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Abstract

How can we quickly search millions of MIDI files for similar pieces
of music? Our MidiFind system focuses on exactly this problem. It
has the following desirable properties: (a) it is effective: thanks to
our novel features and corresponding similarity measurements, it out-
performs traditional competitors, in terms of precision and recall; (b)
it is scalable: thanks to our hybrid (MF) indexing strategy, it scales
more than 1000 time faster than naive competitors.

1 Introduction

MIDI files are widely used by millions of musicians and music amateurs. Peo-
ple generate, upload, and distribute their MIDI files online. Some current
large online collections include Free-Midi Zone [3], Classical Archives [1], and
Musipedia [4]. Nowadays, with high quality synthesizers, MIDI files can gen-
erate various and high quality sounds which compete with recordings. This
makes MIDI even more popular. There are at least one million MIDI files
online and there are reasons to expect the number to increase. Unlike audio
files, MIDI files are often free, and their size is about 1000 times smaller
than audio files. Furthermore, MIDI files can be generated easily by export-
ing them from composition software or playing a MIDI instrument. Finally,
since MIDI files capture performance information and every performance is
different, the same music composition can have many different versions.
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However, online MIDI files are messy and difficult to search by meta data
due to careless or casual labeling. We are interested in finding MIDI files
through content-based retrieval. Specifically, we aim to solve the following
problem:

• Given: A query MIDI file

• Find: similar pieces. I.e., different performance versions (including
pure quantized version) of the same composition.

The main challenges to solve these problems are the search quality and
scalability. I.e., the MidiFind system should be both accurate and fast enough
to deal with a database with millions of MIDI files.

The logical structure of our solution is shown in Figure 1. The first step
is to guarantee good search quality by carefully designing different similarity
measurements for different representations, in which we present novel fea-
tures for MIDI data based on a bag-of-words idea and melodic segments, and
introduce a new variation of Levenshtein distance that is especially suitable
for music melody. The second step is to dramatically speed up the search
process, in which we present different hybrid indexing strategies (MF-Q,
MF-SC, MF) that combine different representations and similarity measure-
ments. The final step is to find the ideal thresholds for different similarity
measurements and then construct the MidiFind system.

We have a small and labeled MIDI dataset with 325 files. We also use
a large non-labeled dataset for the MidiFind system that is downloaded and
combined from several smaller datasets which are all free from the Internet.
It contains 12,484 MIDI files with around 2,000 similar pieces. Our MidiFind
system is now deployed and hosted on Cloudbees with no maintenance fee,
and we plan to upgrade it to a commercial server when daily users increase
to thousands.

The main contributions of our MidiFind system are:

• It is effective: it achieve 99.5% precision and 89.8% recall, com-
pared to pure Levinshtein distance measurement, which achieves 95.6%
precisionand 56.3% recall.
• It is scalable, with sub-linear complexity for queries, and outperforms

naive linear scanning competitors by more than 1000 times.

The following section describes related work. Section 3 describes feature
extraction and search quality. Section 4 discusses various strategies to achieve
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scalability. Section 5 describes the construction of the MidiFind system. In
Sections 6, we present experimental results.

Figure 1: The logical structure of Section 3,4,5 of the paper.

2 Related work

Music Information Retrieval has emerged as an active research area in the
past decade. Much work has been done on music search. And Music Finger-
print systems [10, 7] and Query-by-Humming systems [8, 13, 20, 21, 12, 5,
18, 23] are related to our work.

For Music Fingerprint systems, users record a short period of audio to
query the system and the results are supposed to be an exact match, i.e.,
the query audio must be a copy of a fragment of the reference audio. These
systems are generally very robust to audio noise but a query of the same song
with a slightly different performance will almost always lead to a failure. On
the contrary, our MidiFind system deals with similar match, i.e., given a
query, we aim to find different performance versions. Audio noise is out of
our consideration since our query inputs are pure MIDI files.

