
Machine Learning Department, DAP Report

Medical Missing Data Imputation by Stackelberg GAN

Hongyang Zhang
Machine Learning Department

Carnegie Mellon University
hongyanz@cs.cmu.edu

Committee: Maria-Florina Balcan
David P. Woodruff

Tuesday 11th December, 2018

Abstract

We study the problem of imputing medical missing data by Stackelberg GAN. Having complete
medical datasets has many applications in disease prevention, diagnose, and control. However, most of
medical data that we can access to suffer from missing values due to failure of data collection, damage of
lab devices, lost records, and many other reasons. To resolve the issue, traditional methods apply matrix
factorization or GAN based methods to impute the missing position. Unfortunately, it is well-known that
matrix factorization based methods cannot characterize the non-linear structure of data, while standard
GAN based methods suffer from mode collapse and dropping issues, where oftentimes the imputed values
tend to be the same. This paper aims at resolving both of these issues by introducing the Stackelberg GAN.
The idea is to utilizing multiple generators instead of a single generator as in the standard GAN, so that
the imputed values are more diverse. Preliminary experiments on the UCI dataset verify the effectiveness
of the proposed method compared with other state-of-the-art imputation approaches.

To solve the real medical problems, we apply the proposed Stackelberg GAN based imputation method
to the MIMIC-III dataset. MIMIC-III is a dataset which consists of over 58,000 hospital admissions
for 38,645 adults and 7,875 neonates. The data ranges from June 2001 to October 2012. However, the
percentage of missing records is as high as 74%, causing potential difficulties of mining and analysis of
this dataset. To resolve the issue, we apply our proposed model to impute the dataset. Our algorithm
obtains outstanding performance on this dataset, achieving 0.86 F1 score and 95% prediction accuracy
after we pre-process/complete the data by our algorithm. Our result reveals the possibility of imputing
missing data in the real problems, which might be of independent interest more broadly.

1 Introduction

We are in an era of big data as well as high dimensional data. However, the data may not be complete in most
cases. This is typically because of failure of data collection, damage of measuring devices, lost records, and
many other reasons. Missing data can cause huge problems in many real-world applications. For example,
in the medical domain, failure of obtaining complete data may lead to false diagnose of diseases. In the
recommendation system, absence of complete user preference data causes incorrect recommendation of
products, resulting in huge economic loss. The focus of this paper is to design computationally efficient
methods to impute the medical missing data based on Generative Adversarial Net (GAN). Our study of

1 of 13 12-11-2018 at 17:23



Machine Learning Department, DAP Report

medical missing data imputation algorithms help to build better medical auxiliary system for hospitals and
potentially save more lives.
GANs are an emerging object of study in machine learning, computer vision, natural language processing,
and many other domains. In machine learning, study of such a framework has led to significant advances
in adversarial defenses [XLZ+18, SKC18] and machine security [ACW18]. In computer vision and natural
language processing, GAN has resulted in improved performance over standard generative models for images
and texts [GPAM+14], such as variational autoencoder [KW13] and deep Boltzman machine [SL10]. A main
technique to achieve this goal is to play a minimax two-player game between generator and discriminator
under the designs that the generator tries to confuse the discriminator with its generated contents and the
discriminator tries to distinguish real images/texts from what the generator creates. As a generative model,
we apply GAN to the missing data imputation problems.
Despite a large amount of variants of GAN, many fundamental questions remain unresolved. One of the
long-standing challenges is designing universal, easy-implemented architectures that alleviate the mode
collapse and dropping issues, where often the generated images of GAN are not very diverse (see the first
row in Figure 1). This phenomenon is caused by the large discrepancy between the minimax and maximin
objective values. With the absence of convexity of discriminators and generators which are parametrized by
deep neural networks, gradient-based algorithms may easily get stuck at sub-optimal solutions, resulting in
large minimax gap and unstable training. As a result, the imputed values for the missing positions by GAN
tend to be the same, leading to meaningless imputation.
To alleviate the issues caused by the large minimax gap, our study is motivated by a so-called Stackelberg
competition in the domain of game theory. In the Stackelberg leadership model, the players of this game
are one leader and multiple followers, where the leader firm moves first and then the follower firms move
sequentially. It is known that the Stackelberg model can be solved to find a subgame perfect Nash equilibrium.
We apply this idea of Stackelberg leadership model to the architecture designs of GAN. That is, we design an
improved GAN architecture with multiple generators (followers) which team up to play against the unique
discriminator (leader), and plug this model into the missing data imputation problems. We therefore term
our model Stackelberg GAN. Stackelberg GAN enjoys alleviated mode collapse and dropping issues (see the
second row in Figure 1).

Our Contributions. This paper tackles the problem of instability during the GAN training procedure and
applies the improved GAN to the medical data imputation problems with wide potential applications in the
future.

• We propose a Stackelberg GAN framework of having multiple generators in the GAN architecture.
Our framework is general that can be applied to all variants of standard GAN. It is built upon the idea
of jointly optimizing an ensemble of GAN losses w.r.t. all pairs of discriminator and generator.

• We clarify how to interpolate the idea of Stackelberg GAN into the missing data imputation problem.
In particular, we follow the framework of [YJvdS18]. However, there are key difference between the
methodology in [YJvdS18] and our methodology: In [YJvdS18], the authors apply the standard GAN
as core and there is only one generator in their model. Instead, in our method, we apply the idea of
Stackelberg GAN to have multiple generators. The advantage of this design is that we can hope to
learn more complicated distribution w.r.t. the missing value; It can be observed that the generated value
of standard GAN is not very diverse. We empirically conduct preliminary tests of our algorithm on

2 of 13 12-11-2018 at 17:23



Machine Learning Department, DAP Report

(a) Step 0. (b) Step 6k. (c) Step 13k. (d) Step 19k. (e) Step 25k.

(f) Step 0. (g) Step 6k. (h) Step 13k. (i) Step 19k. (j) Step 25k.

Figure 1: Stackelberg GAN stabilizes the training procedure on a toy 2D mixture of 8 Gaussians. Top Row:
Standard GAN training. It shows that several modes are dropped. Bottom Row: Stackelberg GAN training
with 8 generator ensembles, each of which is denoted by one color. We can see that each generator exactly
learns one mode of the distribution without any mode being dropped.

the UCI dataset. Experiments show that our algorithm significantly outperforms other state-of-the-art
methods.

• As a real application of our proposed algorithm to the medical problems, we conduct experiments on
the MIMIC-III dataset. MIMIC-III (Medical Information Mart for Intensive Care III, [JPS+16]) is a
dataset which consists of over 58,000 hospital admissions for 38,645 adults and 7,875 neonates. The
data ranges from June 2001 to October 2012. However, the percentage of missing records is as high as
74%, which causes potential difficulties of mining and analysis of this dataset. To resolve the issue, we
apply our proposed model to impute the dataset. Our algorithm obtains outstanding performance on
this dataset, achieving 0.86 F1 score and 95% prediction accuracy after we pre-process/complete the
data by our algorithm. In contrast, without running our missing data imputation algorithm, to the best
of our knowledge, there is no previous work which reports prediction result on this dataset (although
they use the dataset for other purpose). Our result reveals the possibility of imputing missing data in
the real problems, which might be of independent interest more broadly.

2 Stackelberg GAN

Before proceeding, we define some notations and formalize our model setup in this section.

Notations. We will use bold lower-case letter to represent vector and lower-case letter to represent scalar.
Specifically, we denote by θ ∈ Rt the parameter vector of discriminator and γ ∈ Rg the parameter vector of
generator. Let Dθ(x) be the output probability of discriminator given input x, and let Gγ(z) represent the
generated vector given random input z. We will use I to represent the number of generators throughout the
paper.

3 of 13 12-11-2018 at 17:23



Machine Learning Department, DAP Report

Real

Fake

…

Generators	(G)

Discriminator	(D)!~#$

%~#& Loss=ℒ (), + +⋯+ ℒ (., +

Figure 2: Architecture of Stackelberg GAN.

