of likely
historical data;

• A kernel ridge regression problem to obtain an “optimal”
state estimate from the group.

We will detail the idea behind such a method in the next
two subsections.

A. A Nearest Neighbors Approach

Intuitively, with the same topology, close-by states usually
produce similar measurements. Therefore, a smaller distance
between the current measurement set zcurrent and a historical
measurement set zk at time k implies that the associated
historical state vector xk stays closer to the current true state
vector xtrue with high probability. Provided with the aforesaid,
we proposed a historical data search method. To make the
estimation unbiased to a single data point, a group of nearest
neighbors is obtained instead of a single historical data point.

Such a method, as shown in Fig.1, is called K-Nearest
Neighbors (K-NNs) 1 approach in Statistics, which is a
nonparametric method requiring no model to fit. Specifically,
given a query point zcurrent, we find K training points (zk)
closest in distance to the query point. Despite mild structural
assumptions and algorithmic simplicity, K-NNs’s predictions
are often accurate, leading to its successes in a large number of
classification problems, including handwritten digits, satellite
image scenes and EKG patterns.

Unfortunately, such a naive comparison in the measurement
space did not count the scenarios of topology changes, bad
data, and malicious attack:

1) The method above is non-robust to topology changes. If
it happens, small distance between measurements may
result in undesired large distance between states.

2) Data points with relatively large errors in the historical
measurement may deteriorate the quality of the collected
data points. Different level of bad data may harm the
overall quality of the estimation result.

3) If unobserved malicious bad data injection appears in
static SE, it should not be collected in the robust K-
NNs due to its faking information.

To ensure robustness, we propose to use not only the
measurements in the past and now [17], but also historical
state, historical topology data and current topology. As more
information is used, better performance is expected. The key is
how to smartly map those information pieces into the current
states via system learning. In the following, we illustrate
how to adjust the K-NNs approach [17] to make it robust
to topology changes, bad data, and occasional malicious data
attack.

1) Topology Changes: To capture the topology changes in
the smart grids, instead of using historical measurements for
comparison, historical psudo-measurements are used.

ẑk = hcurrent(xk) (6)

where hcurrent is the measurement function associated with
the current topology. Mathematically, the K-NNs results that
is robust to the topology changes can be expressed as the
following optimization.

ŝ = arg min
|s|=K

d(s) =
∑
k∈s

||zcurrent − ẑk||22, k ≤ Q, k ∈ N

(7)

i.e., minimizing sum distance function d(s). Here Q is the
number of total data points in the database. N represents the

1The tuning parameter K can be chosen by cross-validation [18].
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Fig. 2: Diagram for robust nearest neighbors search

set of natural number. k represents a particular index for a data
point. As a result, zk indicates the measurement set within the
time slot of index k. Finally, K indicates the cardinality of
the set s. Essentially, during the searching step, the algorithm
simply looks for an index set s with K elements which
represents a group of psudo-measurement vector sets that have
nearer distance to the current measurement zcurrent. Such a
process is illustrated on the left side of Fig.2. Notice that,
such a searching process is time consuming, due to the high
dimensionality of measurement vectors and a large volume of
data points over a long time. Section IV is devoted to this
problem for online practice.

2) Dealing with unfiltered bad data: Bad data occurs due to
equipment failure, finite accuracy, infrequency of instrument
calibration and measurement scaling procedure at the control
center. Besides, telecommunication errors and incorrect topol-
ogy information may also cause bad data. Traditional static bad
data detection and filtering are based on Chi-square test [3].
After choosing a threshold over the probability of error, i.e.
5%, weighted sum square error are evaluated in a Chi-square
distribution under the rules of Chi-square test. Unfortunately,
the threshold is usually subjective and can not guarantee the
absent of relative large bad data. Luckily, when many data
points are used in a data-driven framework, one obtain the
opportunity for the first time to further improve the SE result
by selecting relative better data points. In this paper, instead
of using the hard decision process, we propose to compare the
sum square errors in different time slots by utilizing the extra
degree of freedom over time. In this paper, as illustrated in
the center of Fig. 2, we proposed to remove data points with
relatively large sum square errors, i.e. 10% data points will be
deleted.