Query-by-Humming systems share a similar architecture with MidiFind
system. Most of them store MIDI files as references and they also deal with
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similar match since human queries cannot be that accurate. The differences
lie in the query part and the goal of the system. The queries of Query-by-
Humming systems are usually very short audio snippets, while the queries
for our MidiFind system are much longer MIDI files. Therefore, we can take
advantage of the discrete property of MIDI data and the full information
contained by the full-length MIDI query, but at the same time have to deal
with a larger variations and potentially longer matching process of longer
sequences. The goals of Query-by-Humming systems are usually Nearest-
Neighbor search, while our MidiFind system deals with range query, which
aims to find out all different performance versions of the same composition.

Earliest Query-by-Humming systems [8, 13, 20] could trace back to the
1990s, in which melodic contour (defined as a sequence of up, down, and same
pitch intervals) is extracted to match similar melodies. Later on, melodic con-
tour proved unable to distinguish melodies in large datasets [21] and people
started to resort to dynamic time warping on melody notes [12, 5, 18, 23].
One of the initial attempts is a brute-force fashion of dynamic time warping
[12] which is certainly slow due to the O(mn) complexity (m is the length of
query and n is the total length of references) and serves as a baseline for fu-
ture research. Different methods have been tested to speed up the searching
process. Two of them [23, 5] are very related to our work in that they both
use a 2-step pipeline fashion to first shrink the target of candidates and then
use dynamic time warping to test the surviving candidates. However, the
first method relies only on dynamic time warping and has a limitation on the
length of music. It cannot handle long queries and also requires segmentation
labels on the reference music. The method of [5] has an innovative idea to
combine N-grams with dynamic time warping but the search performance
was poor due to random errors in the queries. Compared to them, the query
of our MidiFind system is longer with few errors, at least at the beginning
and ending. This enable us to use bag-of-words and novel clipped melody
features to dramatically shrink the target of candidates and speed up the
string comparison process, respectively.

3 Search Quality

We begin by parsing MIDI files into music notes and extracting main melodies.
After that, we design two different representations for each piece of music:
the bag-of-words and clipped melody representation. For the bag-of-words
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representation, we adopt Euclidean distance; while for the clipped melody
representation, we use enhanced Levenshtein distance.

3.1 Euclidean Distance for Bag-of-Words Representa-
tion

Inspired by the bag-of-words idea, we create a novel bag-of-words feature for
music. Every piece of music is treated as a sequence of words, where each
note is considered as a word by ignoring its length and octave. In other
words, we consider each word as one of the 12 pitch classes within an octave
(in other words, we use the MIDI key number modulo 12. We can also use
modulo 24 and so forth) and consider the word count as normalized total
times that each key is played within a piece of music. Therefore, we re-scale
the pitches of the notes into fewer octaves (12 or 24 pitch classes) and count
the words by ignoring their durations. (We actually first tried to incorporate
the timing information in the feature vector but the performance was much
worse.) Finally, the word count is normalized by the total number of note
counts and hence a feature vector of probability mass table is recorded.

We use Euclidean distance shown in Definition 1 for bag-of-words rep-
resentations. I.e., the similarity of two pieces of music is measured by the
Euclidean distance between the corresponding bag-of-words feature vectors.
This method intuitively works well, or at least is capable of filtering out most
of the different pieces, since different pieces of music usually have different
distributions over the notes.

Definition 1 The Euclidean distance (ED) between S and T , where |S| =
|T |, is defined as:

ED(S, T ) =
√

Σn
i=1(Si − Ti)2

3.2 Levenshtein Distance and proposed enhancements
for melody representation

Besides bag-of-words representation, we extract melody feature from each
piece of music like in most of the query-by-humming systems [8, 13, 20],
since melody is considered as the distinctive element to help people tell mu-
sic apart. Also, melody extraction helps make the music pieces more distinct
to each other since many of them share very similar non-melodic components.
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As suggested by G.Widmer [22], we can simply use the highest pitches (apex)
at any given time as the melody for each piece of music. The detailed ex-
traction algorithm is described in Algorithm 1. We then use Levenshtein
distance measurement on the extracted melodies.

