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Chapter 1

Introduction

Agent-based models (ABM), which study autonomous agents’ interactions in a constrained environment,
are commonly used in epidemiology studies. By simulating simultaneous operations and interactions of
multiple agents with varying characteristics, ABMs aim to reproduce manifestations of complex phenom-
ena such as the spread of infectious diseases [1, 4, 6]. Such models rely on accurate and rich representations
of the true population of interest as inputs in order to yield realistic results directly applicable to real life
situations. Ideally, input populations should be representative of the true populations in terms of their
geographic, demographic, behavioral and procedural characteristics. However, due to the great extent
of comprehensiveness of the information required and limitation of physical resources, data of the entire
true populations are almost always unavailable. Therefore, synthetic populations need to be learned and
mimicked from the limited data drawn from the true populations.

The Models of Infectious Disease Agent Study (MIDAS) is a national research network that studies the
spread of infectious diseases and develops response strategies through computational models. As a part
of this network, the MIDAS research group at Carnegie Mellon University (CMU) Statistics Department
led by Professor Bill Eddy has been working on building a synthetic ecosystem named Synthetic Popula-
tions and Ecosystems of the World (SPEW) [3], which may then serve as an input to ABMs. Supplying
simulated populations generated using iterative proportional fitting, SPEW provides human agents with
various demographic and geographic characteristics matching those from the true population, which are
available from the U.S. census data. In comparison, however, data on the behavioral and procedural as-
pects of human populations are much more limited. Enriching human synthetic ecosystems with detailed,
time-dependent information about individuals’ activities will lead to more realistic ABMs and ultimately
better-informed decision making. Therefore, for my Data Analysis Project, I focused on learning and simu-
lating the behavioral and procedural aspects of the American population. Specifically, I worked on model-
ing individuals’ daily activity schedules and incorporating synthetic agents’ schedules into SPEW for use
in more realistic, time-dependent ABMs.

The primary data source I used for studying human agents’ activities is the American Time Use Sur-
vey, which consists of interviews of Americans’ activity schedules on randomly selected days. The survey
provides nationally-representative estimates of the American population’s time use based on demographic
and geographical features [7]. I explored both parametric and non-parametric simulation methods for gen-
erating activity schedules and evaluated those methods by comparing the key summary statistics of the
generated activity sequences with those from the true surveys.



Chapter 2

Data

2.1 ATUS Overview

I'used the American Time Use Survey (ATUS) published by the United States Bureau of Labor Statistics as
the primary data source. ATUS serves to represent how, where, and with whom Americans spend their time
and is the only federal survey collating data including non-market activities, such as socializing, childcare
and volunteering. The survey samples households that have completed month 8 of the Current Population
Survey (CPS) and randomly selects one respondent (age 15 and over) from each household. Respondents
are asked only one time about how they spent their time on the previous day, where they were, and whom
they were with through computer-assisted telephone interviews (CAT) [7]. ATUS data are collected on an
ongoing, monthly basis. The survey results cover the time span of 15 years, from 2003 to 2017, with more
than 190,000 interviews in total.

2.2 Activity Series

Each interview was recorded as a list of activity types and transition times. A daily schedule starts at 4:00
am and ends at 4:00 am the following day. Activity start and stop times are recorded at a precision of
one minute. Activity types are categorized in a hierarchical manner, with three tiers in total, representing
three levels of granularity. For example, personal care is considered a top-tier category, which can be di-
vided into second-tier categories such as sleeping and grooming; sleeping, a second tier activity, can be
further fine-grained into third-tier types such as actual sleeping and sleeplessness. There are in total 18
first-tier, 128 second-tier and over 400 third-tier categories. I adopted the first-tier categories in my sim-
ulation of activity types. If future needs for finer activity categorization arise, the proposed methods can
be directly re-applied. The 18 categories are: Personal Care Activities, Household Activities, Caring for
& Helping Household Members, Caring for & Helping Nonhousehold Members, Work & Work-Related
Activities, Education, Consumer Purchases, Professional & Personal Care Services, Household Services,
Government Services & Civic Obligations, Eating and Drinking, Socializing & Relaxing & Leisure, Sports
& Exercise & Recreation, Religious and Spiritual Activities, Volunteer Activities, Telephone Calls, Traveling,
Other/Unknown.

2.3 More Data on Predictive Features

Besides detailed activity logs, ATUS also includes linked data files including CPS responses, providing
more background information about the respondents and their households, such as their employment sta-
tus, occupation, age, gender, ethnicity and household membership. Specific predictive features of intervie-
wees and their source data files are listed below:

Interview ID can be found in all data files (TUCASEID). This is the identifier used to link a respondent’s
interview records with all relevant demographic and geographic information.