2.1 Model Setup

Preliminaries. The key ingredient in the standard GAN is to play a zero-sum two-player game between
a discriminator and a generator — which are often parametrized by deep neural networks in practice —
such that the goal of the generator is to map random noise z to some plausible images/texts Gγ(z) and the
discriminator Dθ(·) aims at distinguishing the real images/texts from what the generator creates.
For every pure strategy γ and θ of generator and discriminator, respectively, denote by the payoff value

φ(γ; θ) := Ex∼Pd
f(Dθ(x)) + Ez∼Pzf(1−Dθ(Gγ(z))),

where f(·) is some concave, increasing function. Hereby, Pd is the distribution of true images/texts and Pz is
a noise distribution such as Gaussian or uniform distribution. The standard GAN thus solves the following
saddle point problems:

inf
γ∈Rg

sup
θ∈Rt

φ(γ; θ), or sup
θ∈Rt

inf
γ∈Rg

φ(γ; θ). (1)

For different choices of function f , problem (1) leads to various variants of GAN. For example, when
f(t) = log t, problem (1) is the classic GAN; when f(t) = t, it reduces to the Wasserstein GAN. We refer
interested readers to the paper [NCT16] for more variants of GAN.

Stackelberg GAN. Our model of Stackelberg GAN is inspired from the Stackelberg competition in the
domain of game theory. Instead of playing a two-player game as in the standard GAN, in Stackelberg GAN
there are I + 1 players with two firms — one discriminator and I generators. One can make an analogy
between the discriminator (generators) in the Stackelberg GAN and the leader (followers) in the Stackelberg
competition.
Stackelberg GAN is a general framework which can be built on top of all variants of standard GAN.
The objective function is simply an ensemble of standard GAN losses w.r.t. all pairs of generators and

4 of 13 12-11-2018 at 17:23



Machine Learning Department, DAP Report

discriminator: Φ(γ1, ..., γI ; θ) :=
∑I

i=1 φ(γi; θ). Thus it is very easy to implement. The Stackelberg GAN
therefore solves the following saddle point problems:

w∗ := inf
γ1,...,γI∈Rg

sup
θ∈Rt

1

I
Φ(γ1, ..., γI ; θ), or q∗ := sup

θ∈Rt

inf
γ1,...,γI∈Rg

1

I
Φ(γ1, ..., γI ; θ).

We term w∗ − q∗ the minimax duality gap. We note that there are key differences between the naïve
ensembling model and ours. In the naïve ensembling model, one trains multiple GAN models independently
and averages their outputs. In contrast, our Stackelberg GAN shares a unique discriminator for various
generators, thus requires jointly training. Figure 2 shows the architecture of our Stackelberg GAN.

3 Missing Data Imputation by Stackelberg GAN

In this section, we apply Stackelberg GAN to the missing data imputation problem. We also complement our
new method with preliminary experiments on the UCI dataset to verify the effectiveness of our proposed
method.

3.1 Problem Formulation

Consider a d-dimensional space X = X1 × ...×Xd. Denote by X = (X1, ..., Xd) a random variable taking
values in X with distribution P (X). Let M = (M1, ...,Md) be a random variable taking value in {0, 1}d.
We name X the data vector and M the mask vector. For each i ∈ {1, ..., d}, denote by X̃i = Xi ∪ {∗},
where ∗ is a point which is not in any Xi and represents an unobserved value. Let X̃ = X̃1 × ...× X̃d and
X̃ = (X̃1, ..., X̃d), where

X̃i =

{
Xi, if Mi = 1,

∗, otherwise.
(2)

We note that M indicates which components of X are observed.
In the imputation setting, our goal is to impute the unobserved values in each x̃i. That is, we want to generate
samples according to P (X|X̃ = x̃i), the conditional distribution of X given X̃ = x̃i, in order to fill in the
missing data points. This is in contrast with the deterministic matrix completion problem where we assume
there exists an underlying deterministic matrix and our goal is to exactly recover that matrix with a high
probability [CR09].

3.2 Methodology

We use the idea of [YJvdS18] to combine Stackelberg GAN with the missing data imputation problem.
For a data matrix with missing entries, the basic idea is to use generators to create a value for each missing
position so that the discriminator cannot distinguish whether this entry is missing or originally available.
To be more specific, we use the architecture in Figure 3 to do missing data imputation by Stackelberg GAN.
We will clarify the function of each component (generator, discriminator, hint matrix, loss function) in the
following subsections.

5 of 13 12-11-2018 at 17:23



Machine Learning Department, DAP Report

GAIN: Missing Data Imputation using Generative Adversarial Nets

many circumstances, missing values are part of the inherent
structure of the problem so obtaining a complete dataset is
impossible. Another approach with DAE (Gondara & Wang,
2017) allows for an incomplete dataset; however, it only uti-
lizes the observed components to learn the representations
of the data. (Allen & Li, 2016) uses Deep Convolutional
GANs for image completion; however, it also requires com-
plete data for training the discriminator.

In this paper, we propose a novel imputation method, which
we call Generative Adversarial Imputation Nets (GAIN),
that generalizes the well-known GAN (Goodfellow et al.,
2014) and is able to operate successfully even when com-
plete data is unavailable. In GAIN, the generator’s goal is to
accurately impute missing data, and the discriminator’s goal
is to distinguish between observed and imputed components.
The discriminator is trained to minimize the classification
loss (when classifying which components were observed
and which have been imputed), and the generator is trained
to maximize the discriminator’s misclassification rate. Thus,
these two networks are trained using an adversarial process.
To achieve this goal, GAIN builds on and adapts the stan-
dard GAN architecture. To ensure that the result of this
adversarial process is the desired target, the GAIN architec-
ture provides the discriminator with additional information
in the form of “hints”. This hinting ensures that the genera-
tor generates samples according to the true underlying data
distribution.

2. Problem Formulation
Consider a d-dimensional space X = X1 ⇥ ...⇥ Xd. Sup-
pose that X = (X1, ..., Xd) is a random variable (either
continuous or binary) taking values in X , whose distribu-
tion we will denote P (X). Suppose that M = (M1, ..., Md)
is a random variable taking values in {0, 1}d. We will call
X the data vector, and M the mask vector.

For each i 2 {1, ..., d}, we define a new space X̃i = Xi [
{⇤} where ⇤ is simply a point not in any Xi, representing an
unobserved value. Let X̃ = X̃1⇥ ...⇥ X̃d. We define a new
random variable X̃ = (X̃1, ..., X̃d) 2 X̃ in the following
way:

X̃i =

(
Xi, if Mi = 1

⇤, otherwise
(1)

so that M indicates which components of X are observed.
Note that we can recover M from X̃.

Throughout the remainder of the paper, we will often use
lower-case letters to denote realizations of a random variable
and use the notation 1 to denote a vector of 1s, whose
dimension will be clear from the context (most often, d).

𝑥ଵଵ X 𝑥ଵଷ 𝑥ଵସ X

X 𝑥ଶଶ X 𝑥ଶସ 𝑥ଶହ

𝑥ଷଵ X 𝑥ଷଷ X 𝑥ଷହ

Original data

𝑥ଵଵ 0 𝑥ଵଷ 𝑥ଵସ 0

0 𝑥ଶଶ 0 𝑥ଶସ 𝑥ଶହ
𝑥ଷଵ 0 𝑥ଷଷ 0 𝑥ଷହ

1 0 1 1 0

0 1 0 1 1

1 0 1 0 1

Data matrix Mask matrix

𝑥ଵଵ �̅�ଵଶ 𝑥ଵଷ 𝑥ଵସ �̅�ଵହ

�̅�ଶଵ 𝑥ଶଶ �̅�ଶଷ 𝑥ଶସ 𝑥ଶହ

𝑥ଷଵ �̅�ଷଶ 𝑥ଷଷ �̅�ଷସ 𝑥ଷହ

Generator

Imputed Matrix

Discriminator

𝑝ଵଵ 𝑝ଵଶ 𝑝ଵଷ 𝑝ଵସ 𝑝ଵହ

𝑝ଶଵ 𝑝ଶଶ 𝑝ଶଷ 𝑝ଶସ 𝑝ଶହ

𝑝ଷଵ 𝑝ଷଶ 𝑝ଷଷ 𝑝ଷସ 𝑝ଷହ

Loss
(Cross Entropy)

Estimated mask matrix

Back 
propagate

1 0.5 1 1 0

0 1 0 1 0.5

1 0 1 0.5 1

Hint Matrix

Back 
propagate

Loss
(MSE)

Hint Generator

+

0 𝑧ଵଶ 0 0 𝑧ଵହ
𝑧ଶଵ 0 𝑧ଶଷ 0 0

0 𝑧ଷଶ 0 𝑧ଷସ 0

Random matrix

Figure 1. The architecture of GAIN

2.1. Imputation

In the imputation setting, n i.i.d. copies of X̃ are real-
ized, denoted x̃1, ..., x̃n and we define the dataset D =
{(x̃i,mi)}n

i=1, where mi is simply the recovered realiza-
tion of M corresponding to x̃i.