Algorithm 1: Melody Extraction Algorithm

Data: Note Strings
Result: Melody Strings
sortedNotes = sort(all notes, prioritize higher pitches);
melodyNotes = empty list;
while sortedNotes is not empty do

note = the note with highest pitch in sortedNotes;
remove note from sortedNotes;
if the period of note is not entirely covered by notes in
melodyNotes then

split note into splitNotes each corresponds to the time period
that has not been covered;
insert every note in splitNotes into melodyNotes;

end

end
return melodyNotes;

3.2.1 Standard Levenshtein Distance

Levenshtein distance (a special kind of Dynamic Time Warping) has been
shown empirically to be the best distance measure for string editing [6], and
this is the reason that it is also named string editing distance as shown in
Definition 2. To calculate Levenshtein distance of two melody strings S and
T of length m and n, we construct an m-by-n matrix where the (ith, jth)
element of the matrix is the Levinshtein distance between the substring of
S of length i and the substring of T of length j. However, it suffers high
computational complexity, which we will discuss in Section 4. For our melody
string distance, we set insertion, deletion, and substitution costs to be 1. (We
actually tried to incorporate the note durations in the melody representation
and weight the costs by the durations, but the performance turned out to be
much worse.)
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Definition 2 The Levenshtein (string editing) Distance between two sequences
is the minimal number of substitutions, insertions and deletions needed to
transform from one to the other. Formally, the Levenshtein distance between
sequence S and T :

levS,T (i, j) =



max(i, j), min(i, j) = 0

min


levS,T (i− 1, j) + 1

levS,T (i, j − 1) + 1

levS,T (i− 1, j − 1)

+cost[Si 6= Tj]

else

3.2.2 Enhancement 1: Lev-400

As previously discussed, standard Levenshtein distance is a good metric for
showing difference between strings. However, it does have one drawback
that the distance is strongly correlated to the string length. Unfortunately,
melody string lengths vary significantly among our database. Figure 2 shows
the histogram of melody string lengths.

Observation 1 The distribution over the length of melody strings follows a
power law.
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Figure 2: Melody string length histogram on larget dataset. Mean: 1303.
Standard Deviation: 1240. This follows a power-law pattern.

7



Such a large variance on the length will cause problems in matching. For
instance, two melody strings S1 and T1 both have length 500, and the other
two melody strings S2 and T2 both have length 1000. If we get a Levenshtein
distance of 100 from both pairs, the first pair is trivially more different from
each other compared to the second pair. This inspires us to find a way to turn
melody strings into equal length and we find a nice property that chopping
and concatenating the first 200 and last 200 notes of long melody strings
actually increases Levenshtein distance accuracy in a large-scale dataset, as in
Observation 2. For melody strings shorter than 400 notes, we do not modify
them. The reason that this manipulation works is that (1) a unified length
leads to a unified threshold for Levenshtein distance, (2) similar melodies
tend to share more common notes at the beginning and the ending of the
music piece, while performers tend to introduce larger variation in the body
part. We call this enhanced Levenshtein distance Lev-400.

Observation 2 Chopping and concatenating the first 200 and last 200 notes
of long melody strings increases Levenshtein distance accuracy in a large-scale
dataset.

3.2.3 Enhancement 2: Lev-400SC

Lev-400 gives us melody strings with l ≤ 400, where l is length of any string.
By checking the optimal string editing path within Levenshtein matrices,
we find another property of MIDI files: The optimal melody editing path
stays close to the diagonal in the Levenshtein matrix for similar MIDI files,
as described in Observation 3. The reason for this observation is that we
expect the entire pieces to match without any major insertions or deletions
on the notes, so that the best alignment for similar strings should fall along
the diagonal in the Levenshtein matrix. This property aligns very well with
Sakoe-Chiba Band, which constrains the string editing path by limiting how
far it may divert from the diagonal [16], an illustration of the Sakoe-Chiba
Band is shown in Figure 3. We propose using a Sakoe-Chiba Band and
finding a reasonable band width to balance the trade off between speed and
accuracy. The speed factor will be discussed in Section 4. We call this
enhanced distance metric Lev-400SC.

