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Abstract

Mapping the transcription network is integral to our understanding of the tran-
scriptional regulation in cells. Recently, ChIP-Seq experiments have become pop-
ular to determine the regulatory relationships between transcription factors (TF)
and its target genes by detecting physical binding. However, these experiments
are noisy and many binding events are not actually functional. Instead of doing
further laboratory experiments which are expensive and not realistic for humans,
we propose to estimate a sparse Bayesian network structure of the TFs and target
genes, and detect SNPs that perturb the network. These SNP perturbations pro-
vide evidence of functional bindings. To learn the sparse Bayesian network, we
present A* lasso, a single stage method that recovers the optimal sparse Bayesian
network structure by solving a single optimization problem with A* search algo-
rithm that uses lasso in its scoring system. Our approach substantially improves
the computational efficiency of the well-known exact methods based on dynamic
programming. In addition, to make the method more practical for settings that
have a large number of variables, we suggest a heuristic scheme that dramatically
reduces computational time without substantially compromising the quality of so-
lutions. We apply our method to integrate SNP, expression and ChIP-Seq data. We
detect several influential SNPs in our network, and are able to provide evidence
for TF binding and characterize the effect on the surrounding network.

1 Introduction

Transcription is an important control point for the cell to regulate complex molecular pathways and
elucidating the transcription network is a focus of active research for both computational and exper-
imental areas. Many computational approaches have been developed that harness the information
in expression data to estimate these networks [30, 19]. However, these methods depend mostly on
the correlation of expression levels across genes, and thus the direction of the interaction cannot
be resolved from expression data alone. Recently, experimental procedures such as chromatin im-
munoprecipitation sequencing (ChIP-Seq) have become popular for providing physical evidence for
the binding of a transcription factor (TF) to its target gene, thus providing directional information
for parts of the network.

Unfortunately, it is not possible to construct the functional transcription network from ChIP-seq
data alone. ChIP-seq data is noisy and many of the binding events detected are false positives and
therefore not functional. Thus, it becomes necessary to validate the binding between a TF and tar-
get. There are experimental approaches to validation such as knock down of the factor or gene
by mutation and more recently by RNA interference, which silences the gene by mRNA degrada-
tion [17, 4, 28]. Knock down studies validate these binding events by perturbing the expression
of a TF and observing the effect on the expression of its target genes. However, these experimental
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approaches have several disadvantages. For instance, laboratory experiments are expensive and time
consuming on a large scale. They also pose a challenge for studying humans. While knock down
studies can be performed in cell lines, they cannot be performed in vivo for ethical reasons.

We propose to substitute knock down experiments by collecting population SNP data and using
network structure learning to detect how they perturb the transcription network. We collect SNP
and expression data from a population, and allow natural genetic variation between individuals to
serve as the source of perturbations. Specifically, genetic mutations that affect TF activity will then
influence the expression of its target genes, providing evidence to conclude that the TF to target
bindings are functional.

We use a Bayesian network of genes conditioned on SNPs to model the transcription network under
SNP perturbations. We choose to model our network as a directed network using Bayesian networks.
This is compatible with ChIP-seq data because candidate edges have a natural direction since TFs
bind to target genes. Because we are only interested in learning the SNP perturbations of genes,
and we are not interested in the structure between the SNPs, we estimate a Bayesian network model
conditioned on all the SNPs. We use the candidate edges from ChIP-seq as a starting point, and we
learn the transcription network that contains only the functional edges from SNP and expression data
of a population of individuals. By learning this network, we will identify 1) the SNPs that perturb
the transcription network, 2) the TFs that were directly perturbed by the SNPs, 3) the structure of
the transcription network, and 4) the candidate edges between TF and target that are functional.

To estimate the network structure, we present A* lasso that learns a Bayesian network in high-
dimensional space. A* lasso finds the optimal network structure with a sparse set of parents, a
quality that is appropriate for biological networks. To scale the method to large networks, we suggest
a heuristic scheme that dramatically reduces computational time without significantly compromising
the quality of solutions.

We apply our method to the ENCODE project ChIP-seq data, SNP data from 1000 genomes, and
expression data created for the HapMap project to elucidate the functional TF to target regulatory
relationships from candidate interactions in ChIP-seq data. The SNP and expression data were
collected from lymphoblastoid cell lines, the same cell line used to collect the ChIP-seq data. Unlike
previous approaches, our method is designed to directly incorporate the ChIP-seq candidate edges,
and validate them by integrating SNP and expression data in a single analysis. In addition, by
analyzing the resulting transcription network, we can characterize the effect of SNP perturbations in
detail. We are able to identify the direct regulation between TF and targets, as well as the indirect
effects of the SNP perturbations on downstream genes.

2 Background on Bayesian Network Structure Learning

Bayesian networks have been popular tools for representing the probability distribution over a large
number of variables. However, learning a Bayesian network structure from data has been known
to be an NP-hard problem [1] because of the constraint that the network structure has to be a di-
rected acyclic graph (DAG). Many of the exact methods that have been developed for recovering the
optimal structure are computationally expensive and require exponential computation time [23, 12].
Approximate methods based on heuristic search are more computationally efficient, but they recover
a suboptimal structure. In this paper, we address the problem of learning a Bayesian network struc-
ture for continuous variables in a high-dimensional space and propose an algorithm that recovers the
exact solution with less computation time than the previous exact algorithms, and with the flexibility
of further reducing computation time without a significant decrease in accuracy.

Many of the existing algorithms are based on scoring each candidate graph and finding a graph with
the best score, where the score decomposes for each variable given its parents in a DAG. Although
methods may differ in the scoring method that they use (e.g., MDL [14], BIC [22], and BDe [7]),
most of these algorithms, whether exact methods or heuristic search techniques, have a two-stage
learning process. In Stage 1, candidate parent sets for each node are identified while ignoring the
DAG constraint. Then, Stage 2 employs various algorithms to search for the best-scoring network
structure that satisfies the DAG constraint by limiting the search space to the candidate parent sets
from Stage 1. For Stage 1, methods such as sparse candidate [5], max-min parents children [26], and
total conditioning [18] algorithms have been previously proposed. For Stage 2, exact methods based

2



on dynamic programming [12, 23] and A* search algorithm [29] as well as inexact methods such
as heuristic search technique [26] and linear programming formulation [11] have been developed.
These approaches have been developed primarily for discrete variables, and regardless of whether
exact or inexact methods are used in Stage 2, Stage 1 involves exponential computation time and
space.