Respondent’s Age can be found in the Roster File (TEAGE). Before 2004, TEAGE was topcoded at 80,
with all ages at and above 80 being recorded as 80. From 2005 afterwards, TEAGE was topcoded at 85.
Despite some minor noise (less than 0.5% of all the interviews) as a result of this change in coding, I would
still treat TEAGE as a continuous variable.



Respondent’s Sex can be found in the Roster File (TESEX). TESEX takes a value between two categories
- Male and Female.

Respondent’s Weekly Income can be found in the Respondent File (TRERNWA). TRERNWA is the
most commonly used income variable in ATUS. It is top-coded at $2884.61.

Top-coding Indicator for Respondent’s Weekly Income can be found in the Respondent File (TTWK).
TTWK is an indicator showing if TRERNWA is top-coded.

Respondent’s Household Annual Income can be found in the CPS File (HUFAMINC, HEFAMINC).
Before 2010, the combined income of all family members during the last 12 months were recorded under
HUFAMINC. From 2010 onwards, the same data were recorded under HEFAMINC. The household income
I would use for prediction was taken by combining the two columns and filling in missing data (7%) by
sampling from the valid income entries.

Number of Children (< 18) in Respondent’s Household can be found in the Respondent File (TRCHILD-
NUM). TRCHILDNUM takes the value between 0 and 30 (inclusive).

Number of Members in Respondent’s Household can be found in the CPS File (HRNUMHOU). The
number of household members might change between the CPS interview and the activity interview. It is
the best estimate of the household size at the time of the interview.

State of Respondent’s Household can be found in the CPS File (GESTFIPS). GESTFIPS is the FIPS code
of the state in which the respondent’s household is located.

Activity Series Recorded for a Day can be found in the Activity File (TUACTIVITY_N, TRTIER1P,
TUSTARTTIM, TUSTOPTIME). An activity chain is derived by combining all activity entries belonging to
each respondent. The activity chain contains a list of activities happening in a 24 hour period (starting from
4 am), with each activity’s type, start and stop times.

Chapter 3

Goal & Problem Representation

For the purpose of studying the spread of infectious diseases, knowing synthetic agents” activity lo-
cations and durations would be crucial in modeling their interaction and exposure to potential disease
pathogens using agent-based models. A well simulated activity schedule should ideally capture both the
time and space information about an individual’s activities in a day. For this goal, I explored the following
adaptations:

3.1 Activity Types

Activity types could be designed to directly capture the location information, since different activities are
usually tied to distinct locations. I revisited the categorization of activities, looking into finer categoriza-
tions and trying to make sure activities grouped under the same category take place in similar locations.
However, such a design turned out to be unfeasible as many activities, even down to the finest level of gran-
ularity, would not happen in homogeneous locations. For example, education can be done either at school
(a public place) or at home (a private place), which are significantly different in the context of epidemic
studies. Therefore, rather than assigning a single location to each activity type, we could instead record
the location distribution for each activity type, and sample from the distribution if location information is
specifically required in the future. This makes sure that simulated information about activity types is easily
transferable to location knowledge.
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3.2 Activity Durations

Together with activity types, activity durations directly define an activity chain for a day. I would set the
time spent on each activity in a day as the key target in the simulation. Specifically, each activity chain
(simulated or surveyed) can be summarized as a vector of total number of minutes spent on each type of
activity (in this case, each vector has 18 elements corresponding to each of the 18 categories). The objective
is thus to minimize the difference in the time-by-category vectors between a subject’s simulated and true
activity chains.

3.3 Prediction Objective

Therefore, our task is to generate a chain of activities defined by their types and durations (from which start
and stop times can be directly derived) for each synthetic human agent with distinct characteristics. Below
is an example drawn from the ATUS data - the data files include basic information about a respondent and
his/her household, as well as a complete 24-hour activity schedule on a randomly selected day:

Respondent: 24-year-old female,
not in labor force (no job and not looking for one, going to school or retired)

Respondent's household members:
59-year-old Female

8-year-old Female

@-year-old Male

Annual family income: $1@,000-$12,499
Survey Time & Location: ©1/31/2016 Sunday, Washington, D.C.