Our goal is to impute the unobserved values in each x̃i. For-
mally, we want to generate samples according to P (X|X̃ =
x̃i), the conditional distribution of X given X̃ = x̃i, for
each i, to fill in the missing data points in D. By attempting
to model the distribution of the data rather than just the
expectation, we are able to make multiple draws and there-
fore make multiple imputations allowing us to capture the
uncertainty of the imputed values (Buuren & Oudshoorn,
2000; Buuren & Groothuis-Oudshoorn, 2011; Rubin, 2004).

3. Generative Adversarial Imputation Nets
In this section we describe our approach for simulating
P (X|X̃ = x̃i) which is motivated by GANs. We highlight
key similarities and differences to a standard (conditional)

GAIN: Missing Data Imputation using Generative Adversarial Nets

many circumstances, missing values are part of the inherent
structure of the problem so obtaining a complete dataset is
impossible. Another approach with DAE (Gondara & Wang,
2017) allows for an incomplete dataset; however, it only uti-
lizes the observed components to learn the representations
of the data. (Allen & Li, 2016) uses Deep Convolutional
GANs for image completion; however, it also requires com-
plete data for training the discriminator.

In this paper, we propose a novel imputation method, which
we call Generative Adversarial Imputation Nets (GAIN),
that generalizes the well-known GAN (Goodfellow et al.,
2014) and is able to operate successfully even when com-
plete data is unavailable. In GAIN, the generator’s goal is to
accurately impute missing data, and the discriminator’s goal
is to distinguish between observed and imputed components.
The discriminator is trained to minimize the classification
loss (when classifying which components were observed
and which have been imputed), and the generator is trained
to maximize the discriminator’s misclassification rate. Thus,
these two networks are trained using an adversarial process.
To achieve this goal, GAIN builds on and adapts the stan-
dard GAN architecture. To ensure that the result of this
adversarial process is the desired target, the GAIN architec-
ture provides the discriminator with additional information
in the form of “hints”. This hinting ensures that the genera-
tor generates samples according to the true underlying data
distribution.

2. Problem Formulation
Consider a d-dimensional space X = X1 ⇥ ...⇥ Xd. Sup-
pose that X = (X1, ..., Xd) is a random variable (either
continuous or binary) taking values in X , whose distribu-
tion we will denote P (X). Suppose that M = (M1, ..., Md)
is a random variable taking values in {0, 1}d. We will call
X the data vector, and M the mask vector.

For each i 2 {1, ..., d}, we define a new space X̃i = Xi [
{⇤} where ⇤ is simply a point not in any Xi, representing an
unobserved value. Let X̃ = X̃1⇥ ...⇥ X̃d. We define a new
random variable X̃ = (X̃1, ..., X̃d) 2 X̃ in the following
way:

X̃i =

(
Xi, if Mi = 1

⇤, otherwise
(1)

so that M indicates which components of X are observed.
Note that we can recover M from X̃.

Throughout the remainder of the paper, we will often use
lower-case letters to denote realizations of a random variable
and use the notation 1 to denote a vector of 1s, whose
dimension will be clear from the context (most often, d).

𝑥ଵଵ X 𝑥ଵଷ 𝑥ଵସ X

X 𝑥ଶଶ X 𝑥ଶସ 𝑥ଶହ

𝑥ଷଵ X 𝑥ଷଷ X 𝑥ଷହ

Original data

𝑥ଵଵ 0 𝑥ଵଷ 𝑥ଵସ 0

0 𝑥ଶଶ 0 𝑥ଶସ 𝑥ଶହ
𝑥ଷଵ 0 𝑥ଷଷ 0 𝑥ଷହ

1 0 1 1 0

0 1 0 1 1

1 0 1 0 1

Data matrix Mask matrix

𝑥ଵଵ �̅�ଵଶ 𝑥ଵଷ 𝑥ଵସ �̅�ଵହ

�̅�ଶଵ 𝑥ଶଶ �̅�ଶଷ 𝑥ଶସ 𝑥ଶହ

𝑥ଷଵ �̅�ଷଶ 𝑥ଷଷ �̅�ଷସ 𝑥ଷହ

Generator

Imputed Matrix

Discriminator

𝑝ଵଵ 𝑝ଵଶ 𝑝ଵଷ 𝑝ଵସ 𝑝ଵହ

𝑝ଶଵ 𝑝ଶଶ 𝑝ଶଷ 𝑝ଶସ 𝑝ଶହ

𝑝ଷଵ 𝑝ଷଶ 𝑝ଷଷ 𝑝ଷସ 𝑝ଷହ

Loss
(Cross Entropy)

Estimated mask matrix

Back 
propagate

1 0.5 1 1 0

0 1 0 1 0.5

1 0 1 0.5 1

Hint Matrix

Back 
propagate

Loss
(MSE)

Hint Generator

+

0 𝑧ଵଶ 0 0 𝑧ଵହ
𝑧ଶଵ 0 𝑧ଶଷ 0 0

0 𝑧ଷଶ 0 𝑧ଷସ 0

Random matrix

Figure 1. The architecture of GAIN

2.1. Imputation

In the imputation setting, n i.i.d. copies of X̃ are real-
ized, denoted x̃1, ..., x̃n and we define the dataset D =
{(x̃i,mi)}n

i=1, where mi is simply the recovered realiza-
tion of M corresponding to x̃i.

Our goal is to impute the unobserved values in each x̃i. For-
mally, we want to generate samples according to P (X|X̃ =
x̃i), the conditional distribution of X given X̃ = x̃i, for
each i, to fill in the missing data points in D. By attempting
to model the distribution of the data rather than just the
expectation, we are able to make multiple draws and there-
fore make multiple imputations allowing us to capture the
uncertainty of the imputed values (Buuren & Oudshoorn,
2000; Buuren & Groothuis-Oudshoorn, 2011; Rubin, 2004).

3. Generative Adversarial Imputation Nets
In this section we describe our approach for simulating
P (X|X̃ = x̃i) which is motivated by GANs. We highlight
key similarities and differences to a standard (conditional)

GAIN: Missing Data Imputation using Generative Adversarial Nets

many circumstances, missing values are part of the inherent
structure of the problem so obtaining a complete dataset is
impossible. Another approach with DAE (Gondara & Wang,
2017) allows for an incomplete dataset; however, it only uti-
lizes the observed components to learn the representations
of the data. (Allen & Li, 2016) uses Deep Convolutional
GANs for image completion; however, it also requires com-
plete data for training the discriminator.

In this paper, we propose a novel imputation method, which
we call Generative Adversarial Imputation Nets (GAIN),
that generalizes the well-known GAN (Goodfellow et al.,
2014) and is able to operate successfully even when com-
plete data is unavailable. In GAIN, the generator’s goal is to
accurately impute missing data, and the discriminator’s goal
is to distinguish between observed and imputed components.
The discriminator is trained to minimize the classification
loss (when classifying which components were observed
and which have been imputed), and the generator is trained
to maximize the discriminator’s misclassification rate. Thus,
these two networks are trained using an adversarial process.
To achieve this goal, GAIN builds on and adapts the stan-
dard GAN architecture. To ensure that the result of this
adversarial process is the desired target, the GAIN architec-
ture provides the discriminator with additional information
in the form of “hints”. This hinting ensures that the genera-
tor generates samples according to the true underlying data
distribution.

2. Problem Formulation
Consider a d-dimensional space X = X1 ⇥ ...⇥ Xd. Sup-
pose that X = (X1, ..., Xd) is a random variable (either
continuous or binary) taking values in X , whose distribu-
tion we will denote P (X). Suppose that M = (M1, ..., Md)
is a random variable taking values in {0, 1}d. We will call
X the data vector, and M the mask vector.

