
KDD Project Report

Using Error-Correcting Codes for Efficient Text Classification
with a Large Number of Categories

Rayid Ghani

Center for Automated Learning and Discovery,
School of Computer Science,
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We investigate the use of Error-Correcting Output Codes (ECOC) for efficient text classification with a
large number of categories and propose several extensions which improve the performance of ECOC.
ECOC has been shown to perform well for classification tasks, including text classification, but it still
remains an under-explored area in ensemble learning algorithms. We explore the use of error-correcting
codes that are short (minimizing computational cost) but result in highly accurate classifiers for several
real-world text classification problems. Our results also show that ECOC is particularly effective for high-
precision classification. In addition, we develop modifications and improvements to make ECOC more
accurate, such as intelligently assigning codewords to categories according to their confusability, and
learning the decoding (combining the decisions of the individual classifiers) in order to adapt to different
datasets. To reduce the need for labeled training data, we develop a framework for ECOC where unlabeled
data can be used to improve classification accuracy. This research will impact any area where efficient
classification of documents is useful such as web portals, information filtering and routing, especially in
open-domain applications where the number of categories is usually very large, and new documents and
categories are being constantly added, and the system needs to be very efficient.

2

1. Introduction

The enormous growth of on-line information has led to a comparable growth in the need for methods that
help users organize such information. One area in particular that has seen much recent research activity is
the use of automated learning techniques to categorize text documents. Such methods are useful for
addressing problems such as information filtering and routing, clustering of related documents and
classification of documents into pre-defined topics, keyword tagging, word sense disambiguation, sentence
parsing,. A primary application of text categorization systems is to assign subject categories to documents
to support information retrieval, or to aid human indexers in assigning such categories. Text categorization
components are also seeing increasing use in natural language processing systems for data extraction.
Categorization may be used to filter out documents or parts of documents that are unlikely to contain
extractable data, without incurring the cost of more expensive natural language processing.

Automated text categorization on the Web allows savings of human resources, more frequent updates,
dealing with large amounts of data, discovery and categorization of new sites without human intervention,
re-categorization of known sites when their content changes or when the taxonomy changes. In the case of
Search Engines, in response to a query, a search engine might report the most relevant categories that
contain significant URLs, combining available information retrieval and categorization capabilities.

The use of machine learning techniques for text classification is difficult due to certain characteristics of
this domain – the very large number of input features, noise, and the large variance in the percentage of
features that are actually relevant are just some of them. A relatively moderate sized text corpus can easily
have a vocabulary of tens of thousands of distinct words. It is also challenging because natural language is
ambiguous and the same sentence can have multiple meanings. Furthermore, it is considered good writing
style to not repeatedly use the same word for a particular concept, but instead use synonyms. This means
that the categorizer has to deal with a lot of words having similar meanings. Natural language text also
contains homonyms; words that are spelled the same but have different meanings. The bank of a river, bank
as a financial institution, to bank (turn) an aircraft, to bank a fire and so on. The classifier must in spite of
all these being the same “word”, be able to distinguish between different meanings, since meaning is what
the classification is based on. As a result, algorithms to classify text documents need a lot of time to run
and a large number of labeled training documents.

Text categorization systems attempt to reproduce human categorization judgments. One common approach
to building a text categorization system is to manually assign some set of documents to categories, and then
use inductive learning to automatically assign categories to future documents. Such an approach can save
considerable human effort in building a text categorization system, particularly when replacing or aiding
human indexers who have already produced a large database of categorized documents. In many
applications of such systems such as those involving news, current affairs and web-based ones, new
documents keep coming in at regular intervals and new categories are added, while old categories and
documents are modified and deleted.

It is important for these applications that the system can be retrained fairly quickly and that the training
scales up well with the number of categories. Naïve Bayes, which is one of the faster algorithms for
multiclass text classification, scales up linearly with the number of categories. Other algorithms performing
well on benchmark datasets for text such as SVMs are built for binary classification problems and the most
common approach for multiclass learning with SVMs has been to decompose an n-class problem into n
binary problems and build one binary classifier for each class. Such an approach also scales up linearly
with the number of classes and is not efficient when dealing with hundreds or thousands of categories.
Another method that decomposes multiclass problems into binary problems is the Pairwise approach where
each pair of classes is distinguished using a separate classifier/model. This approach turns out to be very
inefficient and expensive since an n-class problem is decomposed into (n!/2)/(n-2)! binary problems and
requires (n!/2)/(n-2)! classifiers.

We use Error-Correcting Output Codes (ECOC), originally developed by Dietterich & Bakiri (1991), for
efficient classification of text documents with a large number of categories. The application of ECOC to
text classification is not new but our research differs from the traditional use of ECOC for improved
performance at the cost of efficiency in that it specifically focuses on minimizing the computational cost
while maximizing classification accuracy. ECOC has been used for several classification tasks including
very limited applications to text, but previously the focus has been on improving the classification accuracy

3

at the cost of increasing training time and computational cost. For example, Berger (1999) used ECOC for
several text classification tasks and reported improved performance over Naïve Bayes (around 10%
improvement) while increasing the computational cost by several factors. This increase in cost was mainly
due to their use of randomly generated codes which were extremely long. We explore the use of ECOC to
not only increase performance but at the same time increasing the efficiency of the system.

Our research is different from previous work done in text classification in general and with ECOC in
particular in that it focuses specifically on text classification with a large number of categories (on the order
of hundreds of categories) and that we are exploring ways of increasing the performance of ECOC with
short-length codes. The approaches we use are:

• Specifically using short algebraic codes with good error-correcting properties that maximize
accuracy while minimizing code length.

• Assign codewords to categories depending on their confusability
• Learning the decoding function rather than use the standard hamming distance.
• Develop a framework for ECOC that can enable us to use a small amount of labeled training data

and augment it with large amounts of unlabeled data

Our approach is tested on several real-world text classification tasks and we find that using short, error-
correcting codes results in efficient, highly accurate and high-precision text classifiers and that by learning
the decoding function, we can adapt to various datasets. Our combination of ECOC and Co-Training to use
labeled and unlabeled data performs well and outperforms other algorithms designed to combine labeled
and unlabeled data.

2. Related Work

A wide range of statistical and machine learning techniques have been applied to text categorization,
including multivariate regression models [Fuhr et al 1991, Schutze 1995], nearest neighbor classifiers
[Yang 1994], probabilistic Bayesian models [Koller & Sahami 1997, McCallum et al. 98], decision trees
[Lewis & Ringuette 1997], neural networks [Schutze 1995, Weigend et al. 1999], symbolic learning [Apte
et al. 1994, Cohen & Singer 1996], ensemble learning [Schapire & Singer 2000, Ghani 2000, Berger 1999]
and support vector machines [Dumais et al. 1998, Joachims 1998].

Error-correcting codes have been shown to increase the accuracy of decision trees and neural networks on
several “Non-text” data sets available from the Irvine Repository (Murphy & Aha, 1994) using artificial
neural networks and decision trees by Kong & Dietterich (1995). They tried several different random
assignments of codewords to categories but did not see any significant performance differences. Schapire
(1997) showed how AdaBoost can be combined with ECOC to yield a method that was superior to ECOC
on several UCI datasets. Guruswami and Sahai (1999) propose another method combining boosting and
ECOC which weights the individual weak learners differently than Schapire (1997) and show that their
method outperforms Schapire’s AdaBoost.OC. Ricci and Aha (1997) applied a method that combines
ECOC with feature selection for local learners that selects a different subset of features to learn from in
each bit.

Berger (1999) applies the ECOC approach to several text classification problems that do not contain a large
number of categories. To our knowledge, this is the only study of ECOC applied to text classification
besides our previous work. They also give some theoretical evidence for the use of random rather than
error-correcting codes. In previous work we have shown that “short” random codes do not perform well in
practice and have given empirical evidence in favor of using error-correcting codes rather than random
codes.