Activity Schedule:

1 04:00:00 - 10:00:00 Sleeping

2 10:00:90 — 12:00:00 Washing, dressing and grooming oneself
3 12:00:90 - 12:30:00 Eating and drinking

4 12:30:00 - 13:00:00 Travel related to grocery shopping

5 13:00:00 - 14:00:00 Grocery shopping

6 14:00:00 — 14:30:00 Travel related to grocery shopping

7 14:30:90 - 15:00:00 Storing interior household items

8 15:00:00 - 18:00:00 Sleeping

9 18:00:00 - 19:15:00 Food and drink preparation

10 19:15:00 - 20:00:00 Eating and drinking
11 20:00:00 — 21:00:00 Interior cleaning

12 21:00:00 - 21:20:00 Television and movies
13 21:20:00 - 04:00:00 Sleeping

The survey data provide interviews for less than 200,000 individuals and our goal is to generate such
activity schedules for any human agent with specific demographic and socio-economic characteristics from
any synthetic population, which may easily contain over 300 million individuals.
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Methods

4.1 Methods I - Predicting Each Activity in a Schedule

One approach to produce new activity chains is to learn statistical properties of the schedules and generate
each individual activity to form a chain, using probabilistic models.

An activity schedule consists of a series of activities, each defined by its activity type, start and end
times. Since all day schedules start at 4:00 am (as in the ATUS interviews), knowing the duration of each
activity would be sufficient to deduce its start and stop times. Therefore, predicting a schedule can be
broken down into predicting the type and the duration of each activity in the chain.

41.1 Sampling Methods for Predicting Each Type and Duration

The goal of activity simulation is to generate synthetic activity sequences that are representative of the
true distribution of various activity patterns exhibited by the true population. One way to perform such
simulation is to build probabilistic models of the true population’s activity patterns and sample from these
models.

Markov Models for Predicting Types

We can treat an individual agent’s daily activities as different states in a discrete-time Markov chain and
model the transition between activities by estimating the transition probabilities between different Markov
states. With a transition probability matrix, we can then generate a random sequence of daily activities for
each individual.

A Markov chain is a stochastic model describing a sequence of possible events in which the probability
of each event depends only on the state attained in the previous event. By choosing the discrete-time
Markov chain model, we make the following assumption about an individual’s daily sequence of activities
(denoted as a list of A;’s, where t refers to the " activity of the day):

P(At = at|Ar1 = a4_1,..., Ay = a1) = P(Ar = | Ay—1 = a,1)

In other words, given an observed sequence of activities, the probability of a new activity happen-
ing next only depends on its previous activity. Given m possible types of activities, we need to estimate
M = O(m?) such transition probabilities. We can first use the maximum likelihood estimates, ob-
tained by simply calculating the sample mean of each Bernoulli distribution representing a transition from
state A; to state A;y1. To model the start and end probabilities, we can insert explicit start-of-day and
end-of-day states to the observed activity sequences.

Based on my implementation, it seems that the maximum likelihood estimates are fairly consistent
across different years, with small variances calculated using both sample estimates and the plug-in MLE
method with a Bernoulli model. By adding an explicit start state and end state, we can generate an ac-
tivity sequence even without the time factor - simply beginning with the start-of-day state and repeatedly
sample the next activity from the transition probability table, until reaching the end-of-day terminate state.
However, the length (i.e. the number of activities) of the generated sequences of activities turns out to
have a significantly different distribution from that of the true (sample) distribution. As shown below, the
simulated sequence lengths are highly skewed, with both a very long right tail, indicating the presence of
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excessively long sequences, and a very early peak, indicating a tendency for activity chains to end prema-
turely. Clearly, relying on Markov transitions alone to determine when to terminate an activity chain is not
sufficient. It would be necessary to incorporate time constraints in our prediction.

Distribution of Activity Series Length (Training Sample) Distribution of Activity Series Length (1-gram)
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Markov Chain with N-grams

A further inspection of the activity sequences generated from the simple Markov model shows that many
generated activity sequences end very quickly. A large portion of such sequences contain only three activi-
ties, with a "sleep - grooming (such as using the bathroom) - sleep” pattern. This is a very likely result from
our simple transition model, as the transition probabilities between sleep and grooming are both high.

To prevent such cycling patterns, we propose to extend the one-gram model to n-gram models, calcu-
lating the transition probabilities based on previous n states rather than just one state, i.e.

P(A; = at|Ar1 = ay1,..., Ay = a1) = P(Ay = a|Ay1 = ap1, .., Ap—n = a4—p)

Conditioning on the previous two activities being sleep and grooming, the probability of the current activity
being sleep should be significantly reduced. Such a model would likely generate more realistic activity
sequences. The total number of transition probabilities in a n-gram model would be O(m"*1).