For each i 2 {1, ..., d}, we define a new space X̃i = Xi [
{⇤} where ⇤ is simply a point not in any Xi, representing an
unobserved value. Let X̃ = X̃1⇥ ...⇥ X̃d. We define a new
random variable X̃ = (X̃1, ..., X̃d) 2 X̃ in the following
way:

X̃i =

(
Xi, if Mi = 1

⇤, otherwise
(1)

so that M indicates which components of X are observed.
Note that we can recover M from X̃.

Throughout the remainder of the paper, we will often use
lower-case letters to denote realizations of a random variable
and use the notation 1 to denote a vector of 1s, whose
dimension will be clear from the context (most often, d).

𝑥ଵଵ X 𝑥ଵଷ 𝑥ଵସ X

X 𝑥ଶଶ X 𝑥ଶସ 𝑥ଶହ

𝑥ଷଵ X 𝑥ଷଷ X 𝑥ଷହ

Original data

𝑥ଵଵ 0 𝑥ଵଷ 𝑥ଵସ 0

0 𝑥ଶଶ 0 𝑥ଶସ 𝑥ଶହ
𝑥ଷଵ 0 𝑥ଷଷ 0 𝑥ଷହ

1 0 1 1 0

0 1 0 1 1

1 0 1 0 1

Data matrix Mask matrix

𝑥ଵଵ �̅�ଵଶ 𝑥ଵଷ 𝑥ଵସ �̅�ଵହ

�̅�ଶଵ 𝑥ଶଶ �̅�ଶଷ 𝑥ଶସ 𝑥ଶହ

𝑥ଷଵ �̅�ଷଶ 𝑥ଷଷ �̅�ଷସ 𝑥ଷହ

Generator

Imputed Matrix

Discriminator

𝑝ଵଵ 𝑝ଵଶ 𝑝ଵଷ 𝑝ଵସ 𝑝ଵହ

𝑝ଶଵ 𝑝ଶଶ 𝑝ଶଷ 𝑝ଶସ 𝑝ଶହ

𝑝ଷଵ 𝑝ଷଶ 𝑝ଷଷ 𝑝ଷସ 𝑝ଷହ

Loss
(Cross Entropy)

Estimated mask matrix

Back 
propagate

1 0.5 1 1 0

0 1 0 1 0.5

1 0 1 0.5 1

Hint Matrix

Back 
propagate

Loss
(MSE)

Hint Generator

+

0 𝑧ଵଶ 0 0 𝑧ଵହ
𝑧ଶଵ 0 𝑧ଶଷ 0 0

0 𝑧ଷଶ 0 𝑧ଷସ 0

Random matrix

Figure 1. The architecture of GAIN

2.1. Imputation

In the imputation setting, n i.i.d. copies of X̃ are real-
ized, denoted x̃1, ..., x̃n and we define the dataset D =
{(x̃i,mi)}n

i=1, where mi is simply the recovered realiza-
tion of M corresponding to x̃i.

Our goal is to impute the unobserved values in each x̃i. For-
mally, we want to generate samples according to P (X|X̃ =
x̃i), the conditional distribution of X given X̃ = x̃i, for
each i, to fill in the missing data points in D. By attempting
to model the distribution of the data rather than just the
expectation, we are able to make multiple draws and there-
fore make multiple imputations allowing us to capture the
uncertainty of the imputed values (Buuren & Oudshoorn,
2000; Buuren & Groothuis-Oudshoorn, 2011; Rubin, 2004).

3. Generative Adversarial Imputation Nets
In this section we describe our approach for simulating
P (X|X̃ = x̃i) which is motivated by GANs. We highlight
key similarities and differences to a standard (conditional)

GAIN: Missing Data Imputation using Generative Adversarial Nets

many circumstances, missing values are part of the inherent
structure of the problem so obtaining a complete dataset is
impossible. Another approach with DAE (Gondara & Wang,
2017) allows for an incomplete dataset; however, it only uti-
lizes the observed components to learn the representations
of the data. (Allen & Li, 2016) uses Deep Convolutional
GANs for image completion; however, it also requires com-
plete data for training the discriminator.

In this paper, we propose a novel imputation method, which
we call Generative Adversarial Imputation Nets (GAIN),
that generalizes the well-known GAN (Goodfellow et al.,
2014) and is able to operate successfully even when com-
plete data is unavailable. In GAIN, the generator’s goal is to
accurately impute missing data, and the discriminator’s goal
is to distinguish between observed and imputed components.
The discriminator is trained to minimize the classification
loss (when classifying which components were observed
and which have been imputed), and the generator is trained
to maximize the discriminator’s misclassification rate. Thus,
these two networks are trained using an adversarial process.
To achieve this goal, GAIN builds on and adapts the stan-
dard GAN architecture. To ensure that the result of this
adversarial process is the desired target, the GAIN architec-
ture provides the discriminator with additional information
in the form of “hints”. This hinting ensures that the genera-
tor generates samples according to the true underlying data
distribution.

2. Problem Formulation
Consider a d-dimensional space X = X1 ⇥ ...⇥ Xd. Sup-
pose that X = (X1, ..., Xd) is a random variable (either
continuous or binary) taking values in X , whose distribu-
tion we will denote P (X). Suppose that M = (M1, ..., Md)
is a random variable taking values in {0, 1}d. We will call
X the data vector, and M the mask vector.

For each i 2 {1, ..., d}, we define a new space X̃i = Xi [
{⇤} where ⇤ is simply a point not in any Xi, representing an
unobserved value. Let X̃ = X̃1⇥ ...⇥ X̃d. We define a new
random variable X̃ = (X̃1, ..., X̃d) 2 X̃ in the following
way:

X̃i =

(
Xi, if Mi = 1

⇤, otherwise
(1)

so that M indicates which components of X are observed.
Note that we can recover M from X̃.

Throughout the remainder of the paper, we will often use
lower-case letters to denote realizations of a random variable
and use the notation 1 to denote a vector of 1s, whose
dimension will be clear from the context (most often, d).

𝑥ଵଵ X 𝑥ଵଷ 𝑥ଵସ X

X 𝑥ଶଶ X 𝑥ଶସ 𝑥ଶହ

𝑥ଷଵ X 𝑥ଷଷ X 𝑥ଷହ

Original data

𝑥ଵଵ 0 𝑥ଵଷ 𝑥ଵସ 0

0 𝑥ଶଶ 0 𝑥ଶସ 𝑥ଶହ
𝑥ଷଵ 0 𝑥ଷଷ 0 𝑥ଷହ

1 0 1 1 0

0 1 0 1 1

1 0 1 0 1

Data matrix Mask matrix

𝑥ଵଵ �̅�ଵଶ 𝑥ଵଷ 𝑥ଵସ �̅�ଵହ

�̅�ଶଵ 𝑥ଶଶ �̅�ଶଷ 𝑥ଶସ 𝑥ଶହ

𝑥ଷଵ �̅�ଷଶ 𝑥ଷଷ �̅�ଷସ 𝑥ଷହ

Generator

Imputed Matrix

Discriminator

𝑝ଵଵ 𝑝ଵଶ 𝑝ଵଷ 𝑝ଵସ 𝑝ଵହ

𝑝ଶଵ 𝑝ଶଶ 𝑝ଶଷ 𝑝ଶସ 𝑝ଶହ

𝑝ଷଵ 𝑝ଷଶ 𝑝ଷଷ 𝑝ଷସ 𝑝ଷହ

Loss
(Cross Entropy)

Estimated mask matrix

Back 
propagate

1 0.5 1 1 0

0 1 0 1 0.5

1 0 1 0.5 1

Hint Matrix

Back 
propagate

Loss
(MSE)

Hint Generator

+

0 𝑧ଵଶ 0 0 𝑧ଵହ
𝑧ଶଵ 0 𝑧ଶଷ 0 0

0 𝑧ଷଶ 0 𝑧ଷସ 0

Random matrix

Figure 1. The architecture of GAIN

2.1. Imputation

In the imputation setting, n i.i.d. copies of X̃ are real-
ized, denoted x̃1, ..., x̃n and we define the dataset D =
{(x̃i,mi)}n

i=1, where mi is simply the recovered realiza-
tion of M corresponding to x̃i.