There has recently been a surge of work combining labeled and unlabeled data for text learning tasks such
as using EM (Nigam et al. 2000) and Co-Training type algorithms (Blum & Mitchell 1998, Nigam & Ghani
2000). These studies have resulted in encouraging results showing that unlabeled data can indeed be of
tremendous value but none of these studies have focused on the problem of a large number of categories,
especially the work on co-training where the datasets used were mostly binary problems.

4

3. Overview of ECOC

In all of the work previously described, no attempt has been made to specifically maximize the
performance of ECOC using short codes and to develop a framework where unlabeled data can be used for
classifying documents in a taxonomy with a large number of categories. The focus of this research is on
developing improved algorithms based on ECOC for efficient text categorization for a large number of
categories. Our approach is based on extensions to ECOC that range from using short and effective codes
to more elaborate algorithms that can be used to augment a limited number of labeled training examples
with a large number of unlabeled data in order to improve the performance of our classifier.

The error-correcting codes and their application to classification problems can be better understood by an
analogy given by Dietterich and Bakiri (1995). We can look at text classification as a type of
communications problem where the correct category is being ’transmitted’ over a medium or channel. The
channel consists of words, the training examples, and the learning algorithm. Due to errors introduced by
the finite training sample, poor choice of input features and limitations or invalid assumptions made in the
learning process, the class information is distorted. By using an error-correcting code and ’transmitting’
each bit separately (via a separate run of the algorithm), the system may be able to recover from the errors.
The codes used should then correct as many errors as possible.

ECOC works by converting a k-class supervised learning problem into a large number L of two-class
supervised learning problems. Any learning algorithm that can handle two-class learning problems can then
be applied to learn each of these L problems. L can then be thought of as the length of the codewords with
one bit in each codeword for each classifier. Each class is assigned a unique binary string of length L; we
will refer to these strings as codewords (Dietterich & Bakiri, 1995). Then we train L classifiers to predict
each bit of the string. The predicted class is the one whose codeword is closest to the codeword produced
by the classifiers. The distance metric we use in our experiments is the Hamming distance which counts the
number of bits that the two codewords differ by. This process of mapping the output string to the nearest
codeword is identical to the decoding step for error-correcting codes (Bose & Ray-Chaudhri, 1960;
Hocuenghem, 1959).

Error-Correcting Codes have traditionally been used to correct errors when transmitting data in
communication tasks. The idea behind these codes is to add redundancy to the data being transmitted so
that even if some errors occur due to the noise in the channel, the data can be correctly received at the other
end.

The key difference in the use of Error-Correcting Codes in communication tasks as opposed to their use in
machine learning (classification) tasks, such as ours, is that communication tasks only require the rows of a
code to be well separated (in terms of the hamming distance), whereas classification tasks require the
columns to be well-separated as well. The reason behind the row-separation is that we want codewords or
classes to be maximally far apart from each other; the column separation is necessary because the functions
being learned for each bit should be uncorrelated so that the errors in each bit are independent of each
other. If the errors made by the learner in each bit were correlated then an error in one bit would result in
errors in multiple bits and the code would not be able to correct them.

It is not clear how much column separation is actually necessary. In fact, there may be other ways of
making the errors in each bit independent and uncorrelated, instead of column separation, such as using
disjoint sets of features to learn each bit of the codeword which are independent of each other but denote
the same concept. This would utilize a setting similar to that of the co-training algorithm proposed by Blum
and Mitchell (1998). For example, in the case of classifying web pages, the training data could be both the
hyperlinks to a page and the page itself and we could use a code that is not well separated in terms of
column hamming distance and still have independent errors since the data itself is independent.

5

Table 1. The ECOC algorithm: m is the number of classes
Training Phase

1. Create an m x n binary matrix M.
2. Each class is assigned one row of M.
3. Train the base classifier to learn the n binary functions (one for each column).

Test Phase

1. Apply each of the n classifiers to the test example.
2. Combine the predictions to form a binary string of length n.
3. Classify to the class with the nearest codeword

4. Experimental Setup

In all the experiments conducted, the base classifier used to learn each bit of the codeword was the naive
Bayes classifier. The implementation used was Rainbow, developed by Andrew McCallum and available
from http://www.cs.cmu.edu/~mccallum/bow.

Feature selection, when used, was done by selecting the words with the highest mutual information gain.
The codes used in the next section were constructed using the BCH method which uses algebraic coding
theory to generate codes well-separated in hamming distance between rows. More information about BCH
codes can be found in Error-Correcting Codes literature (e.g. Hill, 1986; Peterson & Weldon, 1972; Pless,
1989). The codes used for these experiments are available online at http://www.cs.cmu.edu/~rayid/ecoc.

4.1 Datasets

The datasets used in the experiments are described in this section.

4.1.1 INDUSTRY SECTOR DATASET

The Industry Sector dataset, based on data made available by Market Guide Inc. (www.marketguide.com),
consists of company web pages classified in a hierarchy of industry sectors. The data is publicly available
at http://www.cs.cmu.edu/~TextLearning/datasets.html. We do not take the hierarchy into account in our
experiments and use a flattened version of the dataset. This dataset contains a total of 9555 documents
divided into 105 classes. A small fraction of these documents belongs to multiple classes but in our
experiments we remove these documents.1 In tokenizing the data, we skip all MIME and HTML headers,
use a standard stoplist, and do not perform stemming. This procedure is the same as in McCallum et al.
(1998) who use a slightly modified version of this data set. After removing tokens that occur only once, the
corpus contains 1.2 million words with a vocabulary size of 29964.

4.1.2 HOOVERS DATASET

This corpus of company web pages was assembled using the Hoovers Online Web resource
(www.hoovers.com) by obtaining a list of the names and home-page URLs for 4285 companies on the web
and using a custom crawler to collect up to the first 50 Web pages on each site (in breadth first order),
examining just over 108,000 Web pages. There are two sets of categories available from Hoover Online
one consists of 255 classes (which we call Hoovers-255) and the other of 28 categories (Hoovers-28) which
label each company with the industry sector it belongs to (e.g. Oil & Gas, Sports Manufacturers, Computer
Software). These categories label companies, not particular web pages. For this reason, we constructed one
synthetic page per company by concatenating all the pages (up to 50) crawled for that company. Each web-
site is classified into one category only for each classification scheme. The most populous (majority) class
contains 2% of the documents. Since there is no natural feature split available in this dataset, we randomly
divide the vocabulary in two equal parts and apply Co-Training to the two feature sets. We have previously
shown in Nigam & Ghani (2000) that this random partitioning works reasonably well in the absence of a
natural feature split.

1 Only 15 documents out of 9555 belong to two classes so they can be removed from the dataset without
affecting our results considerably.

6

4.1.3 JOBS DATASET

We also use a dataset obtained from WhizBang! Labs consisting of Job titles and Descriptions organized in
a two level hierarchy with 15 first level categories and 65 leaf categories. We use both classification
schemes (Jobs-15 with 15 classes and Jobs-65 with 65 classes). In all, there are 132000 examples and each
example consists of a Job Title and a corresponding Job Description. We consider the Job title and Job
Description as the two feature sets for Co-Training.

4.2 Naïve Bayes

Naive Bayes is a simple but effective text classification algorithm for learning from labeled data alone [13,
14]. The parameterization given by naive Bayes defines an underlying generative model assumed by the
classifier. In this model, first a class is selected according to class prior probabilities. Then, the generator
creates each word in a document by drawing from a multinomial distribution over words specific to the
class. Thus, this model assumes each word in a document is generated independently of the others given the
class.

Naive Bayes forms maximum a posteriori estimates for the class-conditional probabilities for each word in
the vocabulary V from labeled training data D. This is done by counting the frequency that word wt occurs
in all word occurrences for documents di in class cj, supplemented with Laplace smoothing to avoid
probabilities of zero:

∑
∑

=

=

+

+
=

||

1

||

1

)|()|(||

)|()|(1
)|(

V

s ijis

D

i ijit

jt
dcPdwNV

dcPdwN
cwP (1)

where N(wt, di) is the count of the number of times word wt occurs in document di, and where P(cj,di)
∈{0,1} as given by the class label. The prior probabilities of each class are calculated using Maximum
Likelihood Estimation, counting over documents.