Distribution of Activity Series Length (2-gram) Distribution of Activity Series Length (3-gram)
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I modeled both 2-gram and 3-gram Markov transitions and the simulated activity sequences still appear
to have similar skewed shapes as the simple 1-gram model. Nonetheless, I do observe that the sequence
length distribution from the 2-gram model has a significantly shorter right tail than that of 1-gram, indi-
cating a promising progress towards a more realistic model. However, as we further increase the memory
window to 3-gram, the simulated sequence length distribution barely changes. Therefore, while the ac-
tivity sequences seem to be closer to a Markov n-gram model, modeling transitions only is certainly not
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enough to guarantee an accurate simulation. We need to include more attributes, especially time factors,
in our future models. Nonetheless, this shows that keeping a longer-memory model does result in closer-
to-truth prediction results. It would be a good idea to try out both 1-gram and 2-gram models in any new
Markov-based methods.

Geographical differences

I conducted a two-sample test on transition probabilities between different states in the U.S. and found
that such probabilities differ significantly across states. For example, people living in Wyoming have a
significantly higher probability of helping their household members after education activities as compared
to those living in New York. Another example would be that Wyoming residents are significantly more
likely to engage in sports activities after socializing as compared to those in Florida.

Indeed, activity patterns differ across geographical regions. Geo-location should thus be incorporated
as an important conditioning feature in future models. I will thus use a separate model for each state.

Markov Chain with Duration Density Estimates

From running the simple transition models, we have observed simulated activity sequences with lengths
varying from 3 (very simple "sleep - grooming - sleep” pattern) to over 100. Considering an individual has
on average roughly 12-16 hours of daily activity time excluding sleep, filling these hours with either one
single activity or 60 activities would be unpractical. I thus decided to introduce time constraints in our
model to address this problem.

To begin, we need to estimate the duration of each simulated activity. I have run histogram density
estimation for activity duration for each activity type. To generate activity sequences, We first sample a
new activity based on the transition probability matrix as described earlier and then sample an activity
duration from its corresponding duration histogram, subtracting the used time from the total available
time of the day before continuing to choose the next activity. We end a sequence upon finishing the daily
time quota (24 hours).

As expected, this method effectively controls the length of the generated activity chains. As shown
below, the simulated chain length distribution is much less skewed and largely resembles the true length
distribution.

Distribution of Activity Series Length (Training Sample) Distribution of Activity Series Length (Markov with Time Constraints)
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4.1.2 Conditional Methods for Predicting Each Type and Duration

The previous sampling methods relies on probabilistic activity models directly learned from the true pop-
ulation’s activity surveys. However, such learned models are also population-specific, and typically do
not apply well to a new population. For example, we observe that activity transition probabilities vary
significantly across geo-locations. This is not surprising as we would naturally expect people from differ-
ent places and with different demographic characteristics and socio-economic backgrounds have different
activity patterns. For higher generalization power, it is important to learn to predict activities based on
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individuals” demographic and socio-economic features, optimizing predictions for individuals rather than
an entire population. Therefore, we will explore conditional models, such as classification and regression
models, in learning activity patterns.

Activity Type Classification

Previously using Markov, we observe that remembering more previous states improves our simulation,
and the model should naturally be the best when we remember all history states prior to the current step.
However, remembering a long history would be expensive - in terms of both memory space and time
complexity. Instead, we can use a summarized version of the history to predict for each new event - storing
the number of occurrences and the total time spent on each type of activity, and use these counts and
durations as input features (together with demographic features and time of a day) to a random forest
classification model. Using an ensemble of 100 decision tree classifiers with a maximum depth of 17, the
classifier achieves around 38% test prediction accuracy, which is still reasonable, given the volatility of
human behavior.

Random Forest Classifier Accuracy Vs. Max Depth
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Activity Duration Regression

Similarly, a regression model can be used to predict each simulated activities” duration, conditioning on
not only the current activity type, but also the individual’s demographic traits, previous activity counts
and durations, as well as the time of the day.