3) Dealing with malicious bad data: [22] presents a new
class of bad data, namely the false data injection, against state
estimation in electric power grids. By exploiting the measure-
ment function (topology information) of a power system, an
attacker can successfully introduce arbitrary errors into certain
state variables while bypassing existing techniques for bad
measurement detection.

Such an attack is hard to detect for a static SE in power

systems, due to its unobservability. However, with a long
historical data, one can compare different data points across
the time domain. For this reason, we can compare all the
collected states and filter out the outliers. In other words,
instead of looking into false data injection among different
measurements in a single time slot, we propose to examine
the state vectors in multiple time slots to filter out data points
that are inconsistent with others according to some metric,
such as the definition of relative outliers [28]–[30]. Fig.3
illustrates the idea over a two bus system via synthetic data.
The x coordinate represents the voltage magnitude of the first
bus. The y coordinate represents the voltage magnitude of
the second bus. As power system data are highly clustered,
which is shown in Sec.IV, the point o1 and o2 are regarded
as suspected data points to be filtered out.

Fig. 3: Visualization of voltage magnitude pairs in a two bus
system

Overall, the robust K-NNs method discussed in this section
(Fig.2), aims at filtering out unnecessary data information to
shrink the size of data. In the next section, we will “average”
these historical similar information by conducing a regression
problem. Together, such a two-stage process is called K-
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Nearest Neighbors Regression in Statistics [31].

B. Bayesian Inference

To combine prior beliefs with data in a principled way, we
proposed to conduct Bayesian inference over the collected K-
Nearest Neighbor points to obtain a data-driven SE. For such
an inference, one can use Generative model or Discriminative
model. Although a Generative model is more informative, and
can perhaps be obtained from physical principles, it needs to
specify the probability distribution of the hidden parameters
(power system states) and the conditional probability of the
measurement given the hidden parameters. Unfortunately, the
prior distribution of the hidden parameters needs to be con-
structed heuristically, which is unreliable. As the major goal is
to conduct robust inference for the hidden parameters (states)
based on the labeled data (historical measurements-state pairs),
one can inverted the causality relation for a Discriminative
model. Such a model is proposed purely for inference tasks,
rather than to model some underlying reality. This is similar in
spirit to curve fitting methods, such as polynomial regression.
This type of reasoning, where we combine inductive (model
choice) and deductive (Bayes inference) reasoning into one
step has been called Transductive reasoning.

1) Kernel ridge regression:
• Ridge regression
We first consider a Normal model below, which is a popular

discriminative model with unknown hyper-parameters q and
Σd:

x|z : N(qTz,Σd). (8)

To identify such a discriminative model for our inference,
a regularized (ridge regression) estimator is commonly used:

q̂ = argmin
q

K∑
i=1

(xi − qTzi)
2 + 2γ||q||2, (9)

where
∑K

i=1(xi−qTzi)
2 is used to minimizing the sum square

error, and the regularization term 2γ||q||2 is used to improve
the estimator performance for ill-conditioned problems.

For the Normal model, with the historical data stored in
Zmat and Xmat as follows,

Zmat = (z1, z2, · · · , zK),

XT
mat = (x1,x2, · · · ,xK), (10)

we can obtain a closed-form solution:

q̂ = (ZmatZ
T
mat + 2γI)−1ZmatXmat. (11)

where the unknown hyper-parameter Σd has been absorbed
into the penalty constant γ. Notice that due to the ridge
regularization (since γ > 0), ZmatZ

T
mat + 2γI ≽ 2γI ≻ 0.

Therefore, the matrix ZmatZ
T
mat + 2γI is always invertible.