Our goal is to impute the unobserved values in each x̃i. For-
mally, we want to generate samples according to P (X|X̃ =
x̃i), the conditional distribution of X given X̃ = x̃i, for
each i, to fill in the missing data points in D. By attempting
to model the distribution of the data rather than just the
expectation, we are able to make multiple draws and there-
fore make multiple imputations allowing us to capture the
uncertainty of the imputed values (Buuren & Oudshoorn,
2000; Buuren & Groothuis-Oudshoorn, 2011; Rubin, 2004).

3. Generative Adversarial Imputation Nets
In this section we describe our approach for simulating
P (X|X̃ = x̃i) which is motivated by GANs. We highlight
key similarities and differences to a standard (conditional)

Generator	1

Generator	I

…

Hint	Generator

GAIN: Missing Data Imputation using Generative Adversarial Nets

many circumstances, missing values are part of the inherent
structure of the problem so obtaining a complete dataset is
impossible. Another approach with DAE (Gondara & Wang,
2017) allows for an incomplete dataset; however, it only uti-
lizes the observed components to learn the representations
of the data. (Allen & Li, 2016) uses Deep Convolutional
GANs for image completion; however, it also requires com-
plete data for training the discriminator.

In this paper, we propose a novel imputation method, which
we call Generative Adversarial Imputation Nets (GAIN),
that generalizes the well-known GAN (Goodfellow et al.,
2014) and is able to operate successfully even when com-
plete data is unavailable. In GAIN, the generator’s goal is to
accurately impute missing data, and the discriminator’s goal
is to distinguish between observed and imputed components.
The discriminator is trained to minimize the classification
loss (when classifying which components were observed
and which have been imputed), and the generator is trained
to maximize the discriminator’s misclassification rate. Thus,
these two networks are trained using an adversarial process.
To achieve this goal, GAIN builds on and adapts the stan-
dard GAN architecture. To ensure that the result of this
adversarial process is the desired target, the GAIN architec-
ture provides the discriminator with additional information
in the form of “hints”. This hinting ensures that the genera-
tor generates samples according to the true underlying data
distribution.

2. Problem Formulation
Consider a d-dimensional space X = X1 ⇥ ...⇥ Xd. Sup-
pose that X = (X1, ..., Xd) is a random variable (either
continuous or binary) taking values in X , whose distribu-
tion we will denote P (X). Suppose that M = (M1, ..., Md)
is a random variable taking values in {0, 1}d. We will call
X the data vector, and M the mask vector.

For each i 2 {1, ..., d}, we define a new space X̃i = Xi [
{⇤} where ⇤ is simply a point not in any Xi, representing an
unobserved value. Let X̃ = X̃1⇥ ...⇥ X̃d. We define a new
random variable X̃ = (X̃1, ..., X̃d) 2 X̃ in the following
way:

X̃i =

(
Xi, if Mi = 1

⇤, otherwise
(1)

so that M indicates which components of X are observed.
Note that we can recover M from X̃.

Throughout the remainder of the paper, we will often use
lower-case letters to denote realizations of a random variable
and use the notation 1 to denote a vector of 1s, whose
dimension will be clear from the context (most often, d).

𝑥ଵଵ X 𝑥ଵଷ 𝑥ଵସ X

X 𝑥ଶଶ X 𝑥ଶସ 𝑥ଶହ

𝑥ଷଵ X 𝑥ଷଷ X 𝑥ଷହ

Original data

𝑥ଵଵ 0 𝑥ଵଷ 𝑥ଵସ 0

0 𝑥ଶଶ 0 𝑥ଶସ 𝑥ଶହ
𝑥ଷଵ 0 𝑥ଷଷ 0 𝑥ଷହ

1 0 1 1 0

0 1 0 1 1

1 0 1 0 1

Data matrix Mask matrix

𝑥ଵଵ �̅�ଵଶ 𝑥ଵଷ 𝑥ଵସ �̅�ଵହ

�̅�ଶଵ 𝑥ଶଶ �̅�ଶଷ 𝑥ଶସ 𝑥ଶହ

𝑥ଷଵ �̅�ଷଶ 𝑥ଷଷ �̅�ଷସ 𝑥ଷହ

Generator

Imputed Matrix

Discriminator

𝑝ଵଵ 𝑝ଵଶ 𝑝ଵଷ 𝑝ଵସ 𝑝ଵହ

𝑝ଶଵ 𝑝ଶଶ 𝑝ଶଷ 𝑝ଶସ 𝑝ଶହ

𝑝ଷଵ 𝑝ଷଶ 𝑝ଷଷ 𝑝ଷସ 𝑝ଷହ

Loss
(Cross Entropy)

Estimated mask matrix

Back 
propagate

1 0.5 1 1 0

0 1 0 1 0.5

1 0 1 0.5 1

Hint Matrix

Back 
propagate

Loss
(MSE)

Hint Generator

+

0 𝑧ଵଶ 0 0 𝑧ଵହ
𝑧ଶଵ 0 𝑧ଶଷ 0 0

0 𝑧ଷଶ 0 𝑧ଷସ 0

Random matrix

Figure 1. The architecture of GAIN

2.1. Imputation

In the imputation setting, n i.i.d. copies of X̃ are real-
ized, denoted x̃1, ..., x̃n and we define the dataset D =
{(x̃i,mi)}n

i=1, where mi is simply the recovered realiza-
tion of M corresponding to x̃i.

Our goal is to impute the unobserved values in each x̃i. For-
mally, we want to generate samples according to P (X|X̃ =
x̃i), the conditional distribution of X given X̃ = x̃i, for
each i, to fill in the missing data points in D. By attempting
to model the distribution of the data rather than just the
expectation, we are able to make multiple draws and there-
fore make multiple imputations allowing us to capture the
uncertainty of the imputed values (Buuren & Oudshoorn,
2000; Buuren & Groothuis-Oudshoorn, 2011; Rubin, 2004).

3. Generative Adversarial Imputation Nets
In this section we describe our approach for simulating
P (X|X̃ = x̃i) which is motivated by GANs. We highlight
key similarities and differences to a standard (conditional)

Imputed	Matrix

GAIN: Missing Data Imputation using Generative Adversarial Nets

many circumstances, missing values are part of the inherent
structure of the problem so obtaining a complete dataset is
impossible. Another approach with DAE (Gondara & Wang,
2017) allows for an incomplete dataset; however, it only uti-
lizes the observed components to learn the representations
of the data. (Allen & Li, 2016) uses Deep Convolutional
GANs for image completion; however, it also requires com-
plete data for training the discriminator.

In this paper, we propose a novel imputation method, which
we call Generative Adversarial Imputation Nets (GAIN),
that generalizes the well-known GAN (Goodfellow et al.,
2014) and is able to operate successfully even when com-
plete data is unavailable. In GAIN, the generator’s goal is to
accurately impute missing data, and the discriminator’s goal
is to distinguish between observed and imputed components.
The discriminator is trained to minimize the classification
loss (when classifying which components were observed
and which have been imputed), and the generator is trained
to maximize the discriminator’s misclassification rate. Thus,
these two networks are trained using an adversarial process.
To achieve this goal, GAIN builds on and adapts the stan-
dard GAN architecture. To ensure that the result of this
adversarial process is the desired target, the GAIN architec-
ture provides the discriminator with additional information
in the form of “hints”. This hinting ensures that the genera-
tor generates samples according to the true underlying data
distribution.

2. Problem Formulation
Consider a d-dimensional space X = X1 ⇥ ...⇥ Xd. Sup-
pose that X = (X1, ..., Xd) is a random variable (either
continuous or binary) taking values in X , whose distribu-
tion we will denote P (X). Suppose that M = (M1, ..., Md)
is a random variable taking values in {0, 1}d. We will call
X the data vector, and M the mask vector.

For each i 2 {1, ..., d}, we define a new space X̃i = Xi [
{⇤} where ⇤ is simply a point not in any Xi, representing an
unobserved value. Let X̃ = X̃1⇥ ...⇥ X̃d. We define a new
random variable X̃ = (X̃1, ..., X̃d) 2 X̃ in the following
way:

X̃i =

(
Xi, if Mi = 1

⇤, otherwise
(1)

so that M indicates which components of X are observed.
Note that we can recover M from X̃.

Throughout the remainder of the paper, we will often use
lower-case letters to denote realizations of a random variable
and use the notation 1 to denote a vector of 1s, whose
dimension will be clear from the context (most often, d).