Observation 3 The melody string editing path with smallest Levenshtein
distance stays close to the diagonal for similar MIDIs in large-scale datasets.

8



Figure 3: The illustration of Sakoe-Chiba Band that act as a global constraint
on the Levenshtein editing path

4 Search Scalability

The similarity measurements mentioned in Section 3 lay the ground for ac-
curate matching between MIDI files, however, since there are about 1 million
MIDI files in the world currently, to search through all those files and find
similar ones for any query can be very time consuming. That is why we de-
sign a set of hybrid methods (MF-Q, MF-SC, MF) that combine advantages
from both similarity measurements and provide a way to search through the
database that is both fast and accurate.

4.1 MF-Q: Combine Euclidean and Lev-400 Distance

We have discussed in Section 3 that using Euclidean distance on the bag-
of-words representation can differentiate MIDI files that are dramatically
different. However, we also need to consider the fact that some MIDI files
might share the same notes but have entirely different orderings. Bag-of-
words will not differentiate such MIDI files since mapping them to a low
dimensional space (multiples of 12 depending on number of octaves involved),
we lose a big chunk of information. However, the calculation of Euclidean
distance is very fast: O(d), where d is the dimension of the word space. It is
also not related to the length of the MIDI file.

Levenshtein distance is generally considered to be highly accurate but
time consuming at the same time. For two melody strings S and T with
length m and n, the computational complexity is m · n. By clipping and
concatenating melody strings to 400 notes, we effectively set an upper bound
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on the complexity of Lev-400: min{m, 400} ·min{n, 400} = O(400 · 400). As
shown in Figure 2, the average length of melody string is 1303, therefore the
clipped melody representation will lead to a speed-up of about 10.

Building on the two representations and similarity measurements, we de-
sign a hybrid method that runs bag-of-word first and then further filter the
result by using Lavenshtein distance, and name it MF-Q (short for MidiFind-
Quadratic). The idea is that we want to shrink down the number of possible
similar MIDI candidates by thresholding Euclidean distance. Although the
candidate set from this step contains high probability of false-positives, they
will be identified and removed by the Lavenshtein distance step. The MIDI
files returned in the final result has high probability to be either the query
itself or some variation of that same music piece. Assume we retain only
a percentage of p out of total melody strings through bag-of-words thresh-
olding, then the total runtime will be O((d + 400 · 400p)N), where d is the
bag-of-words dimension and N is the total number of melody strings. We
finally achieve a p as small as 0.025 which leads to a further speed-up of 40.
Therefore, the MF-Q speeds up the system about 400 times. We will discuss
how to choose the p in Section 5 and detailed experimental results in Section
6.

4.2 MF-SC: Sub-quadratic Levenshtein distance with
Sakoe-Chiba Band

MF-Q combines two distance metrics, but Levenshtein distance step is still
time-consuming and take quadratic time. As mentioned in the Lev-400SC
distance metric, we can limit the string editing path in Levenshtein matrix.
Consider our MIDI dataset and take melody string S and T with length m
and n as an example, we limit the bandwidth to be

b = max{0.1 ·min{m,n, 400}, 20}

which is at least 20 notes and increases with the actual length. After using
Sakoe-Chiba Band, the complexity is then sub-quadratic: min{m,n, 400} · b.
We call this method MF-SC (short for MidiFind-Sakoe-Chiba). MF-SC can
achieve an accuracy performance that is close to MF-Q with a speed-up of
about 10. We show the experimental results in Section 6.
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4.3 MF: Further Speeding Up with Metric Tree