Thus, the regularized estimator in (11) always exists. In
other words, with the choice of quadratic penalty, the ridge
regression solution is again a linear function of the labels
(states) in Xmat. The solution adds a positive constant to
the diagonal of ZmatZ

T
mat before inversion. This makes the

problem nonsingular, even if ZmatZ
T
mat is not of full rank,

and was the main motivation for ridge regression when it was
first introduced in statistics.

Once the hyper-parameter q̂ is estimated in (11), it can
be used for Bayesian inference to generate the current state
estimate x̂B , as follows:

x̂B
current = q̂Tzcurrent (12)

= XT
matZ

T
mat(ZmatZ

T
mat + 2γI)−1zcurrent (13)

= XT
matT (14)

Notice that, such a form is based on ZmatZ
T
mat. One can

also conduct the following derivation to obtain an alternative
form based on ZT

matZmat. By employing the Matrix Inversion
Lemma (A+BDC)−1 = A−1−A−1B(D−1+CA−1B)CA−1

to expand the inversion above, the alternative form of T can be
obtained, which may further simplify the computational need:

T =ZT
mat(ZmatZ

T
mat + 2γI)−1zcurrent (15)

=
1

2γ
(ZT

matzcurrent −ZT
matZmat(Z

T
matZmat

+ 2γI)−1ZT
matzcurrent) (16)

=
1

2γ
(Zmatz

T
current − (ZmatZ

T
mat + 2γI − 2γI)

· (ZmatZ
T
mat + 2γI)−1ZT

matzcurrent) (17)

=(ZT
matZmat + 2γI)−1ZT

matzcurrent, (18)

where

ZT
matZmat = (z1, z2, · · · , zn)T (z1, z2, · · · ,zn)

=

 zT
1 z1 . . . zT

1 zn
...

. . .
...

zT
n z1 . . . zT

n zn

 , (19)

ZT
matzcurrent = (z1, z2, · · · , zn)Tzcurrent

=

 zT
1 zcurrent

...
zT
n zcurrent

 . (20)

Because the matrix ZT
matZmat appears in the calculation

(18), as opposed to the original calculation (15) involving
ZmatZ

T
mat, the pairwise inner product in ZT

matZmat creates
the potential to improve estimation performance in the nonlin-
ear kernel space. This is because power system’s measurement
functions are usually nonlinear. Direct use of (8) and (12)
implicitly assumes linear model, leading to a relatively poor
state estimate.

• The Kernel trick for Normal Discriminative model

Kernels are important building blocks for high-dimensional
learning techniques. There is a trick called kernelization for
improving a computationally simple classifier/regressor [18].
The idea is to map the covariate zT

i zj into a higher dimension-
al space and apply the regression in the bigger space. This can
yield a more flexible estimator while retaining computational
simplicity. The Point is that to get a richer set of regression
models we do not need to give up the convenience of linear
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regression model. We simply map the covariates to a higher-
dimensional space. This is akin to making linear regression
more flexible by using polynomials.

By kernel trick, there exists a high-dimensional mapping
ui = w(zi), from which the inner product uT

i uj =
(w(zi))

Tw(zj) can be calculated by a kernel K(·, ·), as below,

uT
i uj = K(zi, zj). (21)

Therefore, the kernel calculation uses only the (low-
dimensional) z’s, rather than the high-dimensional u’s. There-
fore, the computational complexity of calculating the inner
products in (19) and (20) is low, even though dim(u) itself
may be very large. This idea of using a cost-effective kernel
calculation to implement a high-dimensional Normal model is
called ‘the kernel trick’. In this paper, we employ the following
kernel forms as candidates. This process is called kernel model
assessment and selection.

- Homogeneous polynomial: K(ui,uj) = (uT
i uj)

d.
- Inhomogeneous polynomial: K(ui,uj) = (1 +

uT
i uj)

d.
- Gaussian (Radial Basis function): K(ui,uj) =

exp(−µ||uT
i uj ||2), µ > 0.

2) Model Selection: In order to choose the best model, we
need to assess the performance of various models based on
different γs in (9) and kernels above.