For continuous variables, L1-regularized Markov blanket (L1MB) [21] was proposed as a two-stage
method that uses lasso to select candidate parents for each variable in Stage 1 and performs heuristic
search for DAG structure and variable ordering in Stage 2. Although a two-stage approach can
reduce the search space by pruning candidate parent sets in Stage 1, Huang et al. [10] observed that
applying lasso in Stage 1 as in L1MB is likely to miss the true parents in a high-dimensional setting,
thereby limiting the quality of the solution in Stage 2. They proposed the sparse Bayesian network
(SBN) algorithm that formulates the problem of Bayesian network structure learning as a single-
stage optimization problem and transforms it into a lasso-type optimization to obtain an approximate
solution. Then, they applied a heuristic search to refine the solution as a post-processing step.

In this paper, we propose a new algorithm, called A* lasso, for learning a sparse Bayesian net-
work structure with continuous variables in high-dimensional space. Our method is a single-stage
algorithm that finds the optimal network structure with a sparse set of parents while ensuring the
DAG constraint is satisfied. We first show that a lasso-based scoring method can be incorporated
within dynamic programming (DP). While previous approaches based on DP required identifying
the exponential number of candidate parent sets and their scores for each variable in Stage 1 before
applying DP in Stage 2 [12, 23], our approach effectively combines the score computation in Stage
1 within Stage 2 via lasso optimization. Then, we present A* lasso which significantly prunes the
search space of DP by incorporating the A* search algorithm [20], while guaranteeing the optimality
of the solution. Since in practice, A* search can still be expensive compared to heuristic methods,
we explore heuristic schemes that further limit the search space of A* lasso. We demonstrate in
our experiments that this heuristic approach can substantially improve the computation time without
significantly compromising the quality of the solution, especially on large Bayesian networks.

3 Problem Setup for Bayesian Network Structure Learning

A Bayesian network is a probabilistic graphical model defined over a DAG G with a set of p =
|V | nodes V = {v1, . . . , vp}, where each node vj is associated with a random variable Xj [13].
The probability model associated with G in a Bayesian network factorizes as p(X1, . . . , Xp) =∏p

j=1 p(Xj |Pa(Xj)), where p(Xj |Pa(Xj)) is the conditional probability distribution for Xj given
its parents Pa(Xj) with directed edges from each node in Pa(Xj) toXj inG. We assume continuous
random variables and use a linear regression model for the conditional probability distribution of
each node Xj = Pa(Xj)

′βj + ε, where βj = {βjk’s for Xk ∈ Pa(Xj)} is the vector of unknown
parameters to be estimated from data and ε is the noise distributed as ∼ N(0, 1).

Given a dataset X = [x1, . . . ,xp], where xj is a vector of n observations for random variable Xj ,
our goal is to estimate the graph structure G and the parameters βj’s jointly. We formulate this
problem as that of obtaining a sparse estimate of βj’s, under the constraint that the overall graph
structure G should not contain directed cycles. Then, the nonzero elements of βj’s indicate the
presence of edges in G. We obtain an estimate of Bayesian network structure and parameters by
minimizing the negative log likelihood of data with sparsity enforcing L1 penalty as follows:

min
β1,...,βp

p∑
j=1

‖ xj − x−j
′βj ‖22 +λ

p∑
j=1

‖ βj ‖1 s.t. G ∈ DAG, (1)

where x−j represents all columns of X excluding xj , assuming all other variables are candidate
parents of node vj . Given the estimate of βj’s, the set of parents for node vj can be found as the
support of βj , S(βj) = {vi|βji 6= 0}. The λ is the regularization parameter that determines the
amount of sparsity in βj’s and can be determined by cross-validation. We notice that if the acyclicity
constraint is ignored, Equation (1) decomposes into individual lasso estimations for each node:

LassoScore(vj |V \vj) = min
βj

‖ xj − x−j
′βj ‖22 +λ ‖ βj ‖1,
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Figure 1: Search space of variable ordering for three variables V = {v1, v2, v3}.

where V \vj represents the set of all nodes in V excluding vj . The above lasso optimization problem
can be solved efficiently with the shooting algorithm [6]. However, the main challenge in optimizing
Equation (1) arises from ensuring that the βj’s satisfy the DAG constraint.

4 A* Lasso for Bayesian Network Structure Learning

4.1 Dynamic Programming with Lasso

The problem of learning a Bayesian network structure that satisfies the constraint of no directed
cycles can be cast as that of learning an optimal ordering of variables [13]. Once the optimal variable
ordering is given, the constraint of no directed cycles can be trivially enforced by constraining the
parents of each variable in the local conditional probability distribution to be a subset of the nodes
that precede the given node in the ordering. We let ΠV = [πV

1 , . . . , π
V
|V |] denote an ordering of the

nodes in V , where πV
j indicates the node v ∈ V in the jth position of the ordering, and ΠV

≺vj denote
the set of nodes in V that precede node vj in ordering ΠV .

Algorithms based on DP have been developed to learn the optimal variable ordering for Bayesian
networks [25]. These approaches are based on the observation that the score of the optimal ordering
of the full set of nodes V can be decomposed into (a) the optimal score for the first node in the
ordering, given a choice of the first node and (b) the score of the optimal ordering of the nodes
excluding the first node. The optimal variable ordering can be constructed by recursively applying
this decomposition to select the first node in the ordering and to find the optimal ordering of the set
of remaining nodes U ∈ V . This recursion is given as follows, with an initial call of the recursion
with U = V :

OptScore(U) = min
vj∈U

OptScore(U\vj) + BestScore(vj |V \U) (2)

πU
1 = argmin

vj∈U
OptScore(U\vj) + BestScore(vj |V \U), (3)

where BestScore(vj |V \U) is the optimal score of vj under the optimal choice of parents from V \U .