MF-SC speeds up the Levenshtein distance step. We propose to a further
speed-up for the Euclidean distances by adopting Metric Tree (M-tree), and
call this method MF. An M-tree is constructed with a distance metric and
relies on the triangle inequality for efficient range and k-NN queries. It is
very effective when there is a clear threshold to differentiate close nodes
and distant nodes [14]. However, it is not very effective when overlaps are
big among similar and distant nodes and there is no clear strategy to avoid
them. The M-tree has a hierarchical structure just like other common tree
structures (R-tree, B-tree), and it tries to balance its nodes according to
the given metric. Each node has a maximum and minimum capacity c.
When exceeding the maximum capacity, the node will be split into two nodes
according to a given splitting policy. For MF, we propose using two splitting
policies: maximum lower bound on distance and minimum sum of radii, as
in Definition 3 and Definition 4, we also set the the maximum and minimum
capacity of nodes to be 8 and 4.

Definition 3 Let N be the current node and S be the set of N and its
children, then the maximum lower bound on distance is achieved by pro-
moting Si and Sj to be new center nodes, in which Sj ≡ N , and Si s.t.
d(Si, N) = maxj{d(Sj, N)}.

Definition 4 Let N be the current node and S be the set of N and its chil-
dren, then the minimum sum of radii is achieved by promoting Si and Sj to
be new center nodes, and assign all nodes in S to Si or Sj, which gives the
smallest sum of radii.

The trade-off is that Minimum Sum of Radii needs to calculate every pos-
sible distance pair in S, but is a better split spatially and ensures minimum
overlap. It is faster while performing range queries but the performance de-
cays when threshold increase as shown in Figure 6. The actual data entries
in M-tree are all stored in leaf nodes while non-leaf nodes are duplicates of
the leaf nodes. Optimally, M-tree can achieve O(logc|D|), where c is the
maximum capacity of nodes and D is the dataset. However, the M-tree
performance degrades rapidly when there are overlaps between nodes. By
testing different thresholds, we finally achieve a speed-up of a factor of 2 to
compute the Euclidean distances. More details experimental results will be
given in Section 6.
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5 MidiFind: A Music Query System

In this section, we describe how to build the MidiFind system by taking
both searching quality in Section 3 and searching scalability in Section 4
into consideration. We start by finding ideal thresholds for different similar-
ity measurements, and then formally present the pipeline searching strategy
which achieves both effectiveness and efficiency in similarity search.

5.1 Find Similarity Measurement Thresholds

The goal of threshold setting is to maximize benefits from both similarity
measurements. We find the ideal thresholds by using the following Algo-
rithm 2 and Algorithm 3 based on the small and labeled dataset. Intuitively,
these two algorithms simply compute the F-values for different thresholds
and choose the thresholds which lead to large F-values.

Algorithm 2: Estimating εED

Data: (1) The small labeled set of music MIDI files
D = {m1,m2, · · · ,m|D|}, (2) the set of labeled similar pairs S,
and (3) the Euclidean distances between every pairs of (mi,mj)

Result: Euclidean threshold on bag-of-words representation εED

for εED = 0, εED < 1, εED+ = 0.01 do

Ŝ = the set of pairs whose Euclidean distances are less than εED ;

precision = |Ŝ∩S|
|Ŝ| ;

recall = |Ŝ∩S|
|S| ;

F -val = 1
1

precision
+ 1

recall

;

record the εED which lead to biggest F-val so far ;

end
return εED which lead to highest F-val, and then add a small number
t < 0.05 to εED ;

It is important to notice the different roles between εED and εLev. The role
of εED is to not only dramatically shrink the number of target candidates, but
also retain high recall. In other words, the candidates returned by using εED

should balance the number of false negatives and retained candidates. This
trade-off leads to a small number t, which is usually less than 0.05 added at
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Algorithm 3: Estimating εLev
Data: (1) The small labeled set of music MIDI files