If we are in data-rich situation, the best approach for both
problems is to randomly divide the data-set into three parts:
a training set, a validation set, and a test set. The training
set is used to fit the models; the validation set is used to
estimate prediction error for model selection; the test set is
used for assessment of the generalization error of the final
chosen model. Ideally, the test set should be kept in a “vault”,
and be brought out only at the end of the data analysis. In
the Sec.V, we use inconsecutive data between validation and
testing phases for this purpose.

Therefore, we divide the data into three phases.
• In the training phase, one applies part of the historical

data on different kernel function and γ pairs to calculate
different T s.

• In the validating phase, another part of historical data are
used to choose the best kernel function and γ.

• Finally, the chosen x̂B , computed from the validated T ,
is used in (3) for the testing phase for state estimation.

IV. SPEED UP FOR DATA DRIVEN SE

In the proposed data-driven approach described in the last
section, nearest neighbors search requires exhaustive explo-
ration of all data points and is slow in large network with
huge historical data. In the following we analyze the power
system historical data structure and propose two steps to speed
up the similar data search process but preserve the accuracy.

A. Dimension Reduction

In order to reduce NN search time, we start by exploring
the data structure. As the electrical power systems exhibit
periodicity, one would expect the measurement data to be

highly clustered, creating the possibility for great dimension
reduction for measurement data. As an illustration, singular
value decomposition (SVD) is conducted over the historical
data of 300 bus systems [32]. 1073 measurements per time
slot over one year are used to form historical measurement
matrix Z = [z1, z2, · · · , zQ]. Mathematically, the SVD de-
composition is represented as

Z = U × S × V ′, (22)

where the diagonal entries of S are known as the singular
values. U and V are unitary matrices [32]. By plotting the
magnitude of singular values in Z with a log− log scale, only
8 significant singular values show up in Fig.4a. Besides, in
Fig.4b, we show the result of mapping the historical data onto
some two dimensional features (two left-singular vectors of
U ) associated with significant singular values. As the data in
the figure are highly clustered and far away from each other,
dimension reduction is possible for historical electric power
system data to remove redundancy in NN search.

In this work, we propose to use random projection for this
highly clustered historical measurement data set. This is be-
cause other dimension reduction techniques such as SVD tend
to be very time consuming, making them unsuited for online
state estimation process [33]. Besides, dimension reduction
of these techniques is typically a one-time operation, which
means that the entire process has to be done every time new
power system data come up, making them non-adaptive to
the new coming data, which is important for real time power
system analysis.

In contrary, random projection is fast and adaptive. Math-
ematically, the original m-dimensional measurement data is
simply projected onto a m′-dimensional (m′ ≪ m) subspace
using a random m′ ×m matrix R,

ym′×1 = Rm′×mzm×1. (23)

The elements rij of the random matrix R are often chosen to
be normally independent and identically distributed with zero
means, and the columns of R are normalized with unit lengths.

The key idea of such a random mapping arises from the
Johnson-Lindenstrauss Lemma [34]: if points in a vector space
are projected onto a randomly selected subspace of suitably
high dimensions, then the distance between the points is
approximately preserved.

B. K-dimensional (k-d) Tree for Indexing

As the historical data is highly clustered, we propose to use
a tree to index the data after dimension reduction. The basic
idea of the proposed k-d tree approach comes from the binary-
tree as illustrated on the left of Fig.5. In the Binary-tree, all
nodes after the left pointer have smaller values than the current
root value, and all nodes after the right pointer have bigger
values. If one wants to search for a number in this seven-
node tree, the maximum searching time is changing from 7
(by exhaustive search) to 3 by using the tree structure.

To extend the one dimensional data to high dimensional data
such as the power system measurement vectors, we substitute
a binary-tree with a k-d tree as illustrated in Fig.5. k-d tree
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(a) Singular values (b) Measurement data clustering

Fig. 4: Dimension reduction

Fig. 5: Binary tree and k-d tree

alternates over different measurement as a discriminator on
every level of the tree. Because of the efficient ‘pruning’ of
the search space, the k-d tree has an average nearest neighbor
search time of O(log(Q)), where Q is the total number of
historical data points.