𝑥ଵଵ X 𝑥ଵଷ 𝑥ଵସ X

X 𝑥ଶଶ X 𝑥ଶସ 𝑥ଶହ

𝑥ଷଵ X 𝑥ଷଷ X 𝑥ଷହ

Original data

𝑥ଵଵ 0 𝑥ଵଷ 𝑥ଵସ 0

0 𝑥ଶଶ 0 𝑥ଶସ 𝑥ଶହ
𝑥ଷଵ 0 𝑥ଷଷ 0 𝑥ଷହ

1 0 1 1 0

0 1 0 1 1

1 0 1 0 1

Data matrix Mask matrix

𝑥ଵଵ �̅�ଵଶ 𝑥ଵଷ 𝑥ଵସ �̅�ଵହ

�̅�ଶଵ 𝑥ଶଶ �̅�ଶଷ 𝑥ଶସ 𝑥ଶହ

𝑥ଷଵ �̅�ଷଶ 𝑥ଷଷ �̅�ଷସ 𝑥ଷହ

Generator

Imputed Matrix

Discriminator

𝑝ଵଵ 𝑝ଵଶ 𝑝ଵଷ 𝑝ଵସ 𝑝ଵହ

𝑝ଶଵ 𝑝ଶଶ 𝑝ଶଷ 𝑝ଶସ 𝑝ଶହ

𝑝ଷଵ 𝑝ଷଶ 𝑝ଷଷ 𝑝ଷସ 𝑝ଷହ

Loss
(Cross Entropy)

Estimated mask matrix

Back 
propagate

1 0.5 1 1 0

0 1 0 1 0.5

1 0 1 0.5 1

Hint Matrix

Back 
propagate

Loss
(MSE)

Hint Generator

+

0 𝑧ଵଶ 0 0 𝑧ଵହ
𝑧ଶଵ 0 𝑧ଶଷ 0 0

0 𝑧ଷଶ 0 𝑧ଷସ 0

Random matrix

Figure 1. The architecture of GAIN

2.1. Imputation

In the imputation setting, n i.i.d. copies of X̃ are real-
ized, denoted x̃1, ..., x̃n and we define the dataset D =
{(x̃i,mi)}n

i=1, where mi is simply the recovered realiza-
tion of M corresponding to x̃i.

Our goal is to impute the unobserved values in each x̃i. For-
mally, we want to generate samples according to P (X|X̃ =
x̃i), the conditional distribution of X given X̃ = x̃i, for
each i, to fill in the missing data points in D. By attempting
to model the distribution of the data rather than just the
expectation, we are able to make multiple draws and there-
fore make multiple imputations allowing us to capture the
uncertainty of the imputed values (Buuren & Oudshoorn,
2000; Buuren & Groothuis-Oudshoorn, 2011; Rubin, 2004).

3. Generative Adversarial Imputation Nets
In this section we describe our approach for simulating
P (X|X̃ = x̃i) which is motivated by GANs. We highlight
key similarities and differences to a standard (conditional)

Discriminator Loss

GAIN: Missing Data Imputation using Generative Adversarial Nets

many circumstances, missing values are part of the inherent
structure of the problem so obtaining a complete dataset is
impossible. Another approach with DAE (Gondara & Wang,
2017) allows for an incomplete dataset; however, it only uti-
lizes the observed components to learn the representations
of the data. (Allen & Li, 2016) uses Deep Convolutional
GANs for image completion; however, it also requires com-
plete data for training the discriminator.

In this paper, we propose a novel imputation method, which
we call Generative Adversarial Imputation Nets (GAIN),
that generalizes the well-known GAN (Goodfellow et al.,
2014) and is able to operate successfully even when com-
plete data is unavailable. In GAIN, the generator’s goal is to
accurately impute missing data, and the discriminator’s goal
is to distinguish between observed and imputed components.
The discriminator is trained to minimize the classification
loss (when classifying which components were observed
and which have been imputed), and the generator is trained
to maximize the discriminator’s misclassification rate. Thus,
these two networks are trained using an adversarial process.
To achieve this goal, GAIN builds on and adapts the stan-
dard GAN architecture. To ensure that the result of this
adversarial process is the desired target, the GAIN architec-
ture provides the discriminator with additional information
in the form of “hints”. This hinting ensures that the genera-
tor generates samples according to the true underlying data
distribution.

2. Problem Formulation
Consider a d-dimensional space X = X1 ⇥ ...⇥ Xd. Sup-
pose that X = (X1, ..., Xd) is a random variable (either
continuous or binary) taking values in X , whose distribu-
tion we will denote P (X). Suppose that M = (M1, ..., Md)
is a random variable taking values in {0, 1}d. We will call
X the data vector, and M the mask vector.

For each i 2 {1, ..., d}, we define a new space X̃i = Xi [
{⇤} where ⇤ is simply a point not in any Xi, representing an
unobserved value. Let X̃ = X̃1⇥ ...⇥ X̃d. We define a new
random variable X̃ = (X̃1, ..., X̃d) 2 X̃ in the following
way:

X̃i =

(
Xi, if Mi = 1

⇤, otherwise
(1)

so that M indicates which components of X are observed.
Note that we can recover M from X̃.

Throughout the remainder of the paper, we will often use
lower-case letters to denote realizations of a random variable
and use the notation 1 to denote a vector of 1s, whose
dimension will be clear from the context (most often, d).

𝑥ଵଵ X 𝑥ଵଷ 𝑥ଵସ X

X 𝑥ଶଶ X 𝑥ଶସ 𝑥ଶହ

𝑥ଷଵ X 𝑥ଷଷ X 𝑥ଷହ

Original data

𝑥ଵଵ 0 𝑥ଵଷ 𝑥ଵସ 0

0 𝑥ଶଶ 0 𝑥ଶସ 𝑥ଶହ
𝑥ଷଵ 0 𝑥ଷଷ 0 𝑥ଷହ

1 0 1 1 0

0 1 0 1 1

1 0 1 0 1

Data matrix Mask matrix

𝑥ଵଵ �̅�ଵଶ 𝑥ଵଷ 𝑥ଵସ �̅�ଵହ

�̅�ଶଵ 𝑥ଶଶ �̅�ଶଷ 𝑥ଶସ 𝑥ଶହ

𝑥ଷଵ �̅�ଷଶ 𝑥ଷଷ �̅�ଷସ 𝑥ଷହ

Generator

Imputed Matrix

Discriminator

𝑝ଵଵ 𝑝ଵଶ 𝑝ଵଷ 𝑝ଵସ 𝑝ଵହ

𝑝ଶଵ 𝑝ଶଶ 𝑝ଶଷ 𝑝ଶସ 𝑝ଶହ

𝑝ଷଵ 𝑝ଷଶ 𝑝ଷଷ 𝑝ଷସ 𝑝ଷହ

Loss
(Cross Entropy)

Estimated mask matrix

Back 
propagate

1 0.5 1 1 0

0 1 0 1 0.5

1 0 1 0.5 1

Hint Matrix

Back 
propagate

Loss
(MSE)

Hint Generator

+

0 𝑧ଵଶ 0 0 𝑧ଵହ
𝑧ଶଵ 0 𝑧ଶଷ 0 0

0 𝑧ଷଶ 0 𝑧ଷସ 0

Random matrix

Figure 1. The architecture of GAIN

2.1. Imputation

In the imputation setting, n i.i.d. copies of X̃ are real-
ized, denoted x̃1, ..., x̃n and we define the dataset D =
{(x̃i,mi)}n

i=1, where mi is simply the recovered realiza-
tion of M corresponding to x̃i.

Our goal is to impute the unobserved values in each x̃i. For-
mally, we want to generate samples according to P (X|X̃ =
x̃i), the conditional distribution of X given X̃ = x̃i, for
each i, to fill in the missing data points in D. By attempting
to model the distribution of the data rather than just the
expectation, we are able to make multiple draws and there-
fore make multiple imputations allowing us to capture the
uncertainty of the imputed values (Buuren & Oudshoorn,
2000; Buuren & Groothuis-Oudshoorn, 2011; Rubin, 2004).

3. Generative Adversarial Imputation Nets
In this section we describe our approach for simulating
P (X|X̃ = x̃i) which is motivated by GANs. We highlight
key similarities and differences to a standard (conditional)

Figure 3: Architecture of matrix imputation by Stackelberg GAN.