At classification time we use these estimated parameters by applying Bayes’ rule to calculate the probability
of each class label and taking the most probable class as the prediction. This makes use of the naive Bayes
independence assumption, which states that words occur independently of each other, given the class of the
document:

)|()()|(jijij cdPcPdcP ∝

∏
=

=
||

1
,)|()(

id

k
jkidj cwPcP (3)

5. Results

This section describes the experiments performed using ECOC. We compare our results with the
performance of naive Bayes, one of the most commonly used algorithms for text classification. We also use
the naive Bayes classifier to learn the individual functions for each bit of the code. Each class has a unique
binary code of the same length. To classify a test instance, we test it on all the individual bit classifiers and
combine the output and then compare it to the codes for the class. The test instance is assigned to the class
with the nearest codeword (in terms of hamming distance) with ties broken randomly.

5.1 Do Error-Correcting Codes Improve Classification Accuracy?

7

Figure 2 shows the performance of the ECOC approach vs. a single naive Bayes classifier for the Industry
Sector, Jobs-15,Jobs-65, Hoovers28 and Hoovers-255 datasets. The vocabulary size for these experiments
was optimized by selecting the words that have the highest mutual information gain given the class. ECOC
results in higher accuracy than Naïve Bayes for all the datasets except Hoovers-255. It is noteworthy that
this increase in accuracy using ECOC also comes with increased efficiency. Naïve Bayes constructs one
“model” for each class and so for the 105 class Industry Sector dataset, it constructs 105 models. ECOC
with 63 bits only constructs 63 models and thus reduces the computational cost of both the training and
testing by almost a factor of 2. We specifically short codes to keep the computational cost down while
increasing classification performance. The lower performance of ECOC on Hoovers-255 dataset can be
attributed to the fact that we used a 63-bit code and increased the computational efficiency by 4 times while
losing some accuracy.

Figure 2 only gives us information about the performance of ECOC in terms of classification accuracy and
does not tell us anything about the efficiency of our approach. To visualize the gain in accuracy and
efficiency at the same time, Figure 3 compares ECOC with Naïve Bayes on all the datasets in terms of
percent reduction in error and percent increase in efficiency. As we can observe, there is marked
improvement in efficiency for all the datasets except Jobs-15 where we use a 15-bit code for a 15-class
problem and thus there is no increase in efficiency.

Figure 3. Percent reduction in error and Percent increase in efficiency using ECOC as compared to Naïve Bayes.
For Jobs-15, the increase in efficiency is zero since we’re using a 15-bit code for a 15-class problem.

Figure 2. Classification accuracies using ECOC on various datasets. Industry Sector and Hoovers-255 with 63-bit

codes, Hoovers-28 and Jobs-65 with 31-bit codes and Jobs-15 with 15-bit code.

-10

0

10

20

30

40

50

60

70

80

Industry Sector Hoovers-255 Hoovers-28 Jobs-65 Jobs-15

% Reduction in Error Over Naïve
Bayes
% Increase in efficiency

0

20

40

60

80

100

Industry
Sector

Hoovers-
255

Hoovers-
28

Jobs-65 Jobs-15

Dataset

A
cc

u
ra

cy

NB
ECOC

8

5.2 Can ECOC improve the precision of Naïve Bayes classifier?

In many applications of text classification systems, it is important to get high-precision results. For
example, in search engines, a typical user only looks at the top 10-50 hits returned and so instead of
maximizing the overall accuracy of the system, it is more important to maximize the precision of the
classifier when it only labels a small proportion of examples that its very confident about. In ECOC, we
can judge how confident our system is of a prediction by looking at how far the predicted codeword is from
the codeword of the nearest class. The closer to the codeword to the nearest class, the more confident the
prediction. Figure 4 shows the distributions of the hamming distance to the codeword of the nearest class. It
is obvious from the two graphs that the distribution for the correctly classified examples is significantly
different from that for the misclassified examples. Most of the correctly classified examples correctly
matched the nearest class with hamming distance zero while most of the examples that were misclassified
had large hamming distance to the nearest class. Using HD to the nearest class as a measure of confidence
for ECOC, we calculated the precision-recall tradeoff.

Figure 4. the distributions of the hamming distance to the codeword of the nearest class

Figure 5. Precision Recall Curve for Hoovers-28 dataset with 15-bit ECOC

Correctly classified examples

0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8 9 10
Hamming Distance to the nearest class

F
re

q
u

en
cy

Misclassified examples

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

Hamming Distance to the nearest class

F
re

q
u

en
cy

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 0.2 0.4 0.6 0.8 1

Recall

P
re

ci
si

o
n

NB
15bit ECOC

9

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.49 0.6 0.65 0.7 0.75 0.81 0.86 0.91 0.97 1
Recall

P
re

ci
si

o
n

31-bit ECOC

NB

Figures 5 and 6 show this tradeoff for Hoovers-28 and Industry Sector datasets. For both datasets, ECOC
results in higher precision classification compared to Naïve Bayes. Although Naïve Bayes works well for
classification, it is well-known not to give accurate probabilistic estimates for text classification tasks since
the number of features is usually very large and the multiplicative method of combining the evidence drives
scores to either 1 or 0. Not surprisingly, Naïve Bayes does not give high-precision results and the curve is
flat for recalls lower than around 90%. ECOC, on the other hand, performs extremely well and for the
Industry Sector dataset, gives almost 100% precision at 45% recall level. A significant point to observe in
Figure 4 is that although ECOC only improves the classification accuracy on the Hoovers-28 by 3%, ECOC
performs much better at improving the precision. NB gives a maximum of 47% precision while ECOC gets
over 70% precision and is computationally more efficient by a factor of 2. These results suggest that ECOC
is a very useful method for combining multiple NB classifiers to give high-precision results with the added
advantage that it is computationally more efficient than using standard NB models.

5.3 How Does The Length Of The Codes Affect Performance?

Table 2 shows the classification accuracies for codes of different lengths. We can clearly observe that
increasing the length of the codes increases the classification accuracy. However, the increase in accuracy
is not directly proportional to the increase in the length of the code. As the codes get larger, the accuracies
start leveling off as we can observe from Table 2. This trend was also observed by Berger (1999).

The increase in accuracy with the code length can be explained by the fact that as we increase the length of
the codes, the error-correcting properties are also enhanced. A good error-correcting code has large row
and column separation. In other words, each individual codeword should be separated from each of the
other codewords with a large Hamming distance and the columns (the functions learned by the separate
classifiers) should also be different as learning the same functions would cause the individual classifiers to
make the same mistakes in multiple bits which hinders the error-correcting code from correcting them.

If the minimum hamming distance of a code C is m, then that code is an (m-1)/2 error-correcting code.
So if our individual bit classifiers make (m-1)/2 or fewer errors, the resulting codeword is closer to the
correct one than it is to any other codeword and can be correctly decoded.

The longer a code is, the more separated the individual codewords can be, thus having a larger minimum
hamming distance and improving the error-correcting ability. This can be seen from Table 2 as the increase
in the length of the codes reduces the classification errors

Figure 6. Precision Recall Curve for Industry Sector dataset with 31-bit ECOC

10

Table 2. Average classification accuracies on 10 random 50-50 train/test splits of the 105-class Industry Sector dataset
with a vocabulary size of 10000.

METHOD NAÏVE BAYES 15-BIT ECOC 31-BIT ECOC 63-BIT ECOC

HOOVERS-
255

28.8 12.5 17.2 20.4

INDUSTRY

SECTOR
66.1 77.4 83.6 88.1

Figure 7. Precision-Recall at different code lengths for Hoovers-255 dataset.

We could assume from looking at Table 2 that as we keep on increasing the code length, the classification
accuracy would also keep on increasing. That is not the case in practice, as this would only be possible if
the errors made by the individual bit classifiers were completely independent which is not the case. The
errors are dependent since there is a lot of overlap in the data and feature set being used to learn those
binary functions and so after a certain code length is exceeded, the classification accuracy starts leveling
off.