In order to obtain BestScore(vj |V \U) in Equations (2) and (3), for the case of discrete variables,
many previous approaches enumerated all possible subsets of V as candidate sets of parents for node
vj to precompute BestScore(vj |V \U) in Stage 1 before applying DP in Stage 2 [12, 23]. While this
approach may perform well in a low-dimensional setting, in a high-dimensional setting, a two-stage
method is likely to miss the true parent sets in Stage 1, which in turn affects the performance of Stage
2 [10]. In this paper, we consider the high-dimensional setting and present a single-stage method
that applies lasso to obtain BestScore(vj |V \U) within DP as follows:

BestScore(vj |V \U) = LassoScore(vj |V \U)

= min
βj ,S(βj)⊆V \U

‖ xj − x−j
′βj ‖22 +λ ‖ βj ‖1 .
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The constraint S(βj) ⊆ V \U in the above lasso optimization can be trivially maintained by setting
the βjk for vk ∈ U to 0 and optimizing only for the other βjk’s. When applying the recursion in
Equations (2) and (3), DP takes advantage of the overlapping subproblems to prune the search space
of orderings, since the problem of computing OptScore(U ) for U ⊆ V can appear as a subproblem
of scoring orderings of any larger subsets of V that contain U .

The problem of finding the optimal variable ordering can be viewed as that of finding the shortest
path from the start state to the goal state in a search space given as a subset lattice. The search
space consists of a set of states, each of which is associated with one of the 2|V | possible subsets
of nodes in V . The start state is the empty set {} and the goal state is the set of all variables V . A
valid move in this search space is defined from a state for subset Qs to another state for subset Qs′ ,
only if Qs′ contains one additional node to Qs. Each move to the next state corresponds to adding a
node at the end of the ordering of the nodes in the previous state. The cost of such a move is given
by BestScore(v|Qs), where v = Qs′\Qs. Each path from the start state to the goal state gives one
possible ordering of nodes. Figure 1 illustrates the search space, where each state is associated with
a Qs. DP finds the shortest path from the start state to the goal state that corresponds to the optimal
variable ordering by considering all possible paths in this search space and visiting all 2|V | states.

4.2 A* Lasso for Pruning Search Space

As discussed in the previous section, DP considers all 2|V | states in the subset lattice to find the
optimal variable ordering. Thus, it is not sufficiently efficient to be practical for problems with
more than 20 nodes. On the other hand, a greedy algorithm is computationally efficient because
it explores a single variable ordering by greedily selecting the most promising next state based on
BestScore(v|Qs), but it returns a suboptimal solution. In this paper, we propose A* lasso that
incorporates the A* search algorithm [20] to construct the optimal variable ordering in the search
space of the subset lattice. We show that this strategy can significantly prune the search space
compared to DP, while maintaining the optimality of the solution.

When selecting the next move in the process of constructing a path in the search space, instead of
greedily selecting the move, A* search also accounts for the estimate of the future cost given by a
heuristic function h(Qs) that will be incurred to reach the goal state from the candidate next state.
Although the exact future cost is not known until A* search constructs the full path by reaching
the goal state, a reasonable estimate of the future cost can be obtained by ignoring the directed
acyclicity constraint. It is well-known that A* search is guaranteed to find the shortest path if the
heuristic function h(Qs) is admissible [20], meaning that h(Qs) is always an underestimate of the
true cost of reaching the goal state. Below, we describe an admissible heuristic for A* lasso.

While exploring the search space, A* search algorithm assigns a score f(Qs) to each state s and
its corresponding subset Qs of variables for which the ordering has been determined. A* search
algorithm computes this score f(Qs) as the sum of the cost g(Qs) that has been incurred so far to
reach the current state from the start state and an estimate of the cost h(Qs) that will be incurred to
reach the goal state from the current state:

f(Qs) = g(Qs) + h(Qs). (4)

More specifically, given the ordering ΠQs of variables in Qs that has been constructed along the
path from the start state to the state for Qs, the cost that has been incurred so far is defined as

g(Qs) =
∑

vj∈Qs

LassoScore(vj |ΠQs
≺vj ) (5)

and the heuristic function for the estimate of the future cost to reach the goal state is defined as:

h(Qs) =
∑

vj∈V \Qs

LassoScore(vj |V \vj) (6)

Note that the heuristic function is admissible, or an underestimate of the true cost, since the con-
straint of no directed cycles is ignored and each variable in V \Qs is free to choose any variables in
V as its parents, which lowers the lasso objective value.

When the search space is a graph where multiple paths can reach the same state, we can further im-
prove efficiency if the heuristic function has the property of consistency in addition to admissibility.

5



A consistent heuristic always satisfies h(Qs) ≤ h(Qs′) + LassoScore(vk|Qs), where
LassoScore(vk|Qs) is the cost of moving from state Qs to state Qs′ with {vk} = Qs′\Qs. Consis-
tency ensures that the first path found by A* search to reach the given state is always the shortest
path to that state [20]. This allows us to prune the search when we reach the same state via a different
path later in the search. The following proposition states that our heuristic function is consistent.

Proposition 1 The heuristic in Equation (6) is consistent.

Proof For any successor state Qs′ of Qs, let vk = Qs′\Qs.

h(Qs) =
∑

vj∈V \Qs

LassoScore(vj |V \vj)

=
∑

vj∈V \Qs,vj 6=vk

LassoScore(vj |V \vj) + LassoScore(vk|V \vk)

≤ h(Qs′) + LassoScore(vk|Qs),

where LassoScore(vk|Qs) is the true cost of moving from state Qs to Qs′ . The inequal-
ity above holds because vk has fewer parents to choose from in LassoScore(vk|Qs) than in
LassoScore(vk|V \vk). Thus, our heuristic in Equation (6) is consistent.

Given a consistent heuristic, many paths that go through the same state can be pruned by maintaining
an OPEN list and a CLOSED list during A* search. In practice, the OPEN list can be implemented
with a priority queue and the CLOSED list can be implemented with a hash table. The OPEN list is
a priority queue that maintains all the intermediate results (Qs, f(Qs), g(Qs),Π

Qs)’s for a partial
construction of the variable ordering up to Qs at the frontier of the search, sorted according to the
score f(Qs).

