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ABSTRACT
Recently there has been much interest in detecting anoma-
lies in both categorical and real valued time series data.
Many classical statistical methods deal with univariate data,
and less has been done about multivariate data. The drastic
decrease of data storage costs, availability of cheap sensors
along with automation of systems have resulted in prolifera-
tion of time series data. In most cases the data is multivari-
ate in nature, and the effect of an anomaly can potentially be
observed across more than one of these series. A traditional
method to apply univariate methods in these cases would
be to reduce the dimension using some dimensionality re-
duction technique (eg PCA). But, an anomaly detected in a
weighted linear combination of the data might not be mean-
ingful to the end user. A majority of such techniques suffers
from the lack of user interpretability of the results. This
motivates our approach of search through simple arithmetic
combinations of time series. We compare the performance
of our algorithm with related methods such as Vector Au-
toregression on semi-synthetic health data.

1. INTRODUCTION
Automatic surveillance systems are becoming more pop-

ular and are increasingly using data mining methods to
perform detection. The observation of industrial manu-
facturing processes is one traditional application of these
systems. Another application is public health monitoring,
which has the goal of detecting new disease outbreaks as
early as possible. Searching for terrorist activity or attacks
is also becoming important. Applications in that area in-
clude monitoring human health and behavioral data to de-
tect a chemical or biological attack, or searching for signs
of radiation to detect development or deployment of nuclear
devices. The RODS lab at the University of Pittsburgh (see
www.health.pitt.edu/rods/) is focused both on public health
monitoring and detection of biological attacks. This paper
is based on our work in the RODS lab and thus focuses on
these applications, but the algorithms we present are not
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specific to them. They are appropriate for a variety of mon-
itoring tasks.

Modern surveillance systems are characterized by the need
to analyze many variables simultaneously. Because of this
fact, the traditional method of setting upper and lower bounds
for a single variable are no longer appropriate. Data mining
methods are used that must address the complex interac-
tions between variables, the dangers of multiple hypothesis
testing, and the computational issues caused by large data
sets. See [15] for an overview of detection methods.

We consider the problem of detecting an anomalous in-
crease of values in multivariate time series data. The prob-
lem stems from the fact that the increase can be spread over
multiple variables. As an example consider the time series
of counts of patients visiting emergency departments every
day. For each possible symptom we have a corresponding
time series. A particular disease such as an influenza out-
break, will affect the count of multiple syndromes. In this
case, we need to simultaneously consider all the variables to
detect the presence of an anomaly. We are concerned with
prospective surveillance, where we need to detect a disease
outbreak as soon as possible.

To combine information from multiple time series we ex-
amine a novel technique which is simple but powerful. Com-
posite time series are constructed by simple addition and
subtraction of the individual time series. We search through
all possible composite time series for an anomaly. Using just
simple arithmetic operations like addition and subtraction
provides an easy physical interpretation of the composite se-
ries. It is also able to detect anomalies sooner than other
traditional methods.

2. RELATED METHODS
In this section we describe various multivariate techniques

that can detect a shift in the data.

2.1 Vector Auto Regression
The time series is modeled as a standard VAR(p) model

[1]. Let the number of variables be n. Let Xt denote the
(n× 1) vector of values at time t.

Xt = C +

p
X

i=1

ΦiXt−i + εt

where, C denotes an (n × 1) vector of constants, Φi are
(m×m) coefficient matrices and the (n× 1) vector εt is the
residual vector. Here E[εt] = 0. The coefficients Φi can
be estimated from data using ordinary least squares (OLS)
linear regression.



The expected value of Xt given the past p days’ data is
given by

E[Xt] = C +

p
X

i=1

ΦiXt−i

At each time step, we compare the actual and expected
values of Xt. We signal an alarm when Xt deviates signif-
icantly from E[Xt]. Quantitatively, we compute the Maha-
lanobis distance:

D
2 = (Xt −E[Xt])

T
Σ

−1(Xt −E[Xt])

where, Σ is the sample variance-covariance matrix for the
past p days’ data.

