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Abstract

The road freight sector is responsible for a large and growing share of green-
house gas emissions, but reliable data on the amount of freight that is moved on
roads are scarce. Many low- and middle-income countries have limited ground-
based traffic monitoring and freight surveying activities. We show that we can
use an object detection network to count trucks in satellite images and pre-
dict average daily truck traffic from those counts. In this proof of concept, we
describe a complete model, test the uncertainty of the estimation, and discuss
the transfer to developing countries.
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1 Introduction
As noted by the United Nations, despite an exponential growth in the availability of
data in recent decades, many people and critical aspects of their lives and environ-
ment remain unmeasured [13]. Especially across the developing world, a key barrier
to identifying opportunities for mitigating climate change is the lack of sufficiently
granular, high-quality data. Heavy- and medium-duty trucking accounts for 7% of
total world energy-related CO2 emissions [30], with much of the growth occurring
in developing countries [15]. In order to successfully implement policies and make
targeted investments, reliable data about the volume of freight that is moved on
roads is crucial. More than half of all countries do not collect national road freight
activity data and where estimates exist, they are typically survey-based and often in-
adequate [15]. Knowing truck movements is also important for a variety of economic
analyses and for road maintenance planning, even if only based on short-duration
counts [33], but such ground-based traffic monitoring is costly and not performed in
many countries.

In this paper, we propose a remote sensing approach to obtain vehicle counts
from high-resolution satellite images. As satellite images become both cheaper and
are taken at a higher resolution over time, we suspect our proposed approach to be
scalable at an affordable cost within the next few years to much larger geographic
regions. We take advantage of recent advances in deep convolutional neural net-
works for object detection. These methods have already been successfully applied
to detecting vehicles in satellite images [29, 14, 3, 4, 23]. Most work has focused
on cars, and to a lesser extent on multiple vehicle classes including trucks [20, 29].
Note that a satellite image is only for a single snapshot in time, whereas conventional
traffic estimates are taken over a much longer period of time. Thus, our approach
separately models how traffic changes with time.

We begin by providing a brief overview of traditional ground-based traffic moni-
toring and remote sensing alternatives (Section 2). We then introduce our framework,
which consists of a truck detection model (Section 3.1) and a temporal traffic mon-
itoring model (Section 3.2). We validate and test our approach using data on the
New York Thruway (Section 4) and assess how the model transfers to data from
Brazil (Section 5). We conclude with a qualitative discussion of how well the model
translates to developing countries and outline future work (Section 6).
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2 Traffic monitoring and freight surveying
The US Federal Highway Administration (FHWA) highlights the importance of vehi-
cle counting for traffic monitoring, as it provides statistics such as the Annual Average
Daily Truck Traffic (AADTT) [33]. Ground-based automatic vehicle counting devices
include pneumatic tubes, inductive loop detectors, magnetic sensors, video detection
systems, and several others. Installation and maintenance for some of these systems
requires pavement cuts and lane closures. Traffic monitoring is usually based on
continuous counts, which also provide the basis for periodic (e.g., hour of the day)
factors applied to short duration counts. Typical short duration detection periods
are between 24 hours and a week long [33].

Traffic monitoring with remote sensing As ground-based detection devices can
be prone to failure and are too costly to install and maintain in some countries, there
is a need for alternative monitoring technologies, such as through GPS data from cell
phones [11] or with aerial or high-resolution satellite images. Even lower-resolution
satellite images can provide sufficient resolution [19, 7] and there is potential for using
drones [16]. With remote sensing, a large number of roads can be covered at the same
instance, many of which are not equipped with costly sensors [19, 7] (e.g., rural or
remote roads). Also, areas that are difficult to access, for example due to a disaster or
conflict, can be monitored [8]. A weakness of the method is that traffic fluctuations on
small time scales as well as time-of-day, day-of-week, and seasonal traffic patterns can
distort the accuracy of the estimate of the AADTT [33]. In addition, this method
requires advanced analytical and computational resources. The uptake of remote
sensing methods for transportation applications has been slow but it promises to
offer cost-effective and scalable options for a multitude of applications [2, 1].