During search, A* lasso pops from the OPEN list the partial construction of ordering with the lowest
score f(Qs), visits the successor states by adding another node to the ordering ΠQs , and queues the
results onto the OPEN list. Any state that has been popped by A* lasso is placed in the CLOSED
list. The states that have been placed in the CLOSED list are not considered again, even if A* search
reaches these states through different paths later in the search.

The full algorithm for A* lasso is given in Algorithm 1. As in DP with lasso, A* lasso is a single-
stage algorithm that solves lasso within A* search. Every time A* lasso moves from state Qs to
the next state Qs′ in the search space, LassoScore(vj |ΠQs

≺vj ) for {vj} = Qs′\Qs is computed with
the shooting algorithm and added to g(Qs) to obtain g(Qs′). The heuristic score h(Qs′) can be
precomputed as LassoScore(vj |V \vj) for all vj ∈ V for a simple look-up during A* search.
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Input : X, V , λ
Output: Optimal variable ordering ΠV

Initialize OPEN to an empty queue;
Initialize CLOSED to an empty set;
Compute LassoScore(vj |V \vj) for all vj ∈ V ;
OPEN.insert((Qs = {}, f(Qs) = h({}), g(Qs) = 0,ΠQs = [ ]));
while true do

(Qs, f(Qs), g(Qs),ΠQs)← OPEN.pop();
if h(Qs) = 0 then

Return ΠV ← ΠQs ;
end
foreach v ∈ V \Qs do

Qs′ ← Qs ∪ {v};
if Qs′ /∈ CLOSED then

Compute LassoScore(v|Qs) with lasso shooting algorithm;
g(Qs′)← g(Qs) + LassoScore(v|Qs);
h(Qs′)← h(Qs)− LassoScore(v|V \v);
f(Qs′)← g(Qs′) + h(Qs′);
ΠQs′ ← [ΠQs , v];
OPEN.insert(L = (Qs′ , f(Qs′), g(Qs′),Π

Qs′ ));
CLOSED← CLOSED ∪{Qs′};

end
end

end
Algorithm 1: A* lasso for learning Bayesian network structure
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A* lasso finds the optimal ordering because A* search is optimal given an admissible heuristic. It is
possible that A* lasso can find multiple optimal orderings, because there exist many networks that
are equivalent due to equivalence classes. However, if we fix the variable ordering to one of the
optimal orderings, then the problem is convex because our objective is strongly convex. As a result,
we will get a global optima.

4.3 Heuristic Schemes for A* Lasso to Improve Scalability

Although A* lasso substantially prunes the search space compared to DP, it is not sufficiently effi-
cient for large graphs, because it still considers a large number of states in the exponentially large
search space. One simple strategy for further pruning the search space would be to limit the size of
the priority queue in the OPEN list, forcing A* lasso to discard less promising intermediate results
first. In this case, limiting the queue size to one is equivalent to a greedy algorithm with a scoring
function in Equation (4). In our experiments, we found that such a naive strategy substantially re-
duced the quality of solutions because the best-scoring intermediate results tend to be the results at
the early stage of the exploration. They are at the shallow part of the search space near the start state
because the admissible heuristic underestimates the true cost.

Instead, given a limited queue size, we propose to distribute the intermediate results to be discarded
across different depths/layers of the search space. For example, given the depth of the search space
|V |, if we need to discard k intermediate results, we discard k/|V | intermediate results at each depth.
In our experiments, we found that this heuristic scheme substantially improves the computation time
of A* lasso with a small reduction in the quality of the solution. We also considered other strategies
such as inflating heuristics [15] and pruning edges in preprocessing with lasso, but such strategies
substantially reduced the quality of solutions.

4.4 Bayesian Network Structure Learning for Conditional Model

In some cases, it may not be necessary to estimate the network structure for all the random variables
in our domain. Specifically, for a conditional model, we only need to estimate the network structure
of a subset of the variables conditioned on the rest. We now extend our formulation to include two
types of nodes, W = {w1, · · · , wq} and the previously defined V . Let Zm be the random vari-
able associated with each node wm, where Z1, · · · , Zq denotes the random variables that can be
conditioned on automatically. Then, the modified probability model for G in the Bayesian network
factorizes as p(X1, . . . , Xp|Z1, · · · , Zq) =

∏p
j=1 p(Xj |Pa(Xj)) where p(Xj |Pa(Xj)) is the condi-

tional probability distribution for Xj given its parents Pa(Xj). The key difference is that the parents
of Xj , Pa(Xj), can include Z1, · · · , Zq in addition to X−j .

During the A* Lasso search algorithm, the set of nodes W are added to the node ordering ΠV ∪W

in the beginning because they are being conditioned on. Thus, in applications where you can divide
your variables into these distinct groups, further reductions in computational time are possible since
only part of the structure must be learned.

5 Simulation Study

We perform simulation studies in order to evaluate the accuracy of the estimated structures and
measure the computation time of our method. We created several small networks under 20 nodes and
obtained the structure of several benchmark networks between 27 and 56 nodes from the Bayesian
Network Repository (the left-most column in Table 1). In addition, we used the tiling technique [27]
to generate two networks of approximately 300 nodes so that we could evaluate our method on
larger graphs. Given the Bayesian network structures, we set the parameters βj for each conditional
probability distribution of node vj such that βjk ∼ ±Uniform[l, u] for predetermined values for u
and l if node vk is a parent of node vj and βjk = 0 otherwise. We then generated data from each
Bayesian network by forward sampling with noise ε ∼ N(0, 1) in the regression model, given the
true variable ordering. All data were mean-centered.