5.4 How Does The Number Of Training Examples Affect Accuracy?

Figure 8 shows the results of our experiments while varying the number of training examples. Five
different samples for each of 20-80, 50-50, and 80-20 train-test splits were taken and the results averaged to
produce the graph. As we can see, ECOC outperforms the naive Bayes classifier at all times. The previous
results regarding increase in classification accuracy with increase in code length still hold as longer codes
give better performance in these experiments too.

Table 3 shows the average classification accuracies for the individual binary classifiers at different sample
sizes. As we increase the number of training examples, naive Bayes (learning binary problems) shows an
improved performance which in turn improves the accuracy of the combined classification using ECOC.
This improvement can be observed from Figure 9 which shows percent reduction in error by the ECOC
over the multiclass naïve Bayes at different training sizes.

Hoovers-255

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

Precision

R
ec

al
l

63bit
15bit
NB

11

Figure 8. Performance of ECOC on Industry Sector dataset while varying the number of training examples.

Table 3. Average classification accuracies of the individual bit classifiers on 30 random splits of the 105-
class Industry Sector dataset with a vocabulary size of 10000. The standard deviation is quite small (<1).

TRAINING EXAMPLES PER

CLASS
AVERAGE CLASSIFICATION ACCURACY OF

THE INDIVIDUAL BIT CLASSIFIERS

20 84.7

50 89.9

80 90.8

Figure 9. Percent decrease in error over NB on Industry Sector dataset while varying the number of training examples.

The percent reduction in error does not vary much with the number of training examples which suggests
that ECOC provides good performance and considerable reduction in error over NB regardless of the size
of the training set and would be a good algorithm when training data is sparse.

This does not seem intuitive at first, but an analysis of ECOC suggests that since increasing the training
examples improves the performance of naïve Bayes, it also improves the performance of the individual
binary classifiers since those are just naïve Bayes classifiers (See Table 3). The improvement in accuracy
for ECOC over naïve Bayes is mainly because of the error-correcting ability which is mostly dependent on

40

50

60

70

80

90

100

10 30 50 70 90
of training examples per class

A
cc

ur
ac

y
(%

)

NBC
15bit ECOC
31bit ECOC
63bit ECOC

20

30

40

50

60

70

10 30 50 70 90

Training examples per class

%
 D

ec
re

as
e

in
 E

rr
or

 o
ve

r
N

B

15bit ECOC

31bit ECOC

63bit ECOC

12

the code length and hamming distance. Though the multiclass naïve Bayes is learning to classify a 105-
class problem and the individual l-bit classifiers are bianry problems, the experimental results suggest that
they both improve their performance at roughly the same rate with increase in training examples and thus
keep the percentage reduction in error due to ECOC the same and only dependent on the length of the code.
This fact can be used for domains where training data is sparse and NBC would not perform well but using
the error correcting properties of the code, the overall performance could be increased.

6. Choosing the Codewords

From the earlier results in this paper, we can observe that ECOC provides a very powerful way to increase
the accuracy of a collection of learners. The two central features of this approach are the learning algorithm
used and the code employed. It is usually the case that the learning algorithm is domain dependent but
surprisingly, the code does not have to be. A good code for our purposes is one that has both large column
and row separation. There has been some discussion on the methods used for choosing codes in recently
published papers using ECOC (Berger, 1999; Mayoraz & Moreira, 1997). The three approaches that we
consider are:

1.Constructing codes using standard coding theory methods (BCH, Hadamard, etc)

2. Constructing Random Codes.

3.Constructing Meaningful Codes that capture or represent some feature of the data set.

6.1 Using Coding Theory

Algebraic coding theory gives us various ways of constructing codes with good error-correcting properties.
The codes used in all the earlier experiments reported in this paper were binary BCH codes which may be
defined by constructing a matrix whose entries belong to a field of order 2h and then converting this to a
parity-check matrix for a binary code. More details about BCH codes can be found in (Peterson & Weldon,
1972).

The primary reason for using codes such as BCH is that for a fixed length, a certain row-separation is
guaranteed. In terms of classification, this translates to having a guarantee that even if x of our classifiers
give the wrong classification, we will classify to the correct class. Most error-correcting codes only
guarantee separation between rows (codewords) but as we mentioned earlier, we also need separation
between columns so that the errors made by the classifiers learning each bit are as independent as possible.
This column separation is not guaranteed by BCH codes but there do exist codes such Hadamard codes that
provide this guarantee. Even in the case of BCH codes, we calculated the minimum, maximum and average
column separation of the codes used in our experiments and found the separation quite large.

Another reason for using codes based on coding theory is computational efficiency, since there are efficient
ways of decoding rather than doing a linear search through all codewords which is the case in random
codes. This may be of concern when using datasets consisting of thousands of classes.

6.2 Using Random Codes

Berger (1999) argues for the use of random codes which are generated by picking each entry in the matrix
to be 0 or 1 at random. They give some theoretical results and bounds on the column and row separation of
random codes and show that asymptotically, as the length of the codes gets very large (approaches infinity),
the probability that the codes will have separation less than an arbitrary number approaches zero.

We argue that although these results hold in theory, we will not want to use such long codes in practice
because of high computational cost. We would prefer short codes that guarantee us a certain column and
row separation. To compare the error-correcting properties of random codes with our constructed codes
(BCH codes), we generated random codes and calculated the minimum, maximum and average row and
column separations or them. We found that for a fixed length of the code, the BCH codes outperformed the
random codes significantly. Similarly we also used random codes to classify the Industry Sector dataset
and found the results to be worse than BCH codes used in the earlier experiments. On average, the ECOC
method with random codes had an error rate 10-15% greater than that with algebraic codes.

6.3 Using Meaningful (Domain and Data-specific) Codes

The two types of codes described above give good classification results even though they split the set of
classes into two disjoint sets a priori without taking the data into account at all. This section explores

13

alternatives to this method which are still based on the error-correcting notion, but where the binary
functions learned by each of the classifiers are inspired by the data at hand.

It would be quite logical to believe that functions that partition the classes into groups that have similar
classes within themselves would be easier to learn than random functions. For example, if we have 4
classes such as Football, Rugby, U.S. Politics, and World Politics, we would expect a function that
combines Football and Rugby in one class and U.S. Politics and World Politics in another class to be easier
to learn then one which groups Rugby and U.S. Politics together.

To test this idea on the industry Sector dataset and compare results with the codes used earlier in this paper,
we constructed a 4-bit code that contained binary problems that grouped together related economic sectors.
Since the 4-bit code would not give us the row separation we need for error-correcting, we appended these
4 bits to the 15-bit BCH code resulting in a 19-bit code.

Table 4. Minumum and maximum hamming distance information between rows and columns for 15-bit
BCH code and 19-bit hybrid code with 105 codewords and classification accuracy for the Industry Sector
dataset.

CODE MIN

ROW

HD

MAX

ROW

HD

MIN

COL

HD

MAX

COL

HD

ACCURACY

15-BIT

BCH
5 15 49 64 79.4

19-BIT

HYBRID
5 18 15 69 78.7

We would expect the new 19 bit code to perform much better than the 15-bit code because the new code
has 4 bits which are constructed using the data at hand which should be much easier to learn for the
classifier. Table 4 gives the accuracy for the two codes and we can observe that the 19-bit code performs
slightly worse than the 15-bit one. If we look at how well the classifiers are learning each bit, we see that
all of them have accuracies around 90% except for two of the four bits that were added which have
accuracies of 97%. This is expected since these are the bits that should be easier to learn. The interesting
point about these “good” bits is that the binary partitions induced by these bits don't have equal number of
documents/classes in both groups. For example in bit 16, class 0 contains 7000 documents and class 1
contains only 700. In the other bits, there are almost equal number of 0s and 1s in a column. Since these
“skewed” binary problems were easier to learn, this suggests that to get better results, we could create
“new” binary problems with the same property. The degenerate case of that would be the one-per-class
approach (Dietterich & Bakiri, 1999) where only 1 bit in each column is a 1 and each column is
distinguishing one particular class from the rest. In that case, we would expect each of the individual
classifiers to perform extremely well but the overall accuracy would be poor since the hamming distance
between codewords is just 2 and no error-correction is possible.