An alarm is signaled when D exceeds a threshold h. Here
h is the parameter which controls the number of false posi-
tives.

2.2 Vector Moving Average
This method is a special case of the Vector Autoregression

as described above. We assume that the expected value of
Xt is the mean of the past p days’ values.

E[Xt] =
1

p

p
X

i=1

Xt−i

We compute the Mahalanobis distance as mentioned previ-
ously, and signal an alarm when D > h.

2.3 Hotelling T 2 Test
We model the distribution of the mean of the recent p

days’ data. Let

X̄ =
1

p

p−1
X

i=0

Xt−i

and Σ be the sample variance-covariance matrix for the past
p days’ data.

The statistic T 2 is defined as [2]:

T
2 = n(X̄− µ)T

Σ
−1(X̄− µ)

T 2 is distributed as p(n−1)
n−p

F(p,n−p), with F(p,n−p) repre-
senting the F distribution with p and n− p degrees of free-
dom. We signal an alarm when P (x ≥ T 2) < α, where α

controls the rate of false positives. Application of Hotelling
T 2 in multivariate quality control has been investigated in
[3].

3. DETECTION METHOD: CUSUM
Before presenting our algorithm, we describe a popular

method used in detecting anomalies in time series. CUSUM
was originally developed to detect changes in the quality of
output of continuous production process. It can quickly de-
tect a shift in the mean of a process. As the name suggests,
CUSUM maintains a cumulative sum of deviations from a
reference value r. Let us consider a time series where at
time t we have measurement X(t). The one-sided CUSUM
calculation is as follows:

C(0) = 0 (1)

C(t) = max(0,X(t)− (µ0 + L) + C(t− 1)) (2)

µ0 is the in-control process mean. From the equations
above, if the Xm values are close to the mean, then the
C(t) values will be some small value. However once a posi-
tive shift from the mean occurs, the C(t) value will increase
rapidly. L is known as the slack value or allowance. In the
equation above, any values within L units of µ0 will be ef-
fectively ignored. The allowance L is usually set to be the
midpoint between the in-control process mean µ0 and the
out-of-control process mean µ1.

Alerts are raised whenever C(t) exceeds a threshold deci-
sion interval H. The cumulative sum is then reset to zero.
The Average Run Length (ARL) is controlled by this param-
eter. The ARL is the average number of time steps before
an alert is raised.

The CUSUM algorithm described here has been exten-
sively used in biosurveillance systems. It has been used
for influenza surveillance [14], detection of salmonella out-
breaks [11] and in the Early Aberration Reporting system
[10]. CUSUM algorithms have also been extended to incor-
porate spatial information such as [12] and [13].

3.1 Modified CUSUM
In this work we use a modified CUSUM as the detection

method. We have found this method to be very effective in
detecting upward shifts in time series.

We calculate the cumulative sum of deviation similar to
equation 2. Instead of maintaining the cumulant starting
at t=0, we consider only the last CW (Cumulant Window)
number of time steps. This means that the current Cumu-
lant at time t, will be independent of any data before the
time T - CW . We signal an alarm if the current cumulant
value is greater than H. This modification does not affect
the performance of the algorithm significantly, and is actu-
ally desired in our case, as explained later. This also allows
us to speed up the computation as described in section 7.

In the original algorithm, H is usually taken as a fixed
threshold value. We have set H = hσ, a multiple of the
standard deviation σ of the time series. We need to calculate
and update the σ value at each time step. In our method σ

is the sample standard deviation of the series calculated over
a sliding window of the last N days. Thus, H is dynamically
updated based on the behavior of the variable. Also, since
we do not know the out-of-control process mean µ1, we set
L = lσ, for some constant l. L too gets updated at each time
step. The in-control process mean µ0 is taken as the moving
average over the last N days. This dynamic updation of the
parameters at each time step is a significant modification
of the original CUSUM algorithm. This allows us to model
non-stationary time series variables.