We compare our method to several other methods including DP with lasso for an exact method,
L1MB for heuristic search, and SBN for an optimization-based approximate method. We down-
loaded the software implementations of L1MB and SBN from the authors’ website. For L1MB,
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Table 1: Comparison of computation time of different methods
Dataset (Nodes) DP A* lasso A* Qlimit 1000 A* Qlimit 200 A* Qlimit 100 A* Qlimit 5 L1MB SBN
Dsep (6) 0.20 (64) 0.14 (15) – (–) – (–) – (–) 0.17 (11) 2.65 8.76
Asia (8) 1.07 (256) 0.26 (34) – (–) – (–) – (–) 0.22 (12) 2.79 8.9
Bowling (9) 2.42 (512) 0.48 (94) – (–) – (–) – (–) 0.23 (13) 2.85 8.75
Inversetree (11) 8.44 (2048) 1.68 (410) – (–) 1.8 (423) 1.16 (248) 0.2 (16) 3.03 8.56
Rain (14) 1216 (1.60e4) 76.64 (2938) 64.38 (1811) 13.97 (461) 7.88 (270) 1.67 (17) 12.26 10.19
Cloud (16) 1.6e4 (6.6e4) 137.36 (2660) 108.39 (1945) 26.16 (526) 9.92 (244) 2.14 (19) 4.72 14.56
Funnel (18) 4.2e4 (2.6e5) 1527.0 (2.3e4) 88.87 (2310) 25.19 (513) 11.53 (248) 2.73 (21) 4.76 10.08
Galaxy (20) 1.3e5 (1.0e6) 2.40e4 (8.2e4) 110.05 (3093) 27.59 (642) 12.02 (323) 3.03 (23) 6.59 11.0
Factor (27) – (–) – (–) 1389.7 (3912) 125.91 (801) 59.92 (397) 3.96 (30) 9.04 13.91
Insurance (27) – (–) – (–) 2874.2 (3448) 442.65 (720) 202.9 (395) 16.31 (33) 10.96 29.45
Water (32) – (–) – (–) 2397.0 (3442) 301.67 (687) 130.71 (343) 12.14 (38) 32.73 14.96
Mildew (35) – (–) – (–) 3928.8 (3737) 802.76 (715) 339.04 (368) 29.3 (36) 15.25 116.33
Alarm (37) – (–) – (–) 2732.3 (3426) 384.87 (738) 158.0 (378) 12.42 (42) 7.91 39.78
Barley (48) – (–) – (–) 10766.0 (4072) 1869.4 (807) 913.46 (430) 109.14 (52) 23.25 483.33
Hailfinder (56) – (–) – (–) 9752.0 (3939) 2580.5 (816) 1058.3 (390) 112.61 (57) 44.36 826.41
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Figure 2: Precision/recall curves for the recovery of skeletons of benchmark Bayesian networks.

we increased the authors’ recommended number of evaluations 2500 to 10 000 in Stage 2 heuristic
search for all networks except the two larger networks of around 300 nodes (Alarm 2 and Hailfinder
2), where we used two different settings of 50 000 and 100 000 evaluations. We also evaluated A*
lasso with the heuristic scheme with the queue sizes of 5, 100, 200, and 1000.

DP, A* lasso, and A* lasso with a limited queue size require a selection of the regularization pa-
rameter λ with cross-validation. In order to determine the optimal value for λ, for different values
of λ, we trained a model on a training set, performed an ordinary least squares re-estimation of the
non-zero elements of βj to remove the bias introduced by the L1 penalty, and computed prediction
errors on the validation set. Then, we selected the value of λ that gives the smallest prediction error
as the optimal λ. We used a training set of 200 samples for relatively small networks with under
60 nodes and a training set of 500 samples for the two large networks with around 300 nodes. We
used a validation set of 500 samples. For L1MB and SBN, we used a similar strategy to select the
regularization parameters, while mainly following the strategy suggested by the authors and in their
software implementation.

We present the computation time for the different methods in Table 1. For DP, A* lasso, and A* lasso
with limited queue sizes, we also record the number of states visited in the search space in paren-
theses in Table 1. All methods were implemented in Matlab and were run on computers with 2.4
GHz processors. We used a dataset generated from a true model with βjk ∼ ±Uniform[1.2, 1.5].
It can be seen from Table 1 that DP considers all possible states 2|V | in the search space that grows
exponentially with the number of nodes. It is clear that A* lasso visits significantly fewer states
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Figure 3: Precision/recall curves for the recovery of v-structures of benchmark Bayesian networks.

than DP, visiting about 10% of the number of states in DP for the funnel and galaxy networks. We
were unable to obtain the computation time for A* lasso and DP for some of the larger graphs in
Table 1 as they required significantly more time. Limiting the size of the queue in A* lasso reduces
both the computation time and the number of states visited. For smaller graphs, we do not report the
computation time for A* lasso with limited queue size, since it is identical to the full A* lasso. We
notice that the computation time for A* lasso with a small queue of 5 or 100 is comparable to that
of L1MB and SBN.

In general, we found that the extent of pruning of the search space by A* lasso compared to DP
depends on the strengths of edges (βj values) in the true model. We applied DP and A* lasso to
datasets of 200 samples generated from each of the networks under each of the three settings for the
true edge strengths, ±Uniform[1.2, 1.5], ±Uniform[1, 1.2], and ±Uniform[0.8, 1]. As can be
seen from the computation time and the number of states visited by DP and A* lasso in Table 2, as
the strengths of edges increase, the number of states visited by A* lasso and the computation time
tend to decrease. The results in Table 2 indicate that the efficiency of A* lasso is affected by the
signal-to-noise ratio.

Table 2: A* lasso computation time under different edge strengths βj’s

Dataset (Nodes) (1.2,1.5) (1,1.2) (0.8,1)
Dsep (6) 0.14 (15) 0.14 (16) 0.17 (30)
Asia (8) 0.26 (34) 0.23 (37) 0.29 (59)
Bowling (9) 0.48 (94) 0.49 (103) 0.54 (128)
Inversetree (11) 1.68 (410) 2.09 (561) 2.25 (620)
Rain (14) 76.64 (2938) 66.93 (2959) 97.26 (4069)
Cloud (16 ) 137.36 (2660) 229.12 (7805) 227.43 (8858)
Funnel (18) 1526.7 (22930) 2060.2 (33271) 3744.4 (40644)
Galaxy (20) 24040 (82132) 66710 (168492) 256490 (220821)

In order to evaluate the accuracy of the Bayesian network structures recovered by each method,
we make use of the fact that two Bayesian network structures are indistinguishable if they belong
to the same equivalence class, where an equivalence class is defined as the set of networks with
the same skeleton and v-structures. The skeleton of a Bayesian network is defined as the edge
connectivities ignoring edge directions and a v-structure is defined as the local graph structure over
three variables, with two variables pointing to the other variables (i.e., A → B ← C). We evaluate
the performance of the different methods by comparing the estimated network structure with the true
network structure in terms of skeleton and v-structures and computing the precision and recall.