First performing a simple linear regression with coefficients significance t-test (shown on the next page),
I found out the current activity type (TRTIER1P#) is a strongly significant predictor for activity durations,
which fits our expectation. A majority of previous activity counts (COUNT_#) are significant, and so are
some of the previous duration counts (DUR_#). The individual’s age (TEAGE), sex (TESEX), household in-
come (HFAMINC) and the number of household children (TRCHILDDNUM) also affect activity durations
in a significant manner. I will keep these predictors for the regression model.
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Coefficients:
Estimate Std. Error t value Pr(>|t]|)

(Intercept) 1.712e+02 2.216e+00 77.248 < 2e-16 **x* COUNT_13 -5.181e+00 9.586e-01 -5.405 6.51e-08 ***
TRTIER1P2 -1.071e+02 1.018e+00 -105.229 < 2e-16 *** COUNT_14 -2.971e+00 1.152e+00 -2.579 0.009901 **
TRTIER1P3 -1.151e+02 1.466e+00 -78.530 < 2e-16 **x* COUNT_15 -1.309e+00 1.164e+00 -1.125 0.260714
TRTIER1P4 -1.120e+02 2.710e+00 -41.317 < 2e-16 **x* COUNT_16 -4.460e+00 9.723e-01 -4.588 4.49e-06 ***
TRTIER1P5 3.307e+01 1.542e+00 21.448 < 2e-16 *** COUNT_18 -3.539e-01 2.208e-01 -1.603 0.108932
TRTIER1P6 -1.332e+01 4.030e+00 =3.307 0.000945 *** COUNT_50 -1.219e+00 8.652e-01 -1.409 0.158984
TRTIER1P7 -1.117e+02 1.707e+00 -65.417 < 2e-16 **x* DUR_1 -5.488e-02 2.916e-03 -18.824 < 2e-16 ***
TRTIER1P8 -1.061e+02 4.139e+00 -25.642 < 2e-16 **x* DUR_2 2.289e-02 4.083e-03 5.607 2.07e-08 ***
TRTIER1P9Y -1.100e+02 9.023e+00 -12.194 < 2e-16 *** DUR_3 6.846e-03 7.686e-03 0.891 0.373116
TRTIER1P10 -1.076e+02 1.630e+01 -6.603 4.07e-11 *** DUR_4 8.386e-03 1.272e-02 0.659 0.509578
TRTIER1P11 -1.173e+02 1.140e+00 -102.849 < 2e-16 *** DUR_5 -1.001le-02 3.092e-03 -3.239 0.001200 **
TRTIER1P12 -5.976e+01 9.952e-01 -60.046 < 2e-16 *** DUR_6 -2.087e-02 1.061le-02 -1.967 0.049162 *
TRTIER1P13 -7.227e+01 2.743e+00 -26.350 < 2e-16 *** DUR_7 1.576e-02 1.029e-02 1.531 0.125708
TRTIER1P14 -7.684e+01 3.232e+00 -23.772 < 2e-16 *** DUR_8 4.597e-03 2.355e-02 0.195 0.845278
TRTIER1P15 -6.65le+01 3.837e+00 -17.333 < 2e-16 *** DUR_9 7.394e-02 5.183e-02 1.427 0.153696
TRTIER1P16 -1.200e+02 2.741e+00 -43.767 < 2e-16 *** DUR_10 -1.785e-03 9.276e-02 -0.019 0.984652
TRTIERIP18 -1.320e+02 9.636e-01 -136.971 < 2e-16 *** DUR_11 6.429e-02 1.174e-02 5.474 4.40e-08 ***
TRTIERIP50 -8.979e+01 2.864e+00 -31.354 < 2e-16 **x* DUR_12 7.250e-02 3.370e-03 21.517 < 2e-16 ***
TUSTARTTIM  2.277e-02 1.366e-03 16.666 < 2e-16 *** DUR_13 1.258e-02 1.185e-02 1.062 0.288189
COUNT_1 -1.087e+00 3.324e-01 -3.269 0.001078 ** DUR_14 1.211e-02 1.575e-02 0.769 0.442007
COUNT_2 -2.468e+00 1.909e-01 =-12.925 < 2e-16 **x DUR_15 -8.901le-03 1.439%e-02 -0.619 0.536230
COUNT_3 -6.866e-01 2.469e-01 -2.781 0.005413 ** DUR_16 7.968e-02 3.146e-02 2.533 0.011310 *
COUNT_4 -2.761e+00 5.529e-01 -4.993 5.94e-07 *** DUR_18 5.075e-02 7.18le-03 7.068 1.58e-12 ***
COUNT_5 -4.674e+00 4.463e-01 -10.472 < 2e-16 ***x DUR_50 2.671le-02 1.356e-02 1.970 0.048851 *
COUNT_6 -3.002e+00 1.492e+00 -2.011 0.044311 * TEAGE -1.714e-01 2.054e-02 -8.345 < 2e-16 ***
COUNT_7 -2.103e+00 5.440e-01 -3.866 0.000111 *** TRERNWA 2.872e-04 5.128e-04 0.560 0.575521
COUNT 8 -7.925e-01 1.249e+00 -0.634 0.525812 TRCHILDNUM -2.271e+00 4.955e-01 -4.582 4.60e-06 ***
COUN'I‘:9 -6.081e+00 2.284e+00 -2.662 0.007770 ** HFAMINC -5.507e-01 8.444e-02  -6.522 6.99e-11 **x
COUNT_10 -3.502e+00 5.088e+00 -0.688 0.491264 HRNUMHOU 4.256e-01 3.762e-01 1.131 0.257893
COUNT_11 5.547e-01 5.11le-01 1.085 0.277807 TTWK -3.984e+00 2.760e+00  -1.443 0.148918
COUNT_12 -2.990e+00 3.032e-01 -9.864 < 2e-16 *** TESEX -3.910e+00 6.234e-01  -6.273 3.56e-10 ***