3.2 Multivariate CUSUM
An analogous Multivariate version has also been applied

to surveillance data. Crosier’s multivariate cumulative sum
(MCUSUM) method [5] has been applied to syndromic data
from multiple hospitals [6] and Pignatiello’s MCUSUM [7]
applied to yearly, spatially distributed counts of breast can-
cer incidence [8]. We have implemented the MCUSM method
from [7] and compared it against our method.

4. PROPOSED METHOD: PARALLEL MON-
ITORING OF COMPOSITE SERIES

A common feature of all the multivariate methods is that
the statistic on which the alarm is set, does not have an



intutive physical interpretation in terms of the variables.
However, if we monitor the individual variables in parallel,
we can identify the variable that has an anomalous behavior
in case of an alarm.

As mentioned in [4] these multivariate methods are ’om-
nidirectional, a property that can be useful in detecting an
earlier signal, but can also cause false alerts if a change in
the covariance matrix occurs that is irrelevant to any out-
break signal of interest’. They do not specifically check for
increases in individual series. In our experiments this causes
them to perform worse than parallel monitoring of univari-
ate series.

The novel method that we suggest involves parallel mon-
itoring of not only the individual variables, but also simple
arithmetic combinations of them. This retains the advan-
tage of easy interpretability while giving a better perfor-
mance as shown in our experiments. This method of using
combinations of time series is orthogonal to the univariate
detection method used to monitor each series. We have cho-
sen CUSUM as the detection algorithm because of its su-
perior and robust performance in detecting slight increases
over the normal value. In the following sections we describe
this algorithm in more detail.

5. SEARCH SPACE
As mentioned previously, we perform a parallel monitor-

ing of the time series variables and arithmetic combinations
of them. Here we describe the composite series that are
monitored in parallel for any increase from expected values.

Let X1, . . ., Xk be k random time series variables, and
Xi(t) denote the value of Xi at time step t.

Addition: We create time series of the form:

Y = Xi1 + Xi2 + . . . + Xim ; i1, . . ., im ∈ {1, 2, . . . , k}

This means that at each time step t,

Y (t) = Xi1 (t)+Xi2(t)+. . .+Xim (t); i1, . . ., im ∈ {1, 2, . . . , k}

Here we can choose the indices i1, i2, . . ., im in
`

k

m

´

ways.
If we consider summations of up to k terms, the total number
of such composite series =

`

k

1

´

+
`

k

2

´

+ . . . +
`

k

m

´

.
Similar to addition, we create time series of the form

Y = Xi1 −Xi2 ; i1, i2 ∈ {1, . . . , k}

Here we consider combination of just 2 series. There are
`

n

2

´

such composite series.

Motivation of the addition and subtraction operations:

1. Addition: We assume that an outbreak simultaneously
causes an increase in the value of more than one vari-
able. The detection accuracy of any anomaly detec-
tion method will depend on the signal to noise ratio
(SNR) of the outbreak. The anomalous increase in the
value is the signal we want to detect, and the stan-
dard deviation of the variable is the noise. Here we
describe a situation where the composite additive se-
ries will have a better SNR than any of the individual
series. Consider two random time series variables X1

and X2. Assume that they have equal standard devia-
tions, σX1

= σX2
= σ. Let a be the actual anomalous

increase in the values of X1 and X2.

Let Y = X1 + X2. Now,

σ
2
Y = σ

2
X1 + σ

2
X2 − 2 ∗ r ∗ σX1σX2 = 2 ∗ σ(1− r)

where r is the Pearson correlation coefficient between
X1 and X2. By definition, r≥-1. Hence, σY ≤ 2*σ.
The SNR of the individual variables is a

σ
. The SNR of

the composite series Y is 2a

σY
≤ a

σ
.

We note that if there is a very strong positive corre-
lation between the variables, then the noise(variance)
will increase proportional to the signal (outbreak). In
these cases, the false positive rate will increase because
of multiple hypothesis testing. Hence in those situa-
tions, considering summation of series can give worse
results.