The precision/recall curves for the skeleton and v-structures of the models estimated by the differ-
ent methods are shown in Figures 2 and 3, respectively. Each curve was obtained as an average
over the results from 30 different datasets for the two large graphs (Alarm 2 and Hailfinder 2) and
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Figure 4: Prediction errors for benchmark Bayesian networks.The right figure is rescaled for clarity.
The x-axis labels indicate different benchmark Bayesian networks for 1: Factors, 2: Alarm, 3:
Barley, 4: Hailfinder, 5: Insurance, 6: Mildew, 7: Water, 8: Alarm 2, and 9: Hailfinder 2.

from 50 different datasets for all the other Bayesian networks. All data were simulated under the
setting βjk ∼ ±Uniform[0.4, 0.7]. For the benchmark Bayesian networks, we used A* lasso with
different queue sizes, including 100, 200, and 1000, whereas for the two large networks (Alarm 2
and Hailfinder 2) that require more computation time, we used A* lasso with queue size of 5 and
100. As can be seen in Figures 2 and 3, all methods perform relatively well on identifying the
true skeletons, but find it significantly more challenging to recover the true v-structures. We find
that although increasing the size of queues in A* lasso generally improves the performance, even
with smaller queue sizes, A* lasso outperforms L1MB and SBN in most of the networks. While
A* lasso with a limited queue size preforms consistently well on smaller networks, it significantly
outperforms the other methods on the larger graphs such as Alarm 2 and Hailfinder 2, even with a
queue size of 5 and even when the number of evaluations for L1MB has been increased to 50 000
and 100 000. This demonstrates that while limiting the queue size in A* lasso will not guarantee
the optimality of the solution, it still reduces the computation time of A* lasso dramatically without
substantially compromising the quality of the solution. In addition, we compare the performance of
the different methods in terms of prediction errors on independent test datasets in Figure 4. We find
that the prediction errors of A* lasso are consistently lower even with a limited queue size.

6 Transcriptional Network Learning using A* Lasso

To validate ChIP-Seq binding events between TFs and targets computationally, we want to detect
SNP perturbations of the transcriptional network. To achieve this, we must first learn the transcrip-
tional network of TFs and targets conditioned on SNPs. Thus, we use A* lasso to learn a sparse
Bayesian network structure for a conditional model. This requires integrating ChIP-Seq, SNP and
expression data to estimate the network. In the following sections we described the preprocessing
procedures as well as how the experiments were performed.

6.1 Data Sets

A collection of ChIP-Seq, SNP and microarray expression data was assembled from the the En-
cyclopedia of DNA Elements (ENCODE) project [3], 1000 Genomes Project [2] and Hap Map 3
population gene expression arrays [16, 24] respectively. These data sets were integrated and A*
lasso was used to learn a sparse Bayesian network.

The binding sites of each ChIP-Seq experiment from ENCODE were obtained from the Transcrip-
tion Factor ChIP-seq Uniform Peaks for Human Genome Build 37 (hg19) and further processing
included identifying gene annotations and matching them to the genes in the expression data. We
retrieved experiments of 76 unique transcription factors from the GM12878 lymphoblastoid cell
line. The peaks had already been called allowing us to directly extract the location and signal in-
tensity of the binding sites. We then extracted all binding sites between -20 kb of the transcription
start site and +20 kb the transcription end site of a gene. This region allows us to include promoters,
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exons, introns and nearby enhancers both upstream and downstream. The transcription start and
end sites as well as gene annotations were taken from Human Build 37 (GenBank Assembly ID:
GCA 000001405.1). Originally, there were 23,429 unique targets across of the TFs. After selecting
only those target genes that also have expression data, 15,971 targets remained.

We used microarray expression data originally collected for Hap Map 3 individuals (E-MTAB-264
and E-MTAB-198). Even though the expression data was collected from HapMap 3 samples, many
of them were also used for the 1000 Genomes Project. We used these overlap individuals, which
span seven populations and total 423 samples (Table 6.1). The platform for the expression data
was the Illumina Human-6 v2 Expression BeadChip. Thus, to resolve the difference in naming
conventions between the RefSeq gene annotations and the Illumina reporter names, we use DAVID
Bioinformatics Resources 6.7 [8, 9] to convert Illumina ID’s. Any duplicate genes were replaced
with the entry with the highest variance. After filtering out genes with low variance, we had 9634
targets remaining from 15,971. The remaining 30 genes from the expression data set that were not
ChIP-seq targets were included to make a total of 9,664 genes.

Pop. Code Pop. Description # Samples with SNP and Expression data
CEU European 73
CHB Chinese 77
JPT Japanese 72

LWK Luhya in Kenya 80
MEX Mexican 42
YRI Yoruba in Nigeria 79
Total 423

Table 3: Number of samples that had both microarray expression and 1,000 genomes SNP data
available.

We extracted samples and relevant SNPs from the 1000 Genomes Project Phase I Release. We started
with the integrated variant call set based on both low coverage and exome whole genome sequence
data which consisted of 1,092 individuals and 38.2 million SNPs. As previously mentioned, we used
only the individuals that had corresponding expression data. We extracted the SNPs that intersected
with ChIP-Seq binding sites and filtered for those SNPs that had a minor allele frequency (MAF) of
at least 0.05. This left us with 102 326 SNPs.

6.2 A* Lasso Experimental Setup

The three forms of data: ChIP-Seq, SNP and expression were integrated to perform a single A*
Lasso network learning experiment. For this task, we used the conditional model for Bayesian
network structure learning discussed in section 4.4. The set of nodes V are the genes that were
assayed using expression and the set of nodesW are the SNPs. The dataX consists of the expression
and SNP data after mean centering.