Freight surveying Data on road freight activity, measured in tonne-km, are typi-
cally obtained through national surveys of shipping companies, which need to provide
information on origin, destination, weight, and other indicators of all shipments [15].
As the road freight sector is fragmented with most companies operating very few
trucks, this approach can be costly and relies on high compliance rates. Less than
half of the countries in the world collect this type of information [15].

3 Problem setup
Our framework consists of a truck detection model and freight monitoring model.
The detection model counts the number of freight vehicles on roadways in a satellite
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image, and the monitoring model translates these counts into the AADTT and other
variables of interest.

3.1 Detection model

Object detector The object detection model provides the vehicle count from an
image. Huang et al. identified three object detection meta-architectures, which are
Faster Region-based Convolutional Neural Networks (Faster R-CNN), Single Shot
Detectors (SSD) and Region-based Fully Convolutional Networks (R-FCN) [12].
They have tested models based on these meta-architectures for speed and accuracy
and have found that Faster R-CNN often achieves the highest accuracy, while SSD
excels in speed. We use Faster R-CNN [28] with 50- and 101-layer Resnets [10] for
our application. Faster R-CNN first proposes regions with the Region Proposal Net-
work (RPN) and then uses the Fast R-CNN detector [9] for object detection, sharing
convolutional layers. We also use an SSD Inception V2 [21] for comparison. We
use the default implementations for the COCO image dataset from the Tensorflow
Object Detection API [12] and pre-trained convolutional layers.

Road filter We only want to count trucks that are driving on the road of interest,
and exclude those sitting in parking lots or traveling on smaller roads. To filter out
irrelevant predictions from the detection model, we use geospatial data. Those data
are ubiquitous, and also available for main transit highways in developing countries.
We count a truck if at least one corner of its bounding box is within 8 meters of
the center of the road, which approximately accommodates a four-lane highway.
This filter is applied to both the annotated validation and test datasets and the
predictions.

3.2 Freight monitoring model

To use a snapshot image to approximate ground-based vehicle counts, we assume
that all nI vehicles travel at the same constant speed within the interval captured by
the image. From that we infer the time tI that it takes for a vehicle to travel from
the start to the end point in the interval. A detector installed in the end point should
count nI vehicles in tI . The FHWA recommends that traffic density variation factors
fh,d,m be applied when using less-than-a-day counts to compute the AADTT [33],
so as to account for time-of-day, day-of-the-week and monthly variations. We can
approximate the average daily (bidirectional) counts as AADTT ≈ nI · 24htI · fh,d,m.
Detailed information about traffic patterns, and access to satellite images taken at
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different times for the same location can reduce the error of the estimate. By making
assumptions about the distribution of payloads of the freight vehicles [33], one could
also estimate the freight activity through truck counts.

4 Experiments
We have run our experiments on images and toll data of the NY Thruway. We
have two kinds of ground-truth data: the true labels in the satellite images and the
ground-based counts from toll data. Both of the submodels are independent and we
validate them separately to choose the best model specifications and parameters. We
then test how well the whole model can estimate the AADTT on a held-out section
of the Thruway.

Data We curated our own collection of 31cm-resolution, RGB-color satellite images
(Appendix A.2), since a large satellite image database ("xView" [18]) with several
thousand labeled truck instances proved too inaccurate and other satellite image
datasets contained only small numbers of trucks [23, 27]. For training, we used
images of several regions in the Northeastern US, primarily the NY Thruway, with a
total of 2050 truck examples. For validation, we worked with images from 3 sections
of the Thruway, some partially covered by fog, that contain 216 truck examples (81
on road). For the road filter, we used a shapefile of the Thruway provided by the
State of New York [26].

The toll data for the Thruway contain the entrance and exit toll booth for the
vehicle, hour and date of entrance, the vehicle class and the number of vehicles with
these specifics. We use data with a time resolution of 1 hr for the year 2016 [24] for
training and 2017 for testing [25] (Appendix A.3).