Using an ensemble of 100 decision tree regressors with a maximum depth of 12, random forest re-
gression can achieve an R? (coefficient of determination) of around 47%, which is also a reasonable score,
implying that the model has accounted for almost 50% of variability in human’s activity time.
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4.2 Method II - Predicting a Schedule

Modeling sequences of activities with various types and different duration (spanning from 1 minute to 10
hours) is challenging, due to the high dimensional search space. Considering the complex nature of our
prediction data type, it can be difficult to find adequate conditional models given the limited amount of
data available. Alternatively, we can directly assign entire schedules from the surveys to new individuals.
This can be done by first mapping individuals to a feature-vector space, identifying similar survey subjects
and assigning their recorded activity schedules to be predictions for new individuals. With minimal model
constraints, we will be able to preserve more complex dependency relations in activity sequences, thereby
generating much more realistic activity chains.

4.2.1 Nearest Neighbors Methods

We can use the nearest-neighbor approach to match a synthetic individual with a survey subject based
on their demographic characteristics. Kristian Lum [5] proposed a similar method for sampling activity
schedules: for each target synthetic agent, we may identify his/her nearest neighbor by first finding the
best-matching household to his/her own household, and then select the best-matching individual from the
matched household. We can then use the matched subject’s activity schedule record as a new simulated
chain for the target agent. In the context of ATUS data, only one respondent from each selected house-
hold is interviewed. Therefore, we will simply incorporate household information as part of a subject’s
demographic features and directly compute person-to-person distances to find the nearest neighbor.

The key to nearest neighbor methods is to select a proper distance metrics. Assuming the true pop-
ulation demographics (denoted by X) and the synthetic demographics (denoted by X*) have the same
distribution, a few distance metrics I will explore for computing survey subject i (P;) and synthetic agent i*
(Pit)’s dissimilarity include:

Euclidean Distance Using Demographic Covariates
Dist(P;, P.) = [|Xi = Xit|]

This is a naive distance metric that simply aggregates differences in every dimension (i.e. in every demo-
graphic feature). To prevent the distance from being dominated by features with large variances, input
feature standardization is necessary.

Mahalanobis Distance Using Demographic Covariates
Dist(P;, P) = (Xi = X;:) "7 (X; — X})

Relaxing Euclidean distance’s strong assumption about the data being isotropically Gaussian, we may
choose Mahalanobis distance, which models anisotropical Gaussian data. However, as Lum pointed out,
the computation weighs covariates simply based on their variances and covariances, without taking into
account their true effects on the activity series output [5]. For example, if covariances between all pairs
are 0, all predictors are weighted equally, which may not be ideal - the Mahalanobis distance can be sig-
nificantly affected by many irrelevant predictors while being affected minimally by a few highly relevant
predictors.

Mahalanobis Distance Using Fitted Values
Dist(P;, Pit) = (Y, - Y;i )Tsil (?z — Y;)

Ideally, we would like to adopt a distance scheme which automatically assigns greater weights to predictors
with more bearings on the final activity schedules. Lum proposed running a simple conditional model on
summary statistics of the output sequences, such as a linear regression Yy = fx(X) + € for estimating total
time spent on each activity k (i.e. a summary statistic of the final activity schedule), and then use the fitted
and predicted values to compute the Mahalanobis distance instead [5]. Using a simple regression model
can help us easily rule out irrelevant features, as their estimated coefficients will be close to zero, lending
them little weight in calculating the fitted values and therefore the final distances.
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4.2.2 Decision Tree Approach

Straightforward as the nearest neighbor approach is, its effectiveness highly depends on the correct choice
of distance metrics, which requires knowledge about each predictive feature and their relative importance
in predicting the final activity chain. Decision tree, on the other hand, is an alternative non-parametric
model that simply learns decision rules to divide data examples into subgroups without an explicitly
stated distance metric. Neither does it require extensive data pre-processing such as normalization or pre-
assigning feature importance. With less assumptions, decision trees can potentially find decision rules that
generalize better and even learn feature importance through training. In addition, decision tree models
should generally perform faster in prediction time, as decision paths traversing down a tree should be in
O(log n), as compared to O(n) for the nearest-neighbor approach, with n being the number of training data
points. I will try out two decision tree methods to match survey and synthetic individuals.