ChIP-seq experiments provide a set of candidate edges. During learning, we select functional edges
from the set of candidate edges and include them in the Bayesian network. We consider edges to
be functional if ChIP-seq detected a binding event from the TF to the target gene, and the target
gene expression is changed. To accomplish this, we encode the candidate edges in the heuristic
function h instead of using the naive heuristic from the simulation experiments. Recall, that when
we previously computed the heuristic function, the constraint of no directed cycles was ignored and
the node to be added was allowed to choose any nodes in V as its parents. Here, we can do better
than simply allowing the node to choose any nodes in V ∪W . Using information from ChIP-Seq, we
know which transcription factors bind to which target genes. Thus, we can identify candidate parents
V ′j for each gene vj . In addition, the SNPs most likely to influence the expression of a particular
gene are the SNPs that are associated with that gene and those that are associated with its candidate
parents, so we can also identify candidate parents W ′j which is a subset of W . For a particular node
vj , we allow it to choose any parents from V ′j ∪W ′j . This results in a heuristic function that is still
admissible because we are ignoring the DAG constraint, but it is a better estimate of the distance to
the goal state because it incorporates the ChIP-Seq binding information.
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The ChIP-seq binding data outlines the general structure of the network. The TFs have directed
edges to other genes, these genes can be other TFs or target genes, and all the genes are conditioned
on SNPs. Given this general structure, it makes sense to first learn the structure of the TFs using A*
lasso, and then add target genes. To reduce the size of the problem, we divided the target genes into
groups which were selected based on a hierarchical clustering of the gene expression data. After
determining the structure of TFs, we then added a group of target genes and continued running the
algorithm. Each group is run separately resulting in a reduction in computational time. We used
queue limits of 10, 20, 50, 100, and 200 and a range of λ’s between 0.004 and 1. We cross-validated
with a 80/20 split of the data and selected the best parameters based on test error.

7 ChIP-Seq Validation Results

We use the Bayesian network structure learning method A* lasso to integrate ChIP-Seq, expression
and genotype data to allow us to computationally validate ChIP-Seq experiments. Determining
which binding events are functional cannot be done simply by examining the results of ChIP-Seq
experiments. However, ChIP-seq provides an important starting point as it identifies the binding
relationships of TFs and targets. To find a functional binding, we need to perturb the expression of
the TF and observe that it has an effect on the expression of its target genes. The expression of the
TF can be altered by genetic mutations, which can be detected in the genotype data. The TF, targets
and SNPs form a network and our objective is to identify genetic mutations that perturb the network.
If we can find these perturbations, then we can provide evidence that the binding event is functional.

To establish that binding events from ChIP-Seq experiments are functional, we use A* lasso, which
finds genetic mutations that perturb the network, as edges from a SNP to a gene. A mutation can
have two potential effects. First, it can alter the concentration of the TF. For example, in Case 1a
(Fig. 5A), the mutation occurs in the promoter region of the TF A which interferes with the binding
of its regulator TF B. This in turn affects the concentration of TF A resulting in a global effect on
all of TF A’s targets. These changes in concentration will be reflected in the expression data and
A* lasso will find all the edges in gray. In addition, if the mutation occurs in the promoter of a
target gene, then only the expression of the specific target will be affected (Fig. 5B). In Case 1b, A*
lasso will only discover the local effect. Another possible effect of a mutation is that it changes the
binding affinity of the TF itself such as in Case 2 (Fig. 5C). This can happen if the mutation occurs
in the coding region of the TF, and slightly alters the amino acid sequence of the TF. While the TF
is still expressed at the same level, it may not have the same affinity for its targets. In this case, A*
lasso will learn edges between the SNP and the target genes. However, no edges will be estimated
between the TF and the targets because the expression of the TF and targets are no longer correlated.
All these scenarios can be extracted directly from the network that we estimate, providing evidence
for functional binding events.

We now compare the transcriptional network of TFs and targets that we learned with the network
consisting of candidate edges from ChIP-Seq. Here, we focus on the network that was generated
from applying A* lasso to one of the groups of genes in the data set. This group had 71 TFs, 203
targets genes and 6 other genes from the expression data for a total of 280 genes and 2,161 SNPs.
Figure 6 shows a global view of the network that was generated. Each element in the figure at
row i and column j shows the relationship between gene i and gene j. A white square denotes
no relationship. If the square is gray, then gene i (which is always a transcription factor) binds to
gene j according to ChIP-Seq experiments. Black indicates that gene i binds to gene j and there is
a directed edge from gene i to gene j in the estimated network. As you can see from Figure 6, a
sparse set of the binding events have been estimated as edges in our network suggesting that very
few ChIP-Seq binding events are actually functional.

During processing of ChIP-Seq data, peaks are called and a signal value is assigned indicating
average enrichment for the region. In order to test whether this signal value was related to the
presence of a functional binding, we performed a 2-sample t-test comparing the signal values of all
the gray squares indicating binding only, with the signal values of all the black squares corresponding
to binding and a corresponding directed edge. The t-test did not reject the null hypothesis with
p-value = 0.1903. This suggests that higher signal values do not necessarily indicate functional
binding.
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Figure 5: Scenarios illustrating how SNP perturbations can affect the expression of TFs and targets
in the transcriptional network. A: A mutation in the promoter of TF A changes the ability of TF
B to bind. This alters the concentration of TF A and this effect cascades to its target genes (Case
1a). B: The mutation occurs in the promoter of a target gene and thus only has a local effect on its
associated gene (Case 1b). C: In this setting, the mutation occurs in the exon of the TF and affects
the ability of that TF to bind to its targets. The expression of the targets are affected even though the
expression of the TF remains stable (Case 2).

Figure 7 visualizes the SNPs influencing the transcriptional network. Similar to Figure 7, each
element (i, j) shown as a black stripe denotes whether there is a directed edge from the SNP to the
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Transcrip)on+Factors+ Target+Genes+

Figure 6: Estimated network of genes. The y-axis has transcription factor names. This figure shows
the binding of these TFs to the targets on the x-axis. Note that targets can also be TFs as shown on
the left.