2. Subtraction:

Considering series of the form Y = X1 − X2 can be
helpful if there is some positive correlation between X1

and X2. If these two random variables are positively
correlated, then any anomalous increase present in X1,
but not in X2, will be more pronounced in Y. This
is because the noise will tend to cancel, whereas the
signal will be left unaffected. The increase of false
positive rate due to multiple hypothesis testing also
applies in this case. Hence we expect an improvement
using the subtraction operator only when there is a
high positive correlation among the variables.

6. OUTBREAK SIMULATION
Because there were no known outbreaks in our datasets,

we assumed artificial outbreaks by adding ramp increases.
We call these outbreaks as attacks, since one of the motiva-
tions of this work is to detect bioterrorist attacks.

attack(t) = atttack height ∗
(t− tstart)

(tstart − tend)
;

for tstart ≥ t ≥ tend

= 0 otherwise (3)

The attacks are spread through more than one time series.
We randomly choose m of the k time series to add an attack.
We choose m random weights w1, . . ., wm uniformly from
the set {(w1, w2, ..., wm)|0 ≤ wi ≤ 1, Σwi = 1}. We then
add a weighted attack to each of these m time series:

X
attack
i (t) = Xi(t) + wi ∗ attack(t); for i = 1, ..., m

We spread the attack to more than one time series so that
it becomes difficult to detect it from any individual variable.
The effect of attack becomes more evident when we combine
more than one variable.

7. SEARCH ALGORITHM
As mentioned in section 5, the number of composite time

series can be very large. Let Ci denote the C value of the
composite time series TSi. One approach to monitor all
these series individually would be to store the Ci values
corresponding to each of these series and update them at
each time step. At each time step, we signal an alarm if
the Ci value of any of the composite time series exceeds the



corresponding hσi. We also need to store and update each
σi value at each time step.

Let m be the maximum number of individual series in a
composite series. In cases where k is large this method will
require an exponential amount of memory depending on m.
We now describe a branch and bound approach that does
not require us to store all the Ci and σi values.

The main idea is to determine whether a composite series
can possibly signal alert without explicitly calculating the
Ci value. If we are able to eliminate a majority of the series
by using an appropriate bound, then we need only calculate
the Ci and σi values only for a small fraction of them.

First we note that at a particular time step, if Xi(t) - (µi
0

+ K) < 0, then we can ignore the composite series i. This is
because at this time step, the Ci value will decrease, and it
cannot signal a new alert. µi

0 is taken as the moving average
of Xi over a past window of N days. σ2

i is calculated as the
sample variance of the last N days. For simplicity we assume
that the mean µi

0 has been subtracted from Xi for each i, as
a preprocessing step. We have fixed N = 21 days in all our
experiments.

7.1 Searching through the additive space
We search through additions of all possible combinations

of m time series from the k series. The search is done in
a depth first manner. We find a lower bound on the stan-
dard deviation of the sum of two random variables. Let
X1 and X2 be two random variables, and σX1

and σX2
be

the corresponding standard deviations. Let Y = X1 + X2.
The standard deviation of Y is given by σ2

Y = σ2
X1

+ σ2
X2

- 2*r*σX1
σX2

. Here r is the Pearson correlation coefficient
of X1 and X2. We can obtain a lower bound for σY when
r=-1. We can better this bound if we can assume that r is
lower bounded by a higher value.

Now, let σ̂X1
≤ σX1

and σ̂X2
≤ σX2

, where ˆσX1
and σ̂X2

are lower bounds on the standard deviation of X1 and X2.
Let r̂ be a lower bound on the correlation coefficient of X1

and X2. Define, σ̂2
Y = σ̂2

X1
+ σ̂2

X2
- 2*r̂*σ̂X1

σ̂X2
. Under

these assumptions it can be shown that σ̂2
Y ≤ σ2

Y , ie σ̂Y gives
a lower bound on the standard deviation of Y = X1 + X2.