It is obvious that adding the 4 bits to the 15-bit BCH code can only increase the row hamming distance.
However, it can reduce the column separation of the resulting code. Table 4 shows the hamming distance
(HD) information of the two codes and as expected, the row HD is increased slightly but the column HD is
significantly reduced. So creating columns with a lot more zeros than ones (or vice versa) would help the
individual accuracies of each bit but reduce the minimum hamming distance for the code. Guruswami and
Sahai (1999) describe some attempts to combine the two approaches (one-per-class and error-correcting
codes) which outperform each approach alone.

7. Semi-Theoretical Model for ECOC

Given the results from the previous sections, what can we conclude about the behavior and advantages of
the ECOC approach for text classification? We saw in Table 4 the average accuracies of the individual
classifiers for each bit of the code. Since the variation in the accuracies is very small for each training
sample, using these values as the average probability for one bit to be classified correctly and calculating
the minimum hamming distance of the code used in each of the experiments, the ECOC approach can be
modeled by a Binomial Distribution B(n,p) with n being the length of the code (number of bits) and p being

14

the probability of each bit being classified incorrectly. Then the probability of an instance being classified
correctly would just follow the binomial distribution.

 Table 6 shows the results of the calculation. Hmin is the minimum hamming distance the code used and
since a code with minimum distance h can correct at least (h-1)/2 errors, Emax is the maximum number of
errors the code can correct. P is the probability that each bit classifier will classify correctly which is
obtained from the experimental results. The theoretical accuracy of the ECOC method can then be
calculated by using the binomial distribution. A sample calculation for the first row of Table 5 would be:

Since Hmin=5, Emax= (5-1)/2=2, even if 2 of the 15 classifiers give the wrong classification, the correct
classification can still be obtained. The probability of at most 2 classifiers classifying incorrectly is:

P(0 classifiers classify incorrectly) + P(1 classifier classifies incorrectly) + P(2 classifiers classify

incorrectly)= 21311415)846.1(846.0
2

13
)846.1(846.0

1

14
846.0

0

15
−





+−





+




 = 0.589 which suggests that we

would expect the accuracy of the classifier to be 58.9%. As we can see from Figure 4, the expected
accuracies are quite close to the actual results in our experiments.

Table 5. Calculating the Theoretical accuracy for the ECOC with Hmin being the minimum row hamming distance and
Emax being the maximum number of errors the code can correct.

NO. OF BITS HMIN EMAX

=HMIN-1/2
AVERAGE

ACCURACY

FOR EACH BIT

THEORETICAL

OVERALL

ACCURACY

15 5 2 0.846 58.68
15 5 2 0.895 79.64
15 5 2 0.907 84.23
31 11 5 0.847 66.53
31 11 5 0.899 91.34
31 11 5 0.908 93.97
63 31 15 0.897 99.95

Figure 10. Comparison of theoretical accuracies with experimental results using ECOC for various code
lengths and number of training examples.

8. Extensions to ECOC

Apart from applying ECOC to text classification tasks with a large number of categories and investigating
its performance as we vary several conditions, we also investigate several extensions to ECOC. Though the
domain will be text classification, we hope that these results will generalize to any classification task with a
large number of categories.

0

20

40

60

80

100

15 15 15 31 31 31 63

Length of Code

A
cc

ur
ac

y
(%

)

Theoretical
Exprerimental

15

8.1 Assignment of codewords to categories

To our knowledge, all of the previous work in ECOC has involved randomly assigning codewords to
categories. We propose a method of assignment that adapts to particular datasets and could lead to better
performance. We learn the original multiclass problem using a standard classifier that performs well for
text classification tasks e.g kNN or Naive Bayes (learning one model per class) and generate a confusion
matrix from the training set. This matrix tells is to what extent the classifier confuses each pair of classes.
The codewords in an error-correcting code are not equidistant from each other and the two codewords that
are farthest apart can then be assigned to the two classes that are most confusable (difficult to distinguish
between) in the dataset. The next farthest pair of codewords gets assigned to the next most confusable
classes and so on. Since at times, as we go down the list, one of the classes may already have a codeword
assigned to it from before in that case, we will not reassign the class a different codeword since the higher
one corresponds to a higher confusability.

We believe that this approach of assigning codewords to categories will allow a generic error-correcting
code, which can applied to any problem, to adapt to a specific problem increase performance. Intuitively,
since the classifiers are likely to make many errors between the two most confused classes, if the two
codewords that are farthest apart (e.g. the one with all zeros and one with all ones) are assigned to these
two classes, then it allows the system to recover from these errors.

One potential problem we see with this approach is that the classes that are most confusable will most
probably end up in different classes (in the new binary problem). This will make the binary problem harder
to learn and could potentially lead to poorer results. On the other hand it would help the decoding step by
correcting more errors than before, resulting in a tradeoff between accuracy of the individual classifiers and
the error-correcting properties of the code. We have noticed this tradeoff when artificially constructing
domain-specific codes that correspond to the position of the classes in the class hierarchy and observed that
the error-correcting property was at times more important than the difficulty of the individual binary
problems (Ghani 2000).

We apply this method of assigning codewords to categories to a 10-class problem with the 10 classes
chosen from the Industry Sector dataset and use a 10-bit code and as shown in Table 6, our approach
performs significantly worse than assigning codewords randomly. Looking closely at the performance of
the individual binary classifiers, we notice that some of them had very low accuracies and that assigning
codewords intelligently made the individual binary problems much harder to learn and in turn led to a
performance degradation.

Table 6. Intelligently assigning codewords to categories according to their confusability – 10bit code used on a 10-class
problem (10 classes chosen from Industry Sector Dataset)

ECOC with random codeword assignment ECOC with “intelligent” codeword assignment

75.4% 56.3%

8.2 Decoding Step

Like most ensemble learning algorithms, ECOC also does most of the work in decomposing the problem
and the decisions of the individual classifiers are usually combined in very simple ways. One of the most
common ways of decoding codes is to use hamming distance and map the “received” binary string to the
nearest codeword in the code. This approach assumes that all bits are equally important and ignores how
easy or hard each bit is to learn. Guruswami and Sahai (1999) showed that weighting the bits during the
classification step by the accuracies on the training set gives a better classification accuracy, and they called
it maximum likelihood decoding. This is again a fixed method of decoding which relies on the estimates
obtained from the training set.

We propose to actually pose the combining/classification step as a learning problem and use a learning
algorithm to learn the decoding. It is possible that for some datasets it would learn to give equal weights to
all the bits and on others the weights would depend on the difficulty of the individual binary problems and

16

the performance of the binary classifiers. In our experiments, we use a 3 layer Neural Network to learn the
decoding. We used a 10 bit code, so the input and output layers of the NN had 10 units each (one for each
bit). A training instance for the NN consisted of the (binary) codeword predicted by the learned binary
classifiers as the input and the codeword of the actual categories of training example as the desired output.
After the learning phase, we apply the NN to the test cases and map the codeword output by the NN to the
class with the nearest codeword (in terms of Hamming Distance). Results on 10 classes chosen fro mthe
Industry Sector dataset are shown in Table 7. Using the NN to learn the decoding before using Hamming
Distance does not result in significant improvement over using Hamming Distance by itself. These results
are only representative of the particular dataset and further experiments are needed to evaluate the merits of
this potentially promising approach.

Table 7. Learning the Decoding Function – 10-bit code used on a 10-class problem (10 classes chosen from Industry
Sector Dataset)

ECOC with Hamming Distance Decoding ECOC with using a NN to learn the decoding

75.4% 76.1%

One intuition behind learning the decoding is that if one of the binary problems (bit) in the code is very
hard to learn and the learner consistently classifies it wrong and gets less than 50% accuracy, the decoding
step can learn that and when given the classification from that particular bit, can flip the classification to
correct it and thus increase the accuracy considerably. The reason we don’t observe that in our last
experiments is because none of the bits were less than 50% accurate and so the NN couldn’t correct the
classification. We hypothesize that by intelligently assigning codewords to categories (described in the
previous section) we make the binary problems harder to learn and then using a NN to learn the decoding
should improve performance instead of the decrease in performance observed in the previous section.