Fig. 6: K-d tree for clustered data set

As an illustration, Fig.6 shows a case where k-d tree is
conducted over two-dimensional data set. By properly using
the clustering properties of the spatial data points, the k-d tree
achieves good performance as the search within it can omit
large portion of the clustered points in the space.

C. Adaptation to the robust K-NNs Approach
The speed up method introduced in this section is based

on the historical measurements. However, our robust K-NNs

approach in Sec.III-A is based on the pseudo-measurements in
(6). To adapt the algorithm, we will first chose 10×K Nearest
Neighbors based on the historical measurements. Then we
will reduce neighbor numbers via the robust K-NNs approach
discussed in section III.

V. NUMERICAL RESULT

In this section, we simulate and verify the performance of
the proposed robust K-NNs regression approach, and compare
it to the industrially used Newton’s method in the standard
IEEE 300 test case.

A. Simulation Method

1) Data Preparation: Such simulations are completed in
MATLAB environment in accordance with MATLAB Power
System Simulation Package (MATPOWER) [26], [27]. Fur-
ther, to simulate the power system behavior in a more practical
pattern, online load profile from New York ISO [35] is adopted
in the subsequent simulation. Specifically, it has online load
profiles in New York ISO area recorded every five minutes.
The load data used is between February 2005 and December
2013 with a consistent data format. Therefore, we use load
data between February 2005 and May 2013 in training and
validation sessions. The load profiles between July 2013 and
December 2013 are used in the testing session.

To generate data for SE, we first fit the normalized load
data into the case file. Subsequently, an AC power flow is run
to generate the true states of the power system, followed by
creating true measurement sets with Gaussian noises (standard
deviations in Table I). Hereby, we assume that the measure-
ment set includes 1) power injection; 2) line power flows; 3)
voltage magnitudes; 4) some phase angle measurements.

TABLE I: Standard Deviation of Measurement Noise

Measurement type Standard deviation
Active (Reactive) power injection 0.015
Active (Reactive) power flow (from)(to) 0.02
Voltage magnitude 0.01
Phase angle 0.002
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2) Data Adjustment: Since we propose a data-driven SE
that is claimed to be robust to topology changes, bad data,
and malicious attack, we will adjust the generated data above
for simulation with respect to each of them.

• Topology Changes: In this case, before running the power
flow to generate measurements, several randomly chosen
topology connections are changed with probability 20%
to imitate certain feature of the smart grid.

• Bad Data: Beside topology changes, we will randomly
generate bad data and insert them into the measurements.

• Malicious Attack: Beside topology changes and bad data,
we intentionally inject several malicious data in the his-
torical database before May 2013, which is unobservable
by Chi-square test [22].

3) Training, Validation, and Testing:
• Training Phase: By randomly selecting one measure-

ment between July 2013 and December 2013 as a test
case, a group of robust nearest neighbor measurements
in (7) between Feb. 2005 and Dec. 2012 is selected via
Fig.2 in Sec.III-A. Then the matrix T in (18) is computed
for different choices of γ and kernel function.

• Validation Phase: The matrix T is validated on the data
between January 2013 and May 2013 to obtain the best
choice for γ and kernel pair.

• Testing Phase: We use the matrix T chosen in the
validating phase to calculate Bayesian state estimate xB

via (14) in the data between July 2013 and December
2013. For comparison purpose, the industrial approach
of Newton’s method initialized via the last state estimate
is also applied to the same testing data.