Our depth first search algorithm is as follows. We describe
our search algorithm as a recursion:

For each time step t:

Initialize

1. Update the standard deviations σ1, σ1, ..., .σk.

2. S ← φ.

3. DfsRecur(S,0)

DfsRecur(S, σ̂XS
)

1. Let max index = the maximum index number among
the series present in S.

2. XS = Xi1 + ... + Xip , where Xi1 , ... , Xip ∈ S

3. If XS ≤ hσ̂XS
, then goto step 8

4. Calculate the value of σXS
. This step requires O(N)

time, where N is the moving-average window size.

5. If XS ≤ hσXS
, then goto step 8

6. Calculate the value of CS, the cumulative sum for the
composite series S. We need only consider CW days in
the past to calculate this value.

C(0) = 0 (4)

C(i) = max(0, XS(t− CW + i)− (µ0 + L) + C(i− 1)),

for i = 1 to CW (5)

CS = C(CW ) (6)

If CS ≥ hσXS
, then signal an alert.

7. If | S | = m, return

8. For each i such that max index < i ≤ k

(a) S′ = S ∪Xi

(b) if |S′| > m then return

(c) σ̂XS′
= sqrt(σ̂2

XS
+ σ̂2

i - 2r̂σ̂XS
σ̂i).

(d) DfsRecur(S′, σ̂XS′
)

Here m is the maximum number of series that are con-
sidered in one composite series XS . It first calculates a
lower bound of the standard deviation of a composite series
without explicitly calculating it from the past data. This
lower bound allows us to determine if the current value of
the composite series can possibly signal an alert. We can
avoid calculating the exact standard deviation and cumula-
tive sum by this bounding procedure. In a fraction of cases
we actually need to perform the exact calculations.

7.2 Searching through difference series

1. For each i = 1 to k:

(a) For the time series Xi find the corresponding se-
ries CSi that is most correlated with it.

(b) Create random variable Di = Xi − CSi.

(c) Update σD
i and CD

i .

(d) If CD
i ≥ hσD

i , then signal an alert

8. DATASETS
We use three datasets in our experiments.

1. Over the Counter Sales Data (OTC) in US. Each sale
belongs to one of the following categories:

(a) Baby/Child Electrolytes

(b) Cough/Cold

(c) Internal Analgesics

(d) Stomach Remedies

(e) Thermometers

We have 5 time series corresponding to each of the
above categories for a period of about 2 years.

2. Emergency department dataset from the regions around
Pittsburgh. The data spans 668 days.

It has the following attributes:

(a) ADMIT DAY INDEX: Date on which the patient
was admitted.



(b) PRODROME: The main category of the patient’s
complaint upon arrival at the emergency depart-
ment. It can have 7 possible values. We get 7
time series of the count of patients each day.

3. Stock Prices Dataset: We consider the daily stock
prices of the following 12 companies: Dell, Sun, GE,
IBM, Microsoft, GM, Nissan, Toyota, Sony, Ford, BP
and Exxon Mobil for a period of 4 years.

9. RESULTS
To measure the performance of the algorithms, we need

to measure their false positive rate and the corresponding
detection lag. Detection lag is the time difference between
the start of the attack and the first instance when an alert
is signaled with the attack underway. A plot of the number
of false positives vs the detection lag is called an AMOC
(Activity Monitoring and Control Chart) curve.

To get a point on the AMOC curve we do the following:

1. Fix a value of h, where, H = hσ, is the CUSUM thresh-
old.

2. For i = 1 to 50,

(a) Inject a random attack of duration 15 days in the
data. The attack is spread over at most three
individual variables.

(b) Estimate the baseline trend values using Moving
Average with a slide window of length 21 days.

(c) Run the modified CUSUM algorithm on the residues.
Keep track of the number of false positives and
the detection lag. If no alert is signaled within
the duration of the attack, the detection lag is
taken as the duration of attack.

3. Calculate the average number of false positives and
the average detection lag over the 50 random attack
simulations.

This gives us a point on the AMOC curve. We then vary
h to obtain the entire curve.

We ran our algorithm on each dataset, with different val-
ues of m (the maximum number of series in a composite
series). We compared the CUSUM algorithm with VAR,
Vector Moving Average, Hotelling T 2 and MCUSUM. Both
VAR and Vector Moving Average used a 3-day slide win-
dow (p=3). Hotelling T 2 used the last 10 day’s values for
calculating the mean.