D = {m1,m2, · · · ,m|D|}, (2) the set of labeled similar pairs S,
and (3) the Euclidean distances between every pairs of (mi,mj)

Result: Lev-400sc threshold on clipped melody representation εLev
for εLev = 0, εLev < 400, εLev + + do

Ŝ = the set of pairs whose Lev-400sc distances are less than εLev ;

precision = |Ŝ∩S|
|Ŝ| ;

recall = |Ŝ∩S|
|S| ;

F -val = 1
1

precision
+ 1

recall

;

record the εLev which lead to highest F-val so far ;

end
return εLev which lead to biggest F-va1 ;

the end of Algorithm 2. The role of εLev is to get final accurate similar pairs.
Therefore, we choose εLev that leads to the highest F -val. Our MidiFind
system final use εED = 0.1 and εLev = 306

5.2 MidiFind System Pipeline

Here we formally present the pipeline strategy to find the similar MIDI pieces
based on a user submitted MIDI query Q to the MidiFind system, as shown
in Algorithm 4.

6 Experiments

6.1 Quality Experiments

In these experiments, we examine how well our proposed similarity measure-
ments can find pairs of MIDI files with the same music composition on real
datasets. In essence, we claim a discovery of such pair if their distance is
smaller than a given threshold. Since truly different performances of a same
music composition should indeed be very similar, thus, at some threshold,
our algorithms can discover these pairs with high precision and recall.

The MIDI files in these experiments come from the Music Performance
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Algorithm 4: MidiFind System Algorithm

Data: The query melody string Q, and reference melody strings
R = {R1, R2, · · · , R|R|}

Result: The set of similar melody string M
Step1: Within R, do range query on Euclidean distance (M-tree)
based on bag-of-words representation and get a set of candidates SBoW ,
where the distance between each element of SBoW and Q is less than
εED;
Step2: Within SBoW , do range query on melody Lev-400SC distance
(Sequential Scan) and get M, where the distance between each
element of M and Q is less than εLev ;
return M;

Expression Database, which belongs to the CrestMuse Project [2]. There are
325 different MIDI files consisting of 79 unique compositions and 2,289 pairs
of MIDI files sharing the same composition. Our goal is to discover all these
2,289 pairs.

We compared four discovery methods based on the following three feature
sets and their related similarity metrics:

• ED (Section 3.1): Each MIDI file is represented by a 12-dimensional
vector where every element is the proportion of melody notes that is
played on this key at any octave. The ED similarity of two MIDI files
corresponds to the Euclidean distance of their two 12-dim vectors.

• Standard-Lev (Section 3.2.1): Each MIDI file is represented by a string
of melody pitches without any truncation. The Standard-Lev similarity
of two MIDI files corresponds to the Standard Levenshtein distance.

• Lev-400SC (Section 3.2.3): Each MIDI file is represented by a string
of melody pitches. The string is then truncated to have the first 200
and the last 200 notes only. The Lev-400SC similarity of two MIDI
files corresponds to the Levenshtein distance with Sakoe-Chiba band
of their two 400-dim strings. In the case that a melody string has length
smaller than 400, the distance is scaled up.

The four discovery methods we compare are:
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• ED-thresholding: Claiming two MIDI files to be different performances
of the same music composition if their ED distance is below some
threshold.

• Lev-400SC-thresholding: Claiming two MIDI files to be different per-
formances of the same music composition if their Lev-400SC distance
is below some threshold.

• Standard-Lev-thresholding: Claiming two MIDI files to be different
performances of the same music composition if their standard Leven-
shtein distance is below some threshold.