B. Improved Accuracy
In the testing phase, filtering out bad data and malicious

data reduces measurement number. Therefore, instead of Sum
Square Error, we will employ Mean Squared Error (MSE)
defined as

MSE =
1

m

m∑
i=1

(
zi − hi(x̂current)

σi

)2

. (24)

1) Robustness to Topology Changes: In this part, we
assume there is no bad data and malicious attack in the
historical data to emphasis the robustness feature of the
proposed method. To deal with topology changes, we employ
the first building block only (left block) (Fig.2) to conduct
R-KNNs search. Then, the gathered data is outputted to the
kernel ridge regression method discussed in Sec.III-B1 for an
estimate. Training, Validation and Testing procedure, discussed
in Sec.III-B2, are subsequently used in this estimation process.
For fairness, testing is conducted for 400 times. Each time, we
obtain a MSE, voltage magnitude estimates, and voltage phase
angle estimates. For comparison purpose, we also compute the
corresponding results with Newton’s method initialized by a
previous state estimate.

To show the improved accuracy over 400 testing cases, we
define relative error in the ith testing case as

γi =
MSERobustK−NearstNeighborsMethod

MSENewton′sMethodwithPre.Est.Start
. (25)

Subsequently, Fig.7a shows the histogram of 400 simulation
results. By looking at the x coordinate, we observe that the
Robust K-Nearest Neighbors (R-KNNs) approach has greatly
reduced estimation errors with an average ratio of 10−2.5.
From this fact, we can reasonably conclude that the proposed
R-KNNs method is able to handle topology changes.

Further to the comparison in the MSE domain, Fig.7b
and Fig.7c provide state domain plots. The x coordinate
represents the bus number. The y coordinate represents the
voltage magnitude ratio ( |VR−KNNs|

|VTrue| and |VPre.Est.|
|VTrue| ) in Fig.7b

and the voltage phase angle ratio (∠VR−KNNs

∠VTrue
and ∠VPre.Est.

∠VTrue
)

in Fig.7c, respectively. It can be observed that the R-KNNs
method has a voltage ratio in red close to 1, and its less
variance (in red) indicates its ability to track the true system
states while Newton’s method with a previous estimate start
has a ratio (in blue) far away to 1 with large variance. Such a
poor result is caused by the local-search behavior of Newton’s
method, which is suboptimal with an inferior initial guess.

2) Robustness to Bad Data: In this section, we conduct
similar simulations as the last subsection. However, besides
using the first building block (left block of Fig.2), we will also
use the second (middle) building block of Fig.2. This block
targets at improving the result, by filtering out data points
with relative large residuals, by creating a soft decision rule
as discussed in Sec.III-A2.

For comparison purpose, we simulate this part in parallel to
the last subsection, namely the robustness to topology changes.
Therefore, we observe the same estimation mean and variance
in blue for the Newton’s method initialized by the previous
state estimate. As one can observe, the only difference between
Fig.8b and 7b are that the mean of R-KNNs ratio in Fig.8b is
flatter and its variance is smaller than Fig.7b. This is caused by
filtering out measurement with relative large residuals, thanks
to richer data comparison across horizontal time line, instead
of a single data point used in the traditional static SE. As
another evidence to this observation, Fig.8a shows smaller
MSE ratio than the one in Fig.7a.

3) Robustness to Malicious Attack: The data used in this
subsection are slightly different than the two simulations
above. To mimic that at some time instance that human beings
try to inject bad data that can pass the chi-square test, we
injected malicious data intentionally into the measurement set
only in the testing sets. From Fig.9a, we can see that the Mean
Square Error before or after malicious data filtering out are not
so different. However, we can observe large errors in the state
space in Fig.9b and Fig.9c. For example, the rectangular plot in
blue shows a long distance to 1 in Fig.9b. Similar observation
is made in Fig.9c as well. This shows that the malicious data
can change the state estimate dramatically without triggering
the bad data alarm.

In contrast, the red star like curve is close to one in the
voltage magnitudes plotting and close to zero in the voltage
magnitudes plotting. Besides, the variance in red is much
smaller than the variance in blue, illustrating the robustness
of the proposed data drive approach against Malicious data.
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Fig. 7: Simulation results with only the first block of Fig.2.
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Fig. 8: Simulation results with the first and the second blocks of Fig.2
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Fig. 9: Simulation results with all three blocks of Fig.2

C. Speed Up

In this section the speed up method proposed in Sec.IV is
used. The comparison process is conducted for 400 times with
and without speedup.