Figure 7: Estimated network of SNPs to genes.

target gene. If a SNP to target edge overlaps with the gray region, then it is a cis SNP which means
that the SNP is close to the target gene. All other SNPs are trans, that is, they are located far away
from the gene that it affects and potentially on another chromosome. In total there were 39 unique
cis SNPs and 100 unique trans SNPs. We then focused on cis SNPs and examined where they
were located. Figure 7 shows the distribution of where the SNPs are located with respect to their
corresponding gene. SNPs that were classified as being in the promoter region were located within
2000 bp of the transcription start site. The majority of SNPs are located in the intergenic regions
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Figure 8: Distribution of the locations of cis SNPs and trans SNPs.

such as the promoter regions, introns, upstream and downstream and not in the coding regions called
exons. This is to be expected since TFs generally bind to functional elements outside the exons. For
the purposes of this study, we will focus on the promoter regions. However, TFs can also bind to
enhancers which can be located upstream, downstream and within introns of the genes and is the
subject of future work.

After examining the SNPs in the promoter regions, we found that 7 of them are associated with
target genes (Table. 7), not transcription factors. They are examples of Case 1b) from Figure 5B
where the SNP has a local effect on a particular gene. The other four SNPS are associated with
TFs: EP300, ZEB1, TBP and EGR1. The first three have very few targets in the network. However,
EGR1 has edges directed to 40 unique target genes in the network and we found that EGR1 actually
binds to the promoter region in 55% of them. This shows that we can extract the scenario described
in Case 1a (Fig. 5A) from the network. In addition, this suggests that this SNP affects the expression
of EGR1 which then affects the expression of many genes downstream.

Chr SNP ID Associated target gene Binding TF
12 rs2617834 YEATS4 MTA3
12 rs2617835 YEATS4 MTA3
4 rs769236 BBS7 POLR2A

22 rs61342075 EP300 POLR2A
10 rs1576050 ZEB1 POLR2A
6 rs2179373 TBP SIN3A
5 rs3813321 EGR1 POLR2A

Table 4: Cis SNPs located in the promoter region of their associated target gene.

The trans SNPs were distributed similar to the cis SNPs. For trans SNPs, we are interested in those
that occur in the exon of the associated gene which will always be a transcription factor in our setting.
There were 5 SNPs discovered by the network. First, we had to confirm that the TF product of the
associated gene actually binds to the target gene. Out of 5 SNPs, 4 SNPs satisfied this condition and
are listed in Table 7. Thus, these SNPs fit the situation in Case 2 from Figure 5C where the mutation
in the exon affects the affinity of the TF product causing a change in the expression of it’s targets.
Further analysis of whether this SNP is a synonymous or non-synonymous SNP should be carried
out to define its function. Note that with the exception of TCF3 and EGR1, there are no edges
between the TF and the target, only the SNP and the target. Thus, without estimating this network
which detects SNP perturbations, this type of interaction could not be discovered. For instance, a
correlation network of the expression data would miss these interactions.

In many cases, TFs do not act alone but regulate in pairs or small groups. That is, cofactors must
be present for a functional binding to occur (Fig. 9). If we take the matrix shown in Figure 6 and
cluster the rows and the columns, then we can identify TFs that work together as vertical blocks in
the Figure 10. One interesting cofactor pair that we discovered is GABPA and EGR1. They both
regulate the target genes GOLPH3, MAN1A2, and USP33. In addition, they have a common parent
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SNP ID Associated TF target gene Binding location on target gene
rs2000882 PAX5 USF1 promoter
rs2000882 PAX5 EGR1 upstream
rs2000882 PAX5 MYC downstream
rs2000882 PAX5 B4GALT6 intron

rs41275834 TCF3 EGR1 promoter
rs41275834 IRF4 ATF3 intron
rs41275834 NFATC1 BCL11A upstream

Table 5: Trans SNPs found in the exon of their associated TF.

TF#A# TF#B#

promoter' target'gene'

Figure 9: A pair of cofactors bind to activate transcription.

CTCF which can suggest an explanation of how their expression can be altered together. After
examining the binding regions, we found that the two bind to the same region in each gene. For
example, they both bind to the exon in GOLPH3, the promoter in MAN1A2 and upstream region in
USP33. GOLPH3 encodes a peripheral membrane protein of the Golgi stack, the protein products
of both MAN1A2 and USP22 also reside in the Golgi apparatus suggesting that these cofactors are
collaborating to regulate protein trafficking in the Golgi. Thus, the network between genes is also
useful in elucidating functional relationships between TFs and their targets.

Figure 10: The edges between the TFs and the target genes are shown here after hierarchical clus-
tering on both the x and y-axes.

8 Discussion and Conclusions

We have presented an approach to validating ChIP-Seq experiments whereby we estimate a Bayesian
network that provides the evidence for functional bindings. By analyzing how SNPs interact with
the genes in the network, we can establish which relationships are likely functional. In addition, we
describe A* lasso which is a method to optimally estimate a sparse Bayesian network given data. To
reduce computational time, we develop a heuristic scheme that allows network estimation to scale
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without severely compromising the quality of solutions. We extend the model to a conditional model
which allows us to model SNPs as nodes that are always conditioned on.

In this work, we chose to model the transcriptional network using Bayesian networks because the
interactions have a natural directionality. The edges that we learn from a TF to a target often match
a binding event. In addition, estimated edges that occur from targets to other genes represent how
targets influence downstream genes. Despite the limitation that Bayesian networks generally do not
model feedback loops, they are still useful for constructing the transcriptional network that we need
to resolve the functional binding events and their downstream effects.

We describe how to apply A* lasso to validating ChIP-seq and how to assimilate the binding in-
formation into the heuristic function, thereby guiding the search closer to the best network. We
then present results of the network estimation and show how to extract subnetworks that validate
ChIP-seq binding events. In our analysis, we found that very few of the candidate edges given by
ChIP-seq were actually selected by our network. As the 1000 Genomes Project releases more sam-
ples as part of Phase III, we will probably be able to validate more candidate edges. Currently, with
limited data, it is possible that important genetic variations are not represented in the population. In
addition, because we filter out rare variants (MAF < 0.05), more samples will allow us to include a
portion of these SNPs in our analysis.

Future work will carefully address enhancers, binding elements that are located far from the pro-
moter region. We would also like to do motif analysis on the binding sites to assemble more sup-
porting evidence. In addition, we will explore how to do inference on the model such that we can
find indirect effects of the functional bindings.
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