Table 8. Learning the Decoding Function – 10-bit code used on a 10-class problem (10 classes chosen
from Industry Sector Dataset)

CodeWord Assignment

 Random Intelligent

Decoding Hamming Distance 75.4 54.6

 Neural Network 76.1 83.2

We test this hypothesis on the same dataset as earlier and find that combining the two approaches does
indeed improve performance considerably (See Table 8). Upon looking at the individual accuracies of the
binary classifiers before and after the “learning decoding” step, we notice that there is a marked
improvement in accuracies corresponding to the “bit-flipping” phenomena that we expected. This suggests
that we can construct codes that have good error-correcting properties and even though the individual
binary problems may not be learnable, we can use the decoding step to correct for those errors by just
inverting the individual classifications.

9. Combining labeled and unlabeled data with ECOC

In the previous sections, we proposed ways to increase the accuracy and efficiency of the ECOC given a
fixed amount of labeled training data. A different way of looking at efficiency is to focus on the amount of
labeled training data that is required by the learning algorithm. A major difficulty with supervised learning
techniques for text classification is that they often require a large number of labeled examples to learn
accurately. Collecting labeled examples is often very costly since the labeling process has to be done
manually. We would ideally prefer systems that can provide accurate classifications after labeling only a
few examples, rather than thousands.

17

One way to reduce the amount of labeled data required is to develop algorithms that can learn effectively
from a small number of labeled examples augmented with a large number of unlabeled examples. In
general, unlabeled examples are much less expensive and easier to obtain than labeled examples. This is
particularly true for text classification tasks involving online data sources, such as web pages, email, and
news stories, where huge amounts of unlabeled text are readily available. Collecting this text can often be
done automatically, so it is feasible to quickly gather a large set of unlabeled examples. If unlabeled data
can be integrated into supervised learning, then the process of building text classification systems will be
significantly faster and less expensive than before.

There has been recent work in supervised learning algorithms that combine information from labeled and
unlabeled data. Such approaches include using Expectation-Maximization to estimate maximum a
posteriori parameters of a generative model for text classification [Nigam et al. 1999], using a generative
model built from unlabeled data to perform discriminative classification [Jaakkola & Haussler 1999], and
using transductive inference for support vector machines to optimize performance on a specific test set
[Joachims 1999]. Each of these results, and others, has shown that using unlabeled data can significantly
decrease classification error, especially when labeled training data are sparse.

A related body of research uses labeled and unlabeled data in problem domains where the features naturally
divide into two disjoint sets. For example, Blum and Mitchell [1998] present an algorithm for classifying
web pages that builds two classifiers: one over the words that appear on the page, and another over the
words appearing in hyperlinks pointing to that page.

Datasets whose features naturally partition into two sets, and algorithms that use this division, fall into the
co-training setting (Blum & Mitchell 1998) Blum and Mitchell (1998) show that PAC-like guarantees on
learning with labeled and unlabeled data hold under the assumptions that (1) each set of features is
sufficient for classification, and (2) the two feature sets of each instance are conditionally independent
given the class.

Published studies with Co-training type algorithms (Blum & Mitchell 1999, Nigam & Ghani 2000) have
focused on small, often binary, problems and it is not clear whether their conclusions would generalize to
real-world classification tasks with a large number of categories. On the other hand, Error-Correcting
Output Codes (ECOC) are well suited for classification tasks with a large number of categories. However,
most of the earlier work has focused neither on text classification problems (except our earlier work (Ghani
2000) and Berger (1999)), nor on algoithms which specifically deal with a large number of categories.

In this paper, we develop a framework to incorporate unlabeled data in the ECOC setup to decompose
multiclass problems into multiple binary problems and then use Co-Training to learn the individual binary
classification problems. We show that our approach is especially useful for classification problems
involving a large number of categories and outperforms several other algorithms that are designed to
combine labeled and unlabeled data for text classification.

9.1 The Co-Training Setting

The co-training setting applies when a dataset has a natural division of its features. For example, web
pages can be described by either the text on the web page, or the text on hyperlinks pointing to the web
page. Traditional algorithms that learn over these domains ignore this division and pool all features
together. An algorithm that uses the co-training setting may learn separate classifiers over each of the
feature sets, and combine their predictions to decrease classification error. Co-training algorithms using
labeled and unlabeled data explicitly leverage this split during learning.

Blum and Mitchell [1998] formalize the co-training setting and provide theoretical learning guarantees
subject to certain assumptions. In the formalization, each instance is described by two sets of features.
Under certain assumptions Blum and Mitchell [1998] prove that co-training algorithms can learn from
unlabeled data starting from only a weak predictor. The first assumption is that the instance distribution is
compatible with the target function; that is, for most examples, the target functions over each feature set
predict the same label. For example, in the web page domain, the class of the instance should be
identifiable using either the hyperlink text or the page text alone. The second assumption is that the
features in one set of an instance are conditionally independent of the features in the second set, given the
class of the instance. This assumes that the words on a web page are not related to the words on its

18

incoming hyperlinks, except through the class of the web page, a somewhat unrealistic assumption in
practice.

They argue that a weak initial hypothesis over one feature set can be used to label instances. These
instances seem randomly distributed to the other classifier (by the conditional independence assumption),
but have classification noise from the weak hypothesis. Thus, an algorithm that can learn in the presence of
classification noise will succeed at learning from these labeled instances.

9.2 Combining ECOC and Co-Training

We propose a new algorithm that aims at combining the advantages that ECOC offers for supervised
classification with a large number of categories and that of Co-Training for combining labeled and
unlabeled data. Since ECOC works by decomposing a multiclass problem into multiple binary problems,
we can incorporate unlabeled data into this framework by learning each of these binary problems using Co-
training.

The algorithm we propose is as follows:

•Training Phase

1. Given a problem with m classes, create an m x n binary matrix M.
2. Each class is assigned one row of M.
3. Train n Co-trained classifiers to learn the n binary functions (one for each column since each
column divides the dataset into two groups).

•Test Phase

1.Apply each of the n single-bit Co-trained classifiers to the test example.
2. Combine the predictions to form a binary string of length n.
3. Classify to the class with the nearest codeword

Of course, an n-class problem can be decomposed naively into n binary problems and co-training can then
learn each binary problem, but our approach is more efficient since by using ECOC we reduce the number
of models that our classifier constructs. We also believe that our approach will perform better than the
naïve approach under the conditions that

(1) ECOC can outperform Naïve Bayes on a multiclass problem (which actually learns one model for
every class)

(2) Co-Training can improve a single Naïve Bayes classifier on a binary problem by using unlabeled
data

The complication that arises in fulfilling condition 2 is that unlike normal binary classification problems
where Co-Training has been shown to work well, the use of Co-Training in our case involves binary
problems which themselves consist of multiple classes. Since the two classes in each bit are created
artificially by ECOC and consist of many “Real” classes, there is no guarantee that Co-Training can learn
these arbitrary binary functions.

Each of the two classes in every ECOC bit consists of multiple classes in the original dataset. Let’s take a
sample classification task consisting of classes C1 through C10 where one of the ECOC bits partitions the
data such that classes C1 through C5 are in one class (B0) and C6 through C10 are in the other class (B1).
The actual classes C1 through C10 contain different number of training examples and it is possible that the
distribution is very skewed. If we pick our initial labeled examples randomly from the two classes B0 and
B1, there is no guarantee that we will have at least one example from all of the original classes C1 through
C10. If Co-training does not contain at least one labeled example from one of the original classes, it is
likely that it will never be confident about labeling any unlabeled example from that class. Under the
conditions that

(1) the initial labeled examples cover every “original” class,

(2) the target function for the binary partition is learnable by the underlying classifier,

19

(3) the feature split is redundant and independent so that the co-training algorithm can utilize
unlabeled data,

theoretically, our combination of ECOC and Co-Training should result in improved performance by
using unlabeled data.