Detection model We ran four experiments with Faster R-CNN Resnet 50 and 101
and SSD Inception V2, where we (1) pre-trained with COCO image data and (2) pre-
trained with COCO and xView (Appendix B.1). From Table 1 and Fig. 1, we can see
that the models perform better if the experiment is constrained to the road. The full
image can contain more difficult examples, for example clustered trucks on parking
lots or less typical trucks in junk yards or construction sites. A model that was not
pre-trained proved difficult to train, but when pre-trained on COCO data it showed
good results. Additional pre-training on xView marginally improved the precision
and recall of the smaller net for predictions on the full image, as it has learned more
context with images that do not contain trucks. The additional training data and
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Table 1: Performance for optimal count prediction probability.

Faster R-CNN Pre-train Fine-tune Av. Count Err. ppred Av. Prec. Av. Rec.
With road filter

ResNet50 COCO ∼ 1000 trucks 0.111 0.925 0.741 0.750
ResNet50 COCO & xView ∼ 1000 trucks 0.247 0.880 0.654 0.746
ResNet101 COCO ∼ 2000 trucks 0.160 0.600 0.716 0.806
SSD Inception V2 COCO ∼ 2000 trucks 0.123 0.175 0.802 0.861

On entire image
ResNet50 COCO ∼ 1000 trucks 0.510 0.995 0.325 0.432
ResNet50 COCO & xView ∼ 1000 trucks 0.403 0.980 0.374 0.524
ResNet101 COCO ∼ 2000 trucks 0.466 0.990 0.413 0.506
SSD Inception V2 COCO ∼ 2000 trucks 0.262 0.200 0.544 0.491

layers of the third model appeared not to have improved the performance on road,
but on the entire image. SSD Inception V2 shows the best results. We optimized
the threshold for the prediction probability to achieve minimal count error on the
validation data constrained to the road (Table 1 and Appendix B.1). SSD Inception
V2 achieved a marginally higher minimal count error than Faster R-CNN Resnet
50, but based on the clearly higher precision, recall and speed, we chose to use SSD
Inception V2 with prediction probability ppred = 0.175 to test the model.
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Figure 1: Precision-recall curves for validation images. All of the models perform
better when used for on-road predictions, as those often contain less difficult examples.
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Table 2: Test results using SSD Inception V2.

Test Exits Section ann. count pred. count AADTTtrue AADTTpred εtest
1 Exit 25A to 26 10 8 2290 2245 -2%
2 Exit 44 to 45 36 12 1710 2788 63%
3 Exit 35 to 36 23 15 2149 4111 91%

Freight monitoring model The data are seasonal with no trend, which is why
we use linear regression models with time fixed effects to estimate the factors of
time-of-day, day-of-week, and monthly variation, and the variance of the random
component of the traffic counts. Those models are informed by the recommended
practices of the FHWA [33, 17]. We found that the linear model, which yields the
lowest cross-validated error, includes one interaction term:

hourly count ∼ month+ day of week+ hour+ day of week× hour.

We train on 2016 data from three sections of the Thruway to estimate the time-
varying factors for the test cases in 2017. We normalize to account for an equal
number of weekdays between years. We find that individual hours in validation data
can vary substantially from the predicted value, depending on which exits are used
for training (Appendix B.2). We expect the error to be even larger if factors are
applied to other roads, and countries.

Test results We estimate the AADTT for 2017 for three test sections using the
number of trucks counted with the detection model and the predicted seasonal vari-
ation factor for the time stamps of the images. The model achieves a quite small
error for the first test case, but is overpredicting in the two other cases (Table 2).
This discrepancy of model performance is expected, given that a snapshot image
corresponds to a single, very short counting time, and is sensitive to traffic fluctu-
ations. For example, the very high number of annotated trucks in Test Case 2 is
partially due to trucks parked on the shoulder of the highway that belonged to a
building ground. We see that the detection model, however, reports counts that are
systematically lower than the true count.

5 Generalizing the model to another country
We work with a highway in Brazil (BR-116) to test how well the model transfers to
another country. This test case is suitable, as it is located in a developing country
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Table 3: Test results for Brazil count station km 109 with AADTTtrue = 15798.