3.2.1 Generator

In the Stackelberg GAN, there are multiple generators. We denote by I the number of generators. For each
generator, it takes data matrix X̃, mask matrix M, and random matrix Z as inputs. It outputs an imputed
matrix X̂. Let Gi(·) be the mapping associated with the i-th generator. Then we have

X̂ = Gi(X̃,M, (1−M)� Z). (3)

Analogous to the standard GAN, hereby the random matrix Z is analogous to the noise variable z ∼ Pz in
Section 2.1. The � denotes the element-wise multiplication. Note that the target distribution P (X̂|X̃) is
essentially of dimension ‖1 −M‖1. Thus the noise that we pass into the i-th generator is (1 −M) � Z
instead of Z. Note that we involve multiple generators here in order to avoid the mode collapse issues and
increase the diversity of the generated contents.

3.2.2 Discriminator

We apply the discriminator as an adversary to train the generators. It takes the imputed matrix obtained by the
above-mentioned generators as an input. However, there is a key difference between the role of discriminator
in the standard GAN and in our model: In the standard GAN the output of the generators is either real or fake
so that the discriminator is only required to distinguish whether the whole matrix is real or fake, while in our
model the discriminator tries to distinguish whether a given component of the matrix is originally observed
or is imputed by the generators so that the distinguishing is element-wise. More formally, we formulate the
discriminator as a function D : X → [0, 1]d, where the i-th component of D(X̂) represents the probability
that the i-th component of X̂ was observed. We want to match this probability with the index in the mask
matrix M.

6 of 13 12-11-2018 at 17:23



Machine Learning Department, DAP Report

3.2.3 Hint Matrix

As can be seen from the theoretical results of [YJvdS18], we have to introduce a hint mechanism, otherwise
the algorithm of missing data imputation would fail. [YJvdS18] showed that if we do not provide enough
information about M to the discriminator D, then there are multiple distributions that G can generate which
are all optimal w.r.t. D. To this end, we follow the design of hint matrix from [YJvdS18]. In particular, a hint
mechanism is a random variable H ∈ {0, 0.5, 1}d. We allow H to depend on the mask matrix M. Let the
random variable B = (B1, ..., Bd) be drawn by first sampling a k uniformly from {1, 2, ..., d} and then

Bj =

{
1, j 6= k;

0, j = k.
(4)

We then have H defined by
H = B�M + 0.5(1−B). (5)

We note that H satisfies that Hi = t implies Mi = t for t ∈ {0, 1}, while Hi = 0.5 implies nothing
about the mask Mi. That is, H reveals all but one entry of M to the discriminator D. However, H indeed
contains certain information about Mi as Mi may not be independent of all other components of M. With
the introduction of H, the output of the discriminator becomes D(X̂,H).

3.2.4 Loss Function

We trainD andGi’s adversarially. The goal of the discriminator is to maximize the probability of successfully
predicting M and the goal of generators is to minimize that probability. Denote by

V (D,G) = E
X̂,M,H

[〈
M, logD(X̂,H)

〉
+
〈
1−M, log(1−D(X̂,H))

〉]
, (6)

where log is the element-wise logarithm and X̂ depends on G. The imputation model associated with the
standard GAN is then

min
G

max
D

V (D,G). (7)

In our Stackelberg GAN, however, we apply multiple generators instead and the corresponding model is

min
G1,...,GI

max
D

I∑

i=1

V (D,Gi). (8)

3.2.5 Missing Value Imputation

We use the output of G to impute the missing data. However, there are multiple generators in our Stackelberg
GAN model. In order to generator a single value for each missing entry position, we first draw a uniformly
random value i from 1 to I and use the i-th generator to obtain a new sample. Note that this procedure is
independent of the training procedure.

7 of 13 12-11-2018 at 17:23



Machine Learning Department, DAP Report

Table 1: Description of UCI datasets.

Name # Training # Test # Features Data Types
bc 489 105 9 Categorical
iris 105 23 4 Continuous
vowel 693 149 9 Continuous
housevote 304 66 16 Categorical
servo 116 26 4 Categorical
boston 354 76 13 Categorical, Ordinal, Continuous

Table 2: Performance of various methods on the UCI datasets with 50% missing values.

Our method VAE MICE Mean Zero Medain AE DAE RAE MissForest KNN PCA SoftImpute
bc 2.59 2.71 2.8 3.24 4.44 2.76 3.25 3.04 3.23 3.12 2.94 3.03 4.5
iris 0.94 0.98 1.02 1.05 3.18 1.08 1 1.02 1.04 1.07 1.1 1.05 3.02
vowel 4.30 5.19 5.68 5.22 6.34 5.27 5.22 5.19 5.22 5.43 5.59 5.2 8.62
housevote 2.69 3.1 3.12 3.19 11.2 3.9 3.19 3.17 3.19 3.25 3.39 3.1 8.8
servo 0.70 1.15 1.32 1.22 2.89 1.23 1.26 1.2 1.2 1.32 1.28 1.32 2.67
boston 3.77 4.65 5.03 4.34 8.39 4.27 4.74 4.7 4.71 5.42 5.11 4.56 11.7

3.3 Preliminary Experiments on UCI Dataset

To demonstrate the effectiveness of the proposed method, we conduct preliminary experiments on the UCI
dataset before we apply it to the real dataset. We choose 6 sub-datasets from UCI dataset for our purpose:
bc, iris, vowel, housevote, servo, and boston. The descriptions of these 6 sub-datasets w.r.t the number of
training data, the number of test data, feature dimension and data types are in Table 4. In order to make
the problem a missing data imputation problem, we randomly remove 50% components of the data matrix
and run various algorithms to complete it. These algorithms include our Stackelberg GAN based method
with 10 generators, VAE [ZXX18], MICE [BGO10], Mean, Zero, Median, AE [RHW85], DAE [GW17],
RAE [TLZJ17], MissForest [SB11], KNN, PCA, and SoftImpute [MHT10].
Table 2 records the performance of various imputation methods on the UCI dataset. Hereby, we report the
mean square error between the imputed matrix and the ground-truth. It shows that in all 6 sub-datasets, the
Stackelberg GAN based method uniformly outperforms other algorithms.

4 Imputation and Prediction on Real Medical Dataset — MIMIC-III

In this section, we apply our Stackelberg GAN to the real-world problem of imputing missing data in the
medical dataset — MIMIC-III.

4.1 Problem Description

MIMIC-III Dataset. MIMIC-III (Medical Information Mart for Intensive Care III, [JPS+16]) is a dataset
which consists of over 58,000 hospital admissions for 38,645 adults and 7,875 neonates. The data ranges from

8 of 13 12-11-2018 at 17:23



Machine Learning Department, DAP Report

Figure 4: Examples of labevents table in the MIMIC-III dataset.

June 2001 to October 2012. Although the dataset is de-identified, it contains significant information about the
clinical care of patients. The dataset is provided by the researchers at MIT Laboratory for Computational
Physiology.
There are 26 tables in the MIMIC-III dataset. We use the labevents table in our experiments. The
labevents table provides information about all laboratory measurements for various patients. There are to-
tally 27,854,055 rows in the table. Table columns include ROW_ID (INT), SUBJECT_ID (INT), HADM_ID
(INT), ITEMID (INT), CHARTTIME (TIMESTAMP(0)), VALUE (VARCHAR(200)), CALUENUM (DOU-
BLE PRECISION), VALUEUOM (VARCHAR(20)), and FLAG (VARCHAR(20)). Here SUBJECT_ID
is the identifier which is unique to a patient and HADM_ID is unique to a patient hospital stay. ITEMID is
the identifier for a single measurement type in the database. For example, ITEMID 212 corresponds to an
instantiation of the heart rate. CHARTTIME records the time at which an obsrevation was charted. VALUE
contains the value measured for the test identified by the ITEMID. VALUENUM contains the same data as
VALUE if this value is numeric, and is NULL if this value is not numeric. VALUEUOM is used to record
the unit of measurement. Finally, FLAG indicates whether the laboratory value is considered abnormal or
not. An example of raw labevents table is shown in Table 4. Besides, all HADM_ID is labelled according
to whether the patient passes away or not. Identifying whether a given a patent passes away or not, this
is a natural two-class classification problem. This problem has huge applications in the medical auxiliary
system, as predicting the health of a patient helps doctors to act in advance and save life. For example, when

9 of 13 12-11-2018 at 17:23



Machine Learning Department, DAP Report

our system predicts one patient may have potential risk to pass away, the hospital may assign ICU to this
patient and have more nurses to take care of him/her. However, the challenge is that there are huge amount of
missing values in the dataset.
We preprocess the data by reformulating the table according to HADM_ID. That is, each row of matrix after
our reformulation corresponds to various lab tests of one patient. With this preprocessing step, we obtain
a huge training data matrix with 37, 199 rows and 77 features, and a test matrix with 11, 625 rows and 77
features, where features correspond to results from various lab tests. We find that there are only 26% entries
available for both matrices. This is no ground-truth for these missing values, but we have ground-truth label .
Our goal is using the training data only to learn the distribution of the missing values and impute the test
data. That is, although our method is unsupervised, we do not try to use the test data to learn the distribution
of the missing value, as in reality the test data comes row-wise in sequence. What we learn from is the
(incomplete) training data and their labels. After both matrices being imputed, we run a classifier to predict
whether patients passes away or not in the test data matrix with a high accuracy.