9.3 Descriptions of Algorithms Used

We use Naïve Bayes as the base classifier in our experiments. to learn each of the binary problems in
ECOC and also as the classifier within Co-Training. We also use Expectation-Maximization (EM)
algorithm to compare with our proposed approach. A short description of Naive Bayes and EM as used in
our experiments is given below.

9.3.1 EXPECTATION-MAXIMIZATION

If we extend the supervised learning setting to include unlabeled data, the naive Bayes equations presented
above are no longer adequate to find maximum a posteriori parameter estimates. The Expectation-
Maximization (EM) technique can be used to find locally maximum parameter estimates.

EM is an iterative statistical technique for maximum likelihood estimation in problems with incomplete
data [Dempster et al. 77]. Given a model of data generation, and data with some missing values, EM will
locally maximize the likelihood of the parameters and give estimates for the missing values. The naive
Bayes generative model allows for the application of EM for parameter estimation. In our scenario, the
class labels of the unlabeled data are treated as the missing values.

In implementation, EM is an iterative two-step process. Initial parameter estimates are set using standard
naive Bayes from just the labeled documents. Then we iterate the E- and M-steps. The E-step calculates
probabilistically-weighted class labels, Pr(cj|di), for every unlabeled document. The M-step estimates new
classifier parameters using all the documents, by Equation 1, where Pr(cj|di) is now continuous, as given by
the E-step. We iterate the E- and M-steps until the classifier converges.

It has been shown this technique can significantly increase text classification accuracy when given limited
amounts of labeled data and large amounts of unlabeled data [Nigam et al 99]. However, on datasets where

the assumption correlating the classes with a single multinomial component is badly violated, basic EM
performance suffers.

9.4 Experimental Results

All the codes used in the following experiments are BCH codes (31-bit codes for the Jobs dataset and 63-
bit codes for the Hoovers Dataset) and are similar to those used in Ghani (2000)2.

9.4.1 DOES COMBINING ECOC AND CO-TRAINING WORK?

Table 2 shows the results of the experiments comparing our proposed algorithm with EM and Co-Training.
The baseline results with Naïve Bayes and ECOC using no unlabeled data are also given, as well as those
when all the labels are known. The latter serve as an upper bound for the performance of our algorithm.

2 The codes used in these experiments can be downloaded from http://www.cs.cmu.edu/~rayid/ecoc/codes

Table 9. Average classification accuracies with five-fold cross-validation for Jobs-65 and Hoovers-255 Datasets

DATASET NAÏVE BAYES

(NO UNLABELED DATA)

ECOC

(NO UNLABELED DATA)

EM CO-
TRAINING

ECOC +
CO-

TRAINING

10%
LABELED

100%
LABELED

10%
LABELED

100%
LABELED

10%
LABELED

10%
LABELED

10%
LABELED

JOBS-65 50.1 68.2 59.3 71.2 58.2 54.1 64.5

HOOVERS-255 15.2 32.0 24.8 36.5 9.1 10.2 27.6

20

From results reported in recent papers [Blum & Mitchell 1998, Nigam & Ghani 2000], it is not clear
whether co-training will perform well by itself and give us any leverage out of unlabeled data on a dataset
consisting of a large number of classes. We can see that both Co-Training and EM did not improve the
classification accuracy by using unlabeled data on the Hoovers-255 dataset; rather they had a negative
effect and resulted in decreased accuracy. The accuracy reported for EM and Co-Training was decreasing
at every iteration and since the experiments were stopped at different times, they are not comparable to
each other.

On the other hand, our proposed combination of ECOC and Co-Training does indeed take advantage of the
unlabeled data much better than EM and Co-Training and outperforms both of those algorithms on both
datasets. It is also worth noting that ECOC outperforms Naïve Bayes for both datasets and this is more
pronounced when the number of labeled examples is small.

Figure 2 shows the performance of our algorithm in terms of precision-recall tradeoff. Precision and Recall
are both standard evaluation measures in text classification and Information Retrieval literature. As we
can see from the figure, both Naïve Bayes and EM are not very good at giving high-precision results. This
is not surprising since the resulting classifier after learning with EM is a Naïve Bayes classifier which gives
very skewed scores to test examples and is not good at providing accurate probabilistic estimates.
Interestingly, when Naïve Bayes is used within ECOC, it results in high-precision classification at
reasonable levels of recall. This result is very encouraging and of enormous value in applications which
require high-precision results such as search engines and hypertext classification systems.

Figure 11. Precision-Recall Tradeoff for Hoovers Dataset

9.4.2 CAN ALGORITHMS OTHER THAN CO-TRAINING BE USED TO LEARN THE BINARY PROBLEMS CREATED
BY ECOC?

The framework presented in this paper to incorporate unlabeled data into ECOC, it is not necessary to use
Co-Training to learn the individual binary functions. Theoretically, any learning algorithm that can learn
binary functions from labeled and unlabeled examples can be used. In this section, instead of Co-Training,
we employ an algorithm named Co-EM which is a hybrid of EM and Co-Training to learn the binary
problems.

CO-EM

Co-EM [Nigam & Ghani 2000] is an iterative algorithm that uses the feature split in a similar fashion as
Co-Training does. Given a feature split with two feature sets A and B, it trains two classifiers (one for each
feature set). It proceeds by initializing the A-feature-set naive Bayes classifier from the labeled data only.
Then, A probabilistically labels all the unlabeled data. The B-feature-set classifier then trains using the
labeled data and the unlabeled data with A's labels. B then relabels the data for use by A, and this process
iterates until the classifiers converge. A and B predictions are combined together as co-training embedded
classifiers are. In practice, co-EM converges as quickly as EM does, and experimentally we run co-EM for
10 iterations. The co-EM algorithm can be thought of as a closer match to the theoretical argument of Blum
and Mitchell [1998] than the co-training algorithm. The essence of their argument is that an initial A
classifier can be used to generate a large sample of noisily-labeled data to train a B classifier. The co-EM
algorithm does exactly this using one learner to assign labels to all the unlabeled data, from which the
second classifier learns. In contrast, the co-training algorithm learns from only a single example at a time.

21

RESULTS

Using Co-EM instead of Co-Training within ECOC performs better for the Jobs Dataset (66.1% accuracy)
and worse for the Hoovers one (22.1% accuracy). The key difference between the two algorithms is that
Co-EM re-labels all the unlabeled examples at every iteration while Co-Training never re-labels an
example after adding it to the labeled set. The better performance of Co-EM on the
Jobs Dataset may be due to the fact that the relabeling prevents the algorithm from getting stuck in local
minima and makes it less sensitive to the choice of initial examples.

9.5 Discussion

We noted while running our experiments that our approach was very sensitive to the initial documents that
are provided as labeled examples. This leads us to believe that some form of active learning combined with
this method to pick the initial documents should perform better than picking random documents. Also, Co-
training always adds to its labeled set the unlabeled examples about which it is most confident. This
selection criterion can be modified and improved by making it more directly focused on the classification
task at hand. For example, instead of always adding the most confident examples, one could balance this
confidence (which minimizes the risk of adding a misclassified example) with a measure of how much will
be learned from that example. McCallum & Nigam (1999) use a prototypicality measure in an active
learning setting that approximately measures the benefit of labeling a particular example. This should allow
co-training algorithms to work with fewer labeled examples and perform better.

As mentioned in Section 4, there is no guarantee that Co-Training can learn these arbitrary binary functions
where the two classes are created artificially. If Co-training does not have at least one labeled example
from one of the original classes, it is likely that it will never be confident about labeling any unlabeled
example from that class. We ran some experiments using training examples that did not cover all “original”
classes and as expected, the results were much worse than the ones reported in the previous section where a
certain number of examples were chosen initially from every class.

There are several other ways in which ECOC and Co-Training can be combined, e.g. training two ECOC
classifiers on the two feature sets separately and combining them using Co-Training. It will be interesting
to pursue the other approaches in future work.