Test Image date Day of week Time Count AADTTpred εtest

With Thruway factors and detection model counts
1 03/12/2018 Monday 10:26 10 3042 -81%
2 08/11/2016 Thursday 10:28 12 3651 -77%
3 06/16/2016 Thursday 10:21 14 4259 -73%

With Thruway factors and true image counts
1 03/12/2018 Monday 10:26 32 9735 -38%
2 08/11/2016 Thursday 10:28 24 7301 -54%
3 06/16/2016 Thursday 10:21 31 9431 -40%

but there are sufficient data available to analyze how well the model and each of its
components generalize.

Data For the detection model, we use image data from DigitalGlobe, Inc., for three
different time stamps at the same location. For the monitoring model, we work with
traffic data from continuous and short term counters available through the Brazilian
agency Departamento Nacional de Infraestrutura de Transportes (DNIT) [5]. Our
first test case is a section of the BR-116 between two exits, where a counter was
located at km 109. We also retrieve geospatial data of roads in Brazil from DNIT
[6]. These data are centered in one of the lanes, which is why we needed to expand
the range used in the road filter to 30m to ensure that both lanes pass the filter.
This could result in some errors if trucks are parked close to the road.

Experiment We begin by analyzing the performance of the whole model on the
new image data, using the trained detection model and parameter settings as well
as the traffic variation factors from the NY Thruway. We estimate the AADTT
both on the count obtained through the detection model and, in order to assess the
monitoring model separately, we also estimate it based on the true number of trucks
seen in the images. For the ground truth we use an AADTT based on a count of 21
days in 2017 as reported by DNIT [5].

Test results From the results in Table 3, we see that the detection model under-
predicts the number of trucks in the new images. The time variation factors, however,
seem to transfer better. If the true number of trucks visible in the images is used,
the estimated AADTT is closer to the true value.
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Discussion These results clearly indicate that additional fine-tuning of the detec-
tion model on images of the new location is necessary. The poor performance of
the detection model on data in Brazil is most likely due to the occurrence of new
truck types that are specific to Brazil and were not contained in the training dataset
(Fig. 2). To understand how well the monitoring model generalizes, we will compare
the factors obtained through ground truth traffic counts on the BR-116 with those
from the NY Thruway. We also plan to produce AADTT estimates with factors from
local data. Besides testing each of the three images separately, we will also report
the results averaged over all three.

(a) NY Thruway (b) BR-116

Figure 2: While there is considerable variability in the training data from North-
eastern US, which also include winter scenes, the detection model does not generalize
well. These images show that trucks seem to look different in Brazil compared to the
US. Green boxes indicate annotated examples.

6 Discussion and conclusion
We find that we can use machine learning to count trucks with reasonable accuracy.
If provided with typical traffic patterns, a snapshot image can yield predictions of
average daily traffic volumes that are acceptable, given the data limitations. Those
results could be improved in particular by using multiple satellite images taken of the
same section at different times, where available. The method currently still requires
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access to images, knowledge, and computing resources that might be difficult for
some countries, but this could change in the near future.

While these initial results are promising, both the detection model and the mon-
itoring model are likely to entail much higher uncertainty when transferred to de-
veloping countries. We will explore in detail, how the model transfers between the
two countries, in order to understand how it would perform in developing countries
with poor data. From an initial test on a highway in Brazil, we found that in par-
ticular the detection model does not generalize well. Distinct truck types and road
surfaces likely impact the prediction accuracy of the detection model, and additional
training seems necessary. Also, seasonality patterns of traffic can be expected to
differ significantly from Northeastern US. We will add a more detailed analysis of
the monitoring model, where we will compare the traffic factors from the Thruway
with ground truth data from Brazil. We will also perform a sensitivity analysis of
the assumptions.
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A Data preparation

A.1 Satellite images
We use satellite images from Digital Globe, which are taken frequently for many locations
and by a number of different satellites. We only work with 3-channel RGB images of the
satellite "World View 3" (VW03), as it has the highest resolution. We found that there a
are difficulties identifying for example black cars in images of the other satellites. This also
makes our dataset comparable to xView, which also uses VW03 imagery. The images are
not cloud-free but we attempt to select images with nearly no cloud-cover in relevant areas.