Classification Tree

We can reduce this into a classification problem, with each class corresponding to a distinct training ex-
ample (and with a distinct activity chain). I construct a decision tree with the CART algorithm, using Gini
impurity as the splitting criterion. In an un-regularized version, such an algorithm produces a tree with
all pure leaves - each leaf containing a single training example (or identical ones, which are unlikely given
the high dimensionality of the input features in this case). Effectively, such a tree contain decision rules
that quickly distinguish training examples from one another (each occupying a rectangular sub-space in
the decision space). For each new example, we can find a decision path down the tree into a leaf x;, and we
will then assign the same-leaf training example’s activity chain to be the new example’s prediction. This is
similar to finding a nearest neighbor for a new example, except that the "distance" measure is more flexi-
ble, varying for different combinations of input feature values. As Chen suggested [2], such decision trees
implicitly learn similarity relations between individuals and are hence adaptive nearest neighbor methods.
The ID of the best-matching subject P; for a synthetic individual Pj: is thus found by the decision tree rule
T(PY) defined as follows:

]
T(P}:) = max Y 1{P: e xj AP €}
j=1
Schedule(IDp: ) = Schedule(IDrp:))

Regression Tree

Since we aim to minimize the difference in the total time spent on each activity between our prediction and
the truth, another way to construct the decision tree is to directly minimize such differences in the leaves.
We can construct a regression tree instead, using the time-by-activity vectors as the target variables and
apply CART to minimize the mean square error of the vectors within each leaf. With this new objective,
the decision rules may be tuned towards grouping individuals with similar activity patterns together, thus
leading to more realistic simulation results. The decision rule for finding the best-matching subject is then
identical to the classification approach.

Addressing Overfitting

Unregularized trees are easily prone to overfitting problems. Imposing Occam’s Razor principle to promote
simpler tree structures would likely increase the generalization power of our final models. I proceeded to
experiment with constraining the minimum number of examples per leaf, using cross-validation to deter-
mine the best degree of tree regularization. With more than one training examples in a leaf, predictions are
made by randomly sampling one such example’s activity chains for a new synthetic agent assigned to the
same leaf.

The problem of overfitting may also be addressed by using an ensemble method, i.e. using random
forest classifier/regressor. Using ensemble models, predictions can be made by taking the majority vote of
the most likely best-matching training example from all decision tree estimators I:
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L J
T( ;):m?xzzu i€ Xj AP € X}
I1=1j=1

Schedule(IDpii) = Schedule(IDr(p: )
Chapter 5

Results

As discussed, we decide to use the total time spent on each activity as the summary statistics to assess
the quality of simulated activity sequences. For each proposed method, we will first compare the L1 and L2
distances between the total time spent on each activity from predicted sequences and the true sequences.
Before comparing performances between different methods, we first compare the performances with dif-
ferent degrees of smoothing - i.e. different number of neighbors to consider in the case of nearest neighbor
sampling and different minimum number of leaf examples required in the case of decision tree sampling.

L1/L2 Losses Vs. Number of Neighbors / Minimum Number of Leaf Examples
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The L1 and L2 distance metrics gave fairly consistent results. Different methods clearly have different
optimal degree of smoothing. We will pick the smoothing factor (k) that minimizes both L1 and L2 losses
for each algorithm and proceed to compare these methods against each other:
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All sampling methods achieve significant improvement from the baseline model (random sampling).
Despite their relatively close performances, the decision tree regressor and decision tree ensemble methods -
the random forest classifier and regressor - seem to achieve the lowest errors overall. Decision tree methods
generally work better than nearest neighbor sampling approaches, as the former make less assumptions
about predictors’ importance without explicitly assuming a fixed distance metric. Also, ensemble methods
are clearly effective in preventing the overfitting problem commonly found in single decision trees and thus
improving generalization power. Moreover, the decision tree regressor, which was targeted to optimize the
time-vector difference directly, is already much stronger than a decision tree classifier, which was built for
a surrogate optimization goal (distinction between examples based on demographic features).