9.1 OTC Dataset
Fig 1 shows the comparison between CUSUM and the

other related methods as explained in section 2 for the OTC
dataset. We run CUSUM on the individual series indepen-
dently for the Simple CUSUM method (m=1). We see that
CUSUM significantly outperforms the other methods. For
the same False Positive rate, it gives a much lower Detection
Lag.

Fig 2 shows the curves for CUSUM where m varies as 1, 2
and 3. The fourth curve corresponds to considering the dif-
ference series as explained in section 7. We see that there is
an improvement in the detection lag time when we consider
summation of two or more series. The performance of the
two series and three series algorithms are similar. But the
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difference operation does not seem to give an improvement.
For a fixed false positive rate of 15 for the entire duration,
Fig 3 shows the corresponding Detection Lags. The detec-
tion lag is 7.87 days for m = 1. It improves by about 8% to
7.23 days for m = 3.

9.2 Emergency Department Dataset
Fig 4 shows the comparison between CUSUM and the

other related methods. Similar to the OTC dataset, we see
that CUSUM significantly outperforms the other methods.

The AMOC curves for this dataset are shown in Fig 5.
There is a significant difference in the detection lag time
for very low (<10) false positive rate. For example, for no
false positives over the entire duration, the detection lags
are 8.88, 6.1 and 6.46, for m = 1, 2 and the difference op-
erator respectively. This is illustrated in the bar chart Fig
6. We see an improvement of 2.78 days or 31% in detection
lag when considering more than one series. In applications
such as disease outbreak detection, we need to have a low
false positive rate. Having a high false positive rate makes
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the system almost useless because it becomes infeasible to
investigate each alarm. Hence, our result in the low false
positive range is significant.

9.2.1 Effect of Cusum Window(CW )
CW denotes the number of previous days that are con-

sidered to calculate the cumulative for the current day. In
eqn 5, when CW = 1 and L = 0, CS measures the devi-
ation of the current value from the expected mean. The
CUSUM test in this case becomes identical to the one sam-
ple Gaussian test (computing the p-value of a sample). In
our experiments, we have set L = σ, which empirically give
the best results. Hence for CW = 1, our test is similar to
the simple Gaussian test, except for the effect of L. L defines
a threshold such that we are concerned only about increases
that are above that threshold.

Another advantage of CUSUM over the Gaussian testing
is that it considers samples from CW past days. If there
is a gradual increase in the time series, it can utilize past
information to make a better decision. It can be expected
that higher CW values will be helpful when the expected
detection lag is long. But if the expected detection lag is
close to one day, then higher CW values won’t be helpful.
This is because in this case the attack mostly gets detected
on the first day, and the data from previous days do not
provide any helpful information.

Fig 7 shows the AMOC curves for m=1 (considering indi-
vidual series), with different values of CW . We see that for
large (>70) false positive rate, CW = 1 performs best. But,
portion of the curves that correspond to lower false positive
rates show that higher CW values perform better. Most
applications in practice, including disease detection require
a very low false positive rate. Hence having a larger CW

value is preferable in these conditions.

9.2.2 Computational Speedup
Table 1 gives an indication of the advantage of using a

lower bound on the standard deviation of the composite se-
ries. The first column ’Num Series Considered’ corresponds
to the number of composite time series that are tested for
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Table 1: Number of instances that required ex-

act calculation of σ in the Emergency Department

Dataset
Num Series considered Num Calculated

m = 2 93,923 886
m = 3 428,571 5,587

anomaly over the entire time period. The column ’Num Cal-
culated’ corresponds to the cases where we actually needed
to perform the exact computation of σ. We see that for m
= 2 and 3, we need to perform the expensive computation
of σ in only a small fraction of the cases considered.