• MF-thresholding: Claiming two MIDI files to be different performances
of the same music composition if both their ED distance and their Lev-
400SC distance are below some thresholds.
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Figure 4: (a)(b)(c)(d): Qualities (Precision, Recall, and F-value) of the four
methods. For every method, the “threshold” parameters are plotted as vari-
ables. In (d), the F-value of our chosen parameter balancing quality and
speed achieves is very close to the very best. (e)(f)(g)(h): The number of
MIDI file pairs with distances ≤ d as d increases. Notice the plateaus es-
pecially in (f)&(h) indicate that certain distances are scarce, i.e. natural
clusters exist.

We first consider the precisions, recalls, and F-values of all three methods
with different “threshold” parameters. The true set of MIDI file pairs is hand
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Method Threshold Precision Recall F-value
ED 0.087 88.6% 88.3% 0.442

Lev-400SC 302 98.5% 94.3% 0.482
Standard-Lev 66 95.6% 56.3% 0.354

MF (our choice) (0.1, 306) 99.5% 89.8% 0.472
MF (optimal) (0.18, 306) 98.6% 94.7% 0.483

Table 1: Best thresholds and their qualities

labeled. As can be seen in Figure 4(a),(b),(c)&(d), better precision appears
when the thresholds ε are set smaller, because by claiming discoveries very
carefully, few goes wrong. On the other hand, better recall appears when ε is
set larger. We can clearly see that the accuracy of Lev-400SC thresholding
dramatically outperforms Standard-Lev thresholding. The fact that both
precision and recall become high at some ε̂, (the choices and their qualities
are in Table 1), and remain high in its neighborhood indicates that there is
a big overlap between the true similar set and the similar set we found. This
fact also give us some flexibility to tune the parameters.

Next, in Figure 4(e),(f),(g)&(h), we plot the cumulative pair count under
various distances, that is, the number of pairs with distances no larger than ε
as ε varies. It can be noted especially in Figure 4(f)&(h) that plateaus occur
for a range of ε’s. This means that few pairs have distances in this range—
the distances are either smaller, i.e. the pairs are rather local, or larger, i.e.
pairs rather global. These plots show another evidence that MIDI files form
natural clusters under our proposed distances. Finally, the best parameter
set that optimizes the F-value for the MF-thresholding method is (0.18, 306)
with F-value 0.483 whereas our choice of (0.1, 306) which balances quality
and scalability achieves a F-value of 0.472 (Figure 4(d)). In Figure 4(h),
there is a plateau near the parameters of our choice.

6.2 Scalability Experiments

The scalability experiments are conducted by using the large dataset which
contains 12484 MIDI files. The experiments all run on a 3.06 GHz, 2-core
(Intel Core i3) machine with 4GB Memory, so that users of MidiFind system
could achieve similar performance by using personal computers.

We begin the scalability experiments by testing how much speed we can
gain by using a hybrid searching strategy. Intuitively, more candidates will
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be filtered out if smaller threshold for Euclidean distance (εED in Algorithm
4) is adopted for bag-of-words features, and vice versa. Figure 5 shows the
relationship between the Euclidean threshold and the fraction of remaining
candidates. It is clearly shown that we can filter out about 97.5% if we
adopted a threshold εED = 0.1.
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Figure 5: The relationship between εED and the fraction of remained candi-
dates.

We then test how much speed we can gain by using different M-tree al-
gorithms mentioned in 4.2. Figure 6 shows the relationship between the
Euclidean threshold εED and the fraction of candidates whose Euclidean dis-
tances need to be checked. It can be seen that the maximum lower bound
approach works better, and we can skip 55% of the candidates when we
compute the Euclidean distance.

Finally, we see the speed as a function over dataset size, and compare the
speed of all mentioned searching strategies based on their average searching
time, which is computed by recording the timing of 300 queries and then
take the average. As shown in Figure 7, the fastest method is MF (blue
line) which only takes less than 0.1 second even if the dataset size is more
than 10, 000. The MF-SC (green line) is slightly slower than MF since MF
only speed up the procedure of computing Euclidean distances, which is less
costly than computing Levenshtein distances. MF-Q (red line) is about 10
times slower than MF, while the linear scanning on Lev-400 distances (yellow
line) is about 400 times slower. Compared with naive linear scan competitor
(black line), our MF method is more than 1000 times faster.
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Figure 6: Search time comparison between M-tree split policies. The y-axis
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Figure 7: A comparison of the speed of all searching strategies.