We will also examine how total time spent on each type of activity varies with important demographic
factors such as age and gender. This is done by plotting smoothed regression lines of the predictions and
compare them against the results from the true ATUS sample. An ideal simulation method should produce
curves with similar shapes with those from the true sample. Below is an example of the curves of total time
spent on helping household members, disaggregated by age and gender.

Total Duration (min) Vs Age (year) for Caring for & Helping Household Members
100 -

data_name

=== Prediction (Baseline1)

50- === Prediction (Classification + Histogram)

=== Prediction (Classification + Regression)

=== Prediction (Markov + Histogram)
=== Prediction (Markov + Regression)

=== Validation Truth

Total Duration (min)

sex
== FEMALE

== MALE

50 -

20 40 60 80
Age (year)

The pink lines (solid and dotted) show the curves for the total time spent by male and female across all
ages on helping household members. While both lines peak in the age of middle 30’s, the peak is signifi-
cantly sharper and higher for the female than the male; the difference between the two curves diminishes
as the total time spent on helping household membmers decline with age.

The first baseline model (Baselinel, i.e. generating individual activities by randomly sampling activity
type and using mean activity duration) clearly fails to capture any trend - the red lines corresponding to the
baseline method are both flat at a level around 40 minutes. Similarly for other methods, there is no obvious
gap between the dotted line and the solid line of each color, indicating that the first group of methods cannot
effectively capture the gender difference between total activity time patterns. Moreover, most smoothed
regression lines from predictions are flat, retaining little information about how activity total durations
vary with age. Evidently, despite their fairly good performance in L1/L2 losses (especially the Markov +
Regression method), methods which generate individual activities to form schedules are inadequate for
modeling the complex activity patterns exhibited by individuals with distinct characteristics.
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Total Duration (min) Vs Age (year) for Caring for & Helping Household Members
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In the above plot for the second group of methods, we can see clearly from the plotted orange lines that
the predictions from the baseline model (Baseline2, i.e. selecting existing activity schedules by randomly
sampling survey responses) contain no information about the true trend either - the two orange lines are
both flat and close to each other. Curves from other sampling methods capture the trend to various degrees.
In this case, predictions from the random forest classifier and regressor (the dark blue and violet lines
respectively) seem to follow the truth curves most closely. Clearly, the ensemble decision tree methods give
the most accurate predictions, which are effectively very close to the truth.

Chapter 6

Conclusion

Agent-based models (ABM) are popular tools used to study autonomous agents’ interactions and hence
complex phenomena such as the spread of infectious diseases. ABMs require accurate and rich represen-
tations of the true population of interest as inputs in order to produce realistic results. The SPEW system
developed by the CMU MIDAS group serves to provide such a synthetic input that is demographically
and geographically representative of the true populations of the world. This project aims to incorporate
detailed, time-dependent information about individual agents’ activities into SPEW. Specifically, we would
like to learn from limited interview records from the ATUS data to generate for each synthetic individual a
comprehensive activity sequence, consisting of a list of activities defined by their types and durations.

There are in general two approaches to generate new activity chains: one way is to learn statistical
properties about activity patterns in a chain and use probabilistic models to predict individual activities to
form a chain; the other way is to directly assign existing activity schedules from survey records to synthetic
agents using specific candidate-matching schemes. For the first group of methods, I started by model-
ing activity type transitions using markov chain models and sampling activity durations from duration
histograms. To improve the generalization power to other populations with different demographic and
socio-economic compositions, I proceeded to adopt conditional methods to predict each new activity type
and duration based on individuals” demographic characteristics and previous activities in the chain. For
the second group of activities, I experimented with different candidate selection schemes such as nearest
neighbor with different distance metrics and CART with different optimization criteria.
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For evaluation, I targeted the summary statistic of the complex activity chains - the total time (in min-
utes) spent on each type of activity by individuals. I compared the performance of the proposed methods
with two baseline methods - generating each new activity by randomly sampling its type and using the
corresponding type’s mean duration (first group approach) as well as randomly sampling an existing ac-
tivity schedule to assign to a new individual (second group approach). Comparing the L1/L2 losses on the
total time by activity types, all proposed methods achieve significant improvement from the first baseline
model, but only second-group methods and one first-group method beat the second baseline significantly.
Upon examining the trend of total time spent per activity against demographics such as age and gender,
second-group methods prove to be much stronger in preserving the true trend. Specifically, I found the
candidate selection method using a random forest classifier has superior performance in all evaluations.
Therefore, I will adopt this method to generate for synthetic human agents in SPEW.
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