For training, we use images of several regions in the Northeastern United States. These
include images of the Thruway but also other highways. We also annotate the regions
around the highways such as parking lots and logistics centers.

A.2 Annotations
We use the python-based annotation software "LabelImg" [32] to label the more than 2000
truck examples. We mark each truck with a bounding box and a class label "Truck." Below
we describe in detail, which types of vehicles we include as trucks. For cloudy images, we
tried to label also those trucks that are hardly visible through the cloud or in the shade of
the cloud.

For the training data, we labeled large 3000×3000 pixel images, from which we created
300 × 300 pixel chips, where we only retained chips with truck examples. Note that this
procedure reduces the number of truck examples somewhat with respect to the large images,
as bounding boxes are cut and those examples are lost. We chose truck examples conser-
vatively and prioritized accuracy of labeled examples over labeling as many as possible.
This means, when in doubt, we chose not to label truck, unless there are very obvious or
interesting truck examples in the immediate vicinity. We have sometimes omitted parking
areas and junk yards, where vehicles are very close together such that there is no pavement
visible. These examples might be less useful for learning on highways but might aid for
situations with dense traffic.

In contrast, for test images it was important to label all likely trucks as such, as the
whole image is evaluated with all examples it contains. This includes trucks that are
partially obstructed through trees, bridges etc.

We only labeled semi trucks with a trailer, and medium-duty trucks. This also includes
car carrier trailers, flatbed trucks or oversized transports such as windturbine blades. We
do not annotate pickup trucks, even if they pull a trailer, and omit vans, buses, caravans,
and RVs. We also do not label tractors or trailers separately, only the combination. Fig. 3a
shows an example of easily identifiable trucks of different sizes. The examples in Fig. 3b
and 3c are partially obstructed by clouds or trees but they can still be identified as trucks.
Buses and RVs can easily be confused with a truck. The example in Fig. 3d shows a bus
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A.3 Thruway vehicle counts 16

(or a long RV) and something that is likely an RV that is pulling a car, both of which could
be taken for a truck. Fig. 3e and 3f have more of those examples, including a number of
yellow school buses. We also include trucks with special trailers such as flatbeds (Fig. 3g),
or oversized load (Fig. 3h). We also label trucks with empty trailers, as sometimes load
cannot be distinguished from the empty trailer. Smaller trucks and their similarity with
vans are particularly difficult (Fig. 3i). We consider everything that has a box that is
elevated from the driver’s cabin as a truck but errors cannot be excluded. Also, there are
many examples of small parked trailers that have a white attachment, which could also
be a small drivers cabin (Fig. 3k). For trucks that are docked to a building, we excluded
those where only the trailer is visible but included those, where the tractor is still attached
(Fig. 3b).

In the images from Brazil, we found what seemed to be yellow and white busses, which
appear in multiple locations Fig. 3l). After we have confirmed with Google Street View
that such busses frequently travel the highway, we have not labeled these as trucks.

A.3 Thruway vehicle counts
The toll data for the New York Thruway [25, 24] contain the entrance and exit location for
every vehicle and the time it has entered the Thruway as recorded in the toll collect system.
We count all vehicles with 3 or more axles that are indicated as high vehicles as trucks.
To determine when a vehicle has passed a location between entrance and exit, we need to
make assumptions about the speed it has traveled and the distance between highway exits.
We assume that every vehicle travels 65 mi/hr. The information about Thruway mileposts
are available through the State of New York Thruway Authority [31]. We determine the
counts by summing up all the vehicles that have entered a section between two highway
exits. For example, if we are interested in analyzing the stretch of road between Exit 30
and 31, we determine the hourly counts by summing up the number of vehicles that pass
Exit 30 in one direction and pass Exit 31 in the other direction within that hour. We are
not only counting the vehicles that pass the particular exit but also the vehicles that enter
the Thruway on that exit. The ones that leave at the exit before they enter the section are
not counted. See Fig. 4 for an illustration.