9.3 Stock Prices Dataset
The AMOC curves for this dataset are shown in Fig 8. We

see that m=2 and 3 performs similar or worse than m=1.
This is not very surprising since there is a high positive cor-
relation between the variables. As noted earlier, in presence
of positive correlation, considering summation two or more
series can cause the false positive rate to increase without
producing a significant decrease in the detection lag. We see
that in this case, when we consider the difference operator,
the AMOC curve is significantly better. This shows that the
difference operator is able to exploit the positive correlation
present in the dataset.

10. FUTURE WORK
Apart from using addition and subtraction, other arith-

metic operations such as division can be used to create com-
posite series. We will need to find an efficient way to com-
pute the standard deviation of the composite series since the
combinations would no longer be linear.

A main advantage of our method is the easy interpretabil-
ity of an alert. But, not all combinations of time series are
meaningful to the end user. We can have an user interface
that can specify which combinations to consider. Alterna-
tively it might be possible to learn meaningful combinations
through a more interactive system.

11. REFERENCES

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  100  200  300  400  500  600  700

De
te

ct
io

n 
La

g

Number of False Positives

m = 1
m = 2,
m = 3

m = 1, subtraction

Figure 8: Plot of Detection Time vs False Positives

for Stock Prices dataset

[1] J. D. Hamilton. Time Series Analysis. Princeton
University Press, p257-350, 1994.

[2] H. Hotelling. Multivariate Quality Control. In: C.
Eisenhart, M. W. Hastay, and W. A. Wallis, eds.
Techniques of Statistical Analysis. New York:
McGraw-Hill, p111-184, 1947.

[3] B. Hong, M. Hardin. A report of the properties of the
multivariate forecast-based processing scheme. In:

Proceedings of the Joint Statistical Meetings Toronto,
Canada: American Statistical Association; August
2004.

[4] H. Burkom, J. Coberly, S. Murphy, Y. Elbert,
K. Hurt-Mullen. Public Health Monitoring Tools for
Multiple Data Streams. In: Proceedings of the 2004

National Syndromic Surveillance Conference

[CD-ROM] Boston, MA, 2004.

[5] R. B. Crosier. Multivariate generalizations of
Cumulative Sum Quality-Control Schemes.
Technometrics 30:291–303, 1988.

[6] M. Stoto. Multivariate methods for aberration
detection: a simulation report using the District of
Columbia’s syndromic surveillance data. In:

Proceedings of the 2004 National Syndromic

Surveillance Conference [Oral Presentation] Boston,
MA, 2004.

[7] J. J. Pignatiello , G. C. Runger. Comparisons of
multivariate CUSUM charts. J Qual Technol,
22:173–86, 1990.

[8] P. A. Rogerson, I. Yamada. Monitoring change in
spatial patterns of disease: comparing univariate and
multivariate Cumulative Sum Approaches. Stat Med,
23:2195–214, 2004.

[9] D. Hawkins. Multivariate quality control based on
regression-adjusted variables. Technometrics, 33:61–75,
1991.

[10] L. Hutwagner, W. Thompspn, G. M. Seeman, and
T. Treadwell. The bioterrorism preparedness and
response early aberration reporting system(ears).
Journal of Urban Health, 80:i89–i96, 2003.

[11] L. C. Hutwagner, E. Maloney, N. H. Bean, L. Slutsker,
and S. Martin. Using laboratory-based surveillance



data for prevention: An algorithm for detecting
salmonella outbreaks. Emerging Infectious Diseases,
3:395–400, 1997.

[12] R. F. Raubertas. An analysis of disease surveillance
data that uses the geographic locations of reporting
units. Statistics in Medicine, 8:267–271, 1989.

[13] P. A. Rogerson. Surveillance systems for monitoring
the development of spatial patterns. Statistics in

Medicine, 16:2081–2093, 1997.

[14] H. E. Tillett and I. L. Spencer. Influenza surveillance
in England and Wales using routine statistics. Journal

of Hygine, 88:83–94, 1982.

[15] W. K. Wong. Data Mining for Early Disease Outbreak

Detection. PhD thesis, Carnegie Mellon University,
2004.