1) Time Reduction: To illustrate the speedup, we define the
relative execution time ϕ for the ith testing data during the R-
KNNs search:

ϕi =
twp,i

tex,i
, (26)

where twp represents the R-KNNs search time with pre-
processing (dimension reduction and k-d tree indexing). tex
represents the exhausted R-KNNs search time without prepro-
cessing.

The plot of ϕi is drawn in Fig.10a. It shows that the pro-
posed preprocessing approach has greatly reduced historical

NN search time. For example, the average ratio (ϕ) for all
testing cases is around 10−3, creating 99.9% reduction in the
search time. Such a result leads to a rational interpretation
for the proposed procedure: since the historical data is orga-
nized in a compact way, the nearest neighbors search can be
conducted much more efficiently.

2) Approximately the Same Accuracy: Similar to the ratio
metric defined in the last subsection, We define the ith relative
error πi for testing data as

πi =
MSEwp,i

MSEex,i
. (27)

The plot of πi shows that the relative error is only slightly
larger than 1 (less than 0.01 on average), so the proposed
two-step approach returns a group of historical data highly
similar to the ones in exhaustive search. The slightly larger
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Fig. 10: Simulation results for speed up

error (≈ 1%) may be caused by dimension reduction. But
it is negligible when compared to the 1000 times speedup.
Therefore the proposed approach achieves approximately the
same accuracy as the slow but highly accurate data-driven SE
as shown in Fig.7, Fig.8, and Fig.9.

VI. CONCLUSIONS

In this paper, we discuss how to systematically obtain a
robust data-driven state estimation for AC power systems.
Based on the intuition that similar measurements and topology
reflect similar power system states, we formulate the finding of
the initial SE as a minimum distance search problem. Further,
a Bayesian estimate is obtained via kernel ridge regression. We
further propose how to systematically reduce the computation-
al cost for the proposed method. It is based on the observation
that power system consumption features periodic pattern. In
particular, dimension reduction and efficient indexing over
trees are proposed. Numerical results show that the proposed
method can achieve a highly accurate robust data-driven state
estimate in a short time with 1000 times speedup over IEEE
benchmark systems.
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for power system state estimation,” IEEE Power and Energy Society
General Meeting, Jul. 2012.

[10] Y. Weng, Q. Li, M. Ilic, and R. Negi, “Distributed algorithm for sdp
state estimation,” IEEE Innovative Smart Grid Technology Conference,
Aug. 2013.

[11] F. F. Wu, “Power system state estimation: A survey,” International
Journal of Electrical and Power Engineering, vol. 12, pp. 80–87, 1990.

[12] A. Monticelli, “The impact of modeling short circuit branches in state
estimation,” IEEE Transactions on Power Systems, vol. 8, no. 1, pp.
364–370, Feb. 1993.

[13] A. G. Exposito, A. Abur, A. V. Jaen, and C. G. Quiles, “A multilevel
state estimation paradigm for smart grids,” Proceedings of the IEEE, p.
952, Jun. 2011.

[14] B. V. Tuykom, J. C. Maun, and A. Abur, “Use of phasor measurements
and tuned weights for unbalanced system state estimation,” North
American Power Symposium (NAPS), p. 1, Sep. 2010.

[15] A. P. S. Meliopoulos, B. Fardanesh, and S. Zelingher, Power system state
estimation: modeling error effects and impact on system operation, Jan.
2001.

[16] H. Wu and J. Giri, “Pmu impact on the state estimation reliability for
improved grid security,” IEEE Power Energy Society Transmission and
Distribution Conference and Exhibition, p. 1349, Mar. 2005.

[17] Y. Weng, R. Negi, and M. Ilic, “A search method for obtaining
initial guesses for smart grid state estimation,” IEEE SmartGridComm
Symposium, Nov. 2012.

[18] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer,
Feb. 2009.
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