B Model details

B.1 Detection model
Model specifications

1. Faster R-CNN Resnet 50, convolutional layers pre-trained on COCO image data
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2. Faster R-CNN Resnet 50, convolutional layers pre-trained on COCO image data and
subsequently on xView

3. Faster R-CNN Resnet 101, convolutional layers pre-trained on COCO image data.

4. Single Shot Detector with Inception V2, pre-trained on COCO image data.

Validation We count a truck as detected, if its bounding box has an intersection over
union (IoU) with the ground truth of at least 0.3. We compute the average precision and
recall over all validation images together, and do not average the performance over each
image separately.

We determine the optimal threshold for the prediction probability to minimize the
error of total counts in an image (true positives and false positives). We compute the mean
absolute count error over all validation images as the weighted sum of the relative absolute
count error of each of N images

εCount =
N∑
i=1

w(i)ε
(i)
Count

=

N∑
i=1

f
(i)
true∑N

i=1 f
(i)
true

·
|f (i)pred − f

(i)
true|

f
(i)
true

=

∑N
i=1 |f

(i)
pred − f

(i)
true|∑N

i=1 f
(i)
true

, (1)

where f is the number of trucks counted in image i. While the mean absolute count error
is often used [22], we chose to use a weighted sum to account for the relative importance of
images with more validation examples, as we have large images with a diverse number of
truck examples. The measure does not have guarantees to be convex and might not have
a unique minimum due to the discrete nature of counting. We compare this for various
probability thresholds (Fig. 5). We see that Faster R-CNN Resnet 50, that is only pre-
trained on COCO, achieves lowest average absolute count error for a prediction probability
of ∼ 0.925. It can achieve simultaneously the largest precision and recall (Table 1 and
Fig. 1).

B.2 Monitoring model
The uncertainty of estimating the AADTT from a 1-hr count is composite of the inter-year
variation and the prediction error from the fitted model. Typically, there will be few ground-
based counting stations on a highway, but the toll data provides counts for every section.
If we use all sections on the Thruway for training, or a section that is very close to the test
section, we will overstate our ability to estimate the time factors. We therefore train the

17
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model on three sections (Exits 19-20, 30-31, and 41-42). Those exits are located relatively
far away from each other and from the test sections Exit 25A-26 and Exit 44-45. We train
on data from 2016, and test on 2017. Data processing is costly for the large toll datasets.
For validation, we have trained on the first two sections together, and each separately, and
tested how well they predict ground truth data for Exit 41-42 in 2017. We have also trained
only on Exit 41-42 in 2016. As expected, this latter trivial case yields the most accurate
time-varying factors, where we find a median out-of-sample relative prediction error of -1%
and 5th and 95th percentile of -19% and 36% over all hours of the year. However, we
are interested in more realistic cases, where we do not have perfect data for the validation
region. Training on Exits 19-20 (2016) to predict factors for Exits 41-42 in 2017 results in
a mean error of 0.09 [-0.18, 0.83]. Training on Exits 30-31 (2016) yields -0.32 [-0.47, 0.00].
Training on both sections gives the best result of -0.10 [-0.30, 0.35]. We conclude that
averaging over more sections makes predictions more robust and therefore use the counts
for all three exits in 2016 to train.

B.3 Testing
Test sections:

1. Exit 25A to 26 on the NY Thruway in an image from 2017-08-04/16:02

2. Exit 44 to 45 on the NY Thruway in an image from 2017-09-12/16:27.
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(a) Various trucks (b) Cloud cover reducing
visibility

(c) Truck & tree (d) RV and bus (e) School busses (f) RVs

(g) Flatbeds
(h) Special load (i) Vans

(j) Smaller trailers

(k) Smaller trailers

(l) Yellow bus in
Brazil

Figure 3: Image chips that illustrate what is labeled as a "Truck" with a bounding
box. Imagery c© 2018 DigitalGlobe, Inc.
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Figure 4: Schematic illustration of how we compute the traffic flow for the monitoring
model from toll data. The orange cones indicate highway exits, and the grey lines are
road sections. We do not consider those that are crossed out.
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Figure 5: Absolute error of total truck counts, which also includes false positives,
over detection probability. We see that the Resnet 50 model that is only pre-trained
on COCO achieves lower count error.
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