4.2 Experimental Setup

Our experimental setup is in Table 3. Note that here we do not try to use large networks. So our algorithm
runs pretty fast in minutes.

Table 3: Architecture and hyperparameters setup in our experiments.

Operation Input Dim Output Dim Activation
Generator G(z) : z ∼ N (0,1) 256

Linear 256 128 ReLU
Linear 128 Dim ReLU

Discriminator
Linear Dim 256 ReLU
Linear 256 128 ReLU
Linear 128 1 Sigmoid

Number of generators 10
Batch size for real data 64

Number of iterations 10000
Learning rate 0.0002

Optimizer Adam

4.3 Experimental Results

We implement and run our Stackelberg GAN algorithm on the MIMIC-III dataset. To alleviate the mode
collapse issue where the completed values of GAN are oftentimes exactly the same, we apply I = 10
generators in our Stackelberg GAN. In order to generate one value for a missing-value position, we sample a
number i uniformly at random from 1 to 10, and use the i-th generator to complete that value.

10 of 13 12-11-2018 at 17:23



Machine Learning Department, DAP Report

Our experimental environment is Tensorflow and we can access to one NVIDIA GTX 1080Ti GPU. Specifi-
cally, we run our method developed in Section 3 to learn the distribution of missing component and use it to
impute the test data. After we obtain an imputed test data, we simply run weighted logistic regression for 100
epochs to predict the label of test data. We set the weight for each class propositional to the number of data
points of each class. Since we have access to the true label of test data, we record the classification accuracy
on the test dataset. It shows that our method achieves two-class error as low as 5%.
As most patients did not pass away, the dataset is also notoriously known as imbalanced for the two classes.
Therefore, to measure the performance of our method in this sense, we also report the F1 score. The F1 score
is defined as

F1 Score = 2× precision * recall
precision + recall

. (9)

Hereby, the precision is defined as the number of true positives over the number of true positives plus the
number of false positives, and the recall is defined as the number of true positives over the number of true
positives plus the number of false negatives. It is well-known that the F1 score is able to handle class
imbalance to some extent. Our model achieves F1 score as high as 0.86, thus can handle the imbalanced data
automatically.

Table 4: Prediction performance after data imputation.

Name F1 Score Classification Accuracy
Fixed-value-filling 0.47 89%
Nuclear Norm Minimization 0.48 90%
Classic GAN 0.85 94± 0.46%
Stackelberg GAN (Ours) 0.86 95± 0.27%

4.4 Analysis and Discussion

We compare the performance of Stackelberg GAN with several baseline approaches — fixed-value-filling,
nuclear norm minimization, and classic GAN. For the fixed-value-filling method, it fills in a fixed value,
e.g., the mean or median, for all missing positions. The method has been widely applied in all aspects of
fields with missing data as it is easy to implement and enjoys not-so-bad performance. In particular, we
fill in the value of 100 for all the missing positions in the data matrix, as many available values in the data
matrix are of magnitude 100. It shows that the method achieves classification accuracy 89%. However,
the F1 score is as low as 0.47. The nuclear norm minimization achieves certain improvement over the
fixed-value-filling method. However, since nuclear norm minimization only explores the linear structure in
the data, the improvement is limited. The method of GAN achieves great improvement. By increasing the
number of generators, our approach achieves the highest performance on both metrics.

5 Conclusions

We study the problem of imputing medical missing data by Stackelberg GAN. To solve the real problems, we
apply the proposed Stackelberg GAN based imputation method to the MIMIC-III dataset. The percentage of

11 of 13 12-11-2018 at 17:23



Machine Learning Department, DAP Report

missing records in this dataset is as high as 74%, which causes potential difficulties of mining and analysis
of this dataset. To resolve the issue, we apply our proposed model to impute the dataset. Our algorithm
obtains outstanding performance on this dataset, achieving 0.86 F1 score and 95% prediction accuracy after
we pre-process/complete the data by our algorithm. Our result reveals the possibility of imputing missing
data in the real problems, which might be of independent interest more broadly.

Acknowledgements. We thank Petuum Inc. for providing us GPU resource and MIMIC-III dataset, and
thank Hongbao Zhang and Pengtao Xie for offering the code in their paper for our comparison.

References

[ACW18] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420,
2018.

[BGO10] S van Buuren and Karin Groothuis-Oudshoorn. MICE: Multivariate imputation by chained
equations in R. Journal of Statistical Software, pages 1–68, 2010.

[CR09] E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations of
Computational Mathematics, 9(6):717–772, 2009.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

[GW17] Lovedeep Gondara and Ke Wang. Multiple imputation using deep denoising autoencoders.
arXiv preprint arXiv:1705.02737, 2017.

[JPS+16] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. MIMIC-
III, a freely accessible critical care database. Scientific data, 3:160035, 2016.

[KW13] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[MHT10] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms
for learning large incomplete matrices. Journal of machine learning research, 11:2287–2322,
2010.

[NCT16] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-GAN: Training generative neural
samplers using variational divergence minimization. In Advances in Neural Information
Processing Systems, pages 271–279, 2016.

[RHW85] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal represen-
tations by error propagation. Technical report, California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

12 of 13 12-11-2018 at 17:23



Machine Learning Department, DAP Report

[SB11] Daniel J Stekhoven and Peter Bühlmann. Missforest—non-parametric missing value imputation
for mixed-type data. Bioinformatics, 28(1):112–118, 2011.

[SKC18] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Protecting classifiers
against adversarial attacks using generative models. arXiv preprint arXiv:1805.06605, 2018.

[SL10] Ruslan Salakhutdinov and Hugo Larochelle. Efficient learning of deep boltzmann machines.
In International Conference on Artificial Intelligence and Statistics, pages 693–700, 2010.

[TLZJ17] Luan Tran, Xiaoming Liu, Jiayu Zhou, and Rong Jin. Missing modalities imputation via cas-
caded residual autoencoder. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 1405–1414, 2017.

[XLZ+18] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song. Generating
adversarial examples with adversarial networks. arXiv preprint arXiv:1801.02610, 2018.

[YJvdS18] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. GAIN: Missing data imputation
using generative adversarial nets. arXiv preprint arXiv:1806.02920, 2018.

[ZXX18] Hongbao Zhang, Pengtao Xie, and Eric Xing. Missing value imputation based on deep
generative models. arXiv preprint arXiv:1808.01684, 2018.

13 of 13 12-11-2018 at 17:23


	1 Introduction
	2 Stackelberg GAN
	2.1 Model Setup

	3 Missing Data Imputation by Stackelberg GAN
	3.1 Problem Formulation
	3.2 Methodology
	3.2.1 Generator
	3.2.2 Discriminator
	3.2.3 Hint Matrix
	3.2.4 Loss Function
	3.2.5 Missing Value Imputation

	3.3 Preliminary Experiments on UCI Dataset

	4 Imputation and Prediction on Real Medical Dataset � MIMIC-III
	4.1 Problem Description
	4.2 Experimental Setup
	4.3 Experimental Results
	4.4 Analysis and Discussion

	5 Conclusions