7 Conclusions

We present MidiFind, a MIDI query system for effective and fast searching
of MIDI file databases. The system has the properties we mentioned earlier:

• Effectiveness: it achieves high precision and recall by using novel simi-
larity measurements based on bag-of-words and melody segments, which
outperforms standard Levenshtein distance.
• Scalability: our MidiFind system is dramatically faster than the naive

standard Levenshtein distance linear scanning, which isO(mnN), where
m and n are lengths of two compared strings and N is the size of the
database. By using melody segments representation, bag-of-words fil-
tering, Sakoe-Chiba Band, and M-tree, we achieve speed-ups of 10, 40,
10, and 1.05, respectively, which finally leads to a speed-up of more
than 1000 times. Since the methods scales linearly, we are able to
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achieve one search within 10 seconds even if the size of the database is
1 million.

8 Future Work

There are many possibilities to improve the MidiFind system by substituting
existing rule-based methods, especially the bag-of-words representation, by
more machine-learning based approaches. Here, we discuss the possibilities
in terms of both effectiveness and scalability.

Effectiveness: We see a small gap of recall between the optimal threshold
choice and our choice in Table 1. The optimal parameters are not chosen
since it will lead to a very low precision for Euclidean distance, which will
create a very large overhead for the next string matching step. We see that
it is possible to learn a representation from data which could achieve higher
precision than the current bag-of-words representation.

One possibility is to design more “words” based on musical knowledge,
and then use Principle Component Analysis (PCA) [19] to reduce the di-
mensionality. For example, we can consider pitch classes of more octaves
and also incorporate the timing information. If we consider 36 pitch classes
(three octaves) weighted by accumulated note duration, the revised bag-of-
words feature vectors will have 72 dimensions. After that, we can use PCA
to project the vectors into a subspace with a much lower dimensionality, say
10. The advantage of PCA is that it automatically “groups” the related
information, so that the final representation contains richer information and
pays less attention to uninformative details. Another possibility is to use
Kernel PCA [17] to directly learn a representation from the strings of var-
ious lengths. The string kernels [11] [15] generally consider the similarity
between two strings based on the common subsequences or substrings. By
using a string kernel, we can also take the structure of the string into account
rather than just counting the times of the words.

Scalability: We see a speed-up factor of 2 to compute the Euclidean dis-
tance by using M-tree indexing. It might be possible to increase the speed-up
factor by using locality-sensitive hashing (LSH) [9]. Someone may argue that
this step is not very critical since that the overhead of Euclidean distance
computation is just about 10% of the one of whole computation. However,
it is possible that the fraction of Euclidean distance computation will in-
crease as the data size increases to 1 million. In other words, as the data size
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increases, it is possible that the amount of surviving candidates for string
matching process will increase slower than the total data size, in which case
the Euclidean distance computation step will become more significant.

We could adopt a k-bit (E.g., 32-bit or 64-bit based on the CPU architec-
ture) LSH function which could basically perform a query in a constant time.
There is certainly a trade-off between accuracy and speed. As for precision,
the LSH can at least return a rough set of candidates very quickly. After
performing LSH, we can check the true Euclidean distance between the set of
candidates and the query by linear scanning. In other words, LSH will serve
as another filter, so that we end up using a pipeline approach to sequentially
filter the candidates by using LSH, Euclidean distance, and finally the actual
string matching. As for recall, our pipeline approach will unavoidably create
some false positives, though it has been shown that the false positive proba-
bility can be controlled to be really low by tuning the parameters. However,
considering our goal of searching 1 million files, a small trade-off on recall,
we would argue, will not be a big issue.
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