One potential drawback of any approach using Co-Training type algorithms is the need for redundant and
independent feature sets. In the experiments reported in this paper, we split our feature sets in a random
fashion (for the Hoovers dataset). In previous work (Nigam & Ghani 2000), we have shown that random
partitions of the feature set can result in reasonable performance and some preliminary work has also been
done for developing algorithms that can partition a standard feature set into two redundantly sufficient
feature sets. This would extend the applicability of our proposed approach to regular datasets.

10. Summary

We proposed novel improvements to Error-Correcting Output Coding method for the task of efficiently text
classification with a large number of categories. These improvements not only result in algorithms that are
more efficient than current ones but also result in better classification accuracy. We showed that using short
error-correcting codes in ECOC results in efficient, accurate and high-precision classifiers which
significantly outperform naïve Bayes. We also showed that intelligently assigning codewords to categories
according to their confusability, and learning the decoding (combining the decisions of the individual
classifiers) improves the performance of ECOC. Our experiments with combining labeled and unlabeled
data lead us to believe that the combination of ECOC and Co-Training algorithms is indeed useful for
learning with labeled and unlabeled data. We have shown that our approach outperforms both Co-Training
and EM algorithms, which have previously been shown to work well on several text classification tasks.
Our approach not only performs well in terms of accuracy but also provides a smooth precision-recall
tradeoff which is useful in applications requiring high-precision results. Furthermore, we have shown that
the framework presented in this paper is general enough that any algorithm that can learn binary functions
from labeled and unlabeled data can be used successfully within ECOC. This research gives us more
insight into both ECOC and the problem of text classification when applied to a domain with a large
number of categories. It makes on-the-fly personal categorizers possible where each individual can quickly
train classifiers giving only a handful of labeled examples. It will also impact areas such as search engines,
web portals, filtering systems, personalization tools, and information retrieval systems. Though our

22

proposed work will be specifically evaluated on text collections but it is our hope that the results will
generalize to any classification problem and will have an impact on large-scale classification problems.

23

References

Apte, C., Damerau, F., & Weiss. S. (1994). Towards language independent automated learning of text

categorization problems. Proceedings of the Seventeenth Annual International ACM-SIGIR Conference
on Research and Development in Information Retrieval (pp. 23-30). Dublin, Ireland: Springer-Verlag.

Berger, A. (1999). Error-correcting output coding for text classification. IJCAI’99: Workshop on Machine
Learning for Information Filtering.

Blum, A. and Mitchell, T. (1998). Combining labeled and unlabeled data with Co-Training. of the 1998
Conference on Computational Learning Theory, July 1998.

Bose, R. & Ray-Chaudhri, D. (1960). On a class of error-correcting binary group codes. Information and
Control, 3, 68-69.

Cohen, W. & Singer. Y. (1996). Context-sensitive learning methods for text categorization. Proceedings of
the Nineteenth Annual International ACM-SIGIR Conference on Research and Development in
Information Retrieval (pp. 307-315). New York:ACM

Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K., and Slattery, S. (1998).
Learning to Extract Symbolic Knowledge from the World Wide Web. Proceedings of the Fifteenth
National Conference on Artificial Intelligence (pp. 509-516). AAAI Press / The MIT Press.

Dietterich, T. & Bakiri, G. (1995). Solving Multiclass Learning Problems via Error-Correcting Output
Codes. Journal of Artificial Intelligence Research,2, 263-286.

Freund, Y., Iyer, R., Schapire, R., and Singer, Y. (1998) An efficient boosting algorithm for combining
preferences. Proceedings of the Fifteenth International Conference on Machine Learning.

Fuhr, N., Hartmanna, S., Lustig, G., Schwantner, M., and Tzeras, K. Air/X – A rule-based multi-stage
indexing system for lage subject fields. Proceedings of RIAO’91, 606-623, 1991.

Ghani, R (2000). Using Error-correcting coides for text classification. Proceedings of the 17th
International Conference on Machine Learning.

Ghani, R., Slattery, S., and Yang, Y. (2001). Hypertext Categorization using Hyperlink Patterns and Meta
Data Proceedings of the 18th International Conference on Machine Learning (ICML 2001).

Guruswami, V., & Sahai, A. (1999) MulticlassLearning, Boosting, and Error-Correcting Codes.

Proceedings of the 12th Annual Conference on Computational Learning Theory (pp. 145-155). ACM.

Hill, R. (1986). A First Course in Coding Theory. Oxford University Press.

Hocuenghem, A. (1959). Codes corecteurs d’erreurs. Chiffres, 2, 147-156.

Koller, D. and Sahami, M. 1997. Hierarchically classifying documents using very few words.Proceedings
of the Fourteenth International Conference on Machine Learning (ICML’97), 170-178, 1997.

Kong, E., & Dietterich, T. (1995). Error-correcting output coding corrects bias and variance. Proceedings
of the 12th International Conference on Machine Learning. (pp. 313-321). Morgan Kaufmann.

Kong, E., & Dietterich, T. (1997). Probability estimation using error-correcting output coding. In IASTED
International Conference: Artificial Intelligence and Soft Computing, Banff, Canada.

Lewis, D., & Ringuette, M. (1994). Comparison of two learning algorithms for text categorization.
Proceedings of the Third Annual Symposium on Document Analysis and Information Retrieval.

Lewis, D., Schapire, R., Callan, J., and Papka, R. (1996). Training algorithms for linear text classifiers.
Proceedings of the Nineteenth Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (pp. 298-306).

Mayoraz, E., & Moreira, M., (1997). On the Decomposition of Polychotomies into Dichotomies. In
Proceedings of the Fourteenth International Conference on Machine Learning.

McCallum, A., Rosenfeld, R., Mitchell, T. and Ng, A. (1998). Improving text classification by shrinkage in
a hierarchy of classes. Proceedings of the Fifteenth International Conference on Machine Learning.

24

Mitchell, T. (1997). Machine Learning. McGraw Hill Publishing.

Moulinier, I., Raskinis, G., and Ganascia, J. (1996). Text categorization: a symbolic approach.
Proceedings of the Fifth Annual Symposium on Document Analysis and Information Retrieval.

Moulinier, I. (1997). Is learning bias an issue on the text categorization problem. Technical Report
LAFORIA-LIP6, Universite Paris VI.

Murphy, P., & Aha, D. (1994). UCI repository of machine learning databases [machine-readable data
repository]. Technical Report, University of California, Irvine.

Nigam, K., McCallum A., Thrun, S., and Mitchell, T. (2000) Text Classification from Labeled and
Unlabeled Documents using EM. Machine Learning, 39(2/3). pp. 103-134.

Nigam, K. and Ghani, R. (2000) Analyzing the Effectiveness and Applicability of Co-training. Proceedings
of the Ninth International Conference on Information and Knowledge Management (CIKM-2000)

Peterson, W., & Weldon, E., Jr. (1972). Error-Correcting Codes. MIT Press, Cambridge, MA.

Pless, V. (1989). Introduction to the theory of error-correcting codes. John Wiley and Sons.

Quinlan, R. (1993). C4.5: Program for empirical learning. Morgan Kaufmann, San Mateo, CA.

Quinlan, R. (1987). Decision trees as probabilistic classifiers. Proceedings of the Fourth International
Conference on Machine Learning.

Salton, G. (1991). Developments in automatic text retrieval. Science, 253, 974-979.

Schapire, R., & Singer, Y. (1998). BoosTexter: A system for multiclass multi-label text categorization
Unpublished.

Schapire, R., Freund, Y., Bartlett, P., and Lee, W. (1998). Boosting the margin: A new explanation for the
effectiveness of voting methods. The Annals of Statistics.

Schütze, H., Hull, D. and Pedersen, J.O. A comparison of classifiers and document representations for the
routing problem. Proceedings of the 18th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR’95), 229-237, 1995.

Wiener, E., Pederson, J., and Weigend, A. (1995). A neural network approach to topic spotting.
Proceedings of the Fourth Annual Symposium on Document Analysis and Information Retrieval.

Yang, Y., & Chute, C. (1994). An example-based mapping method for text categorization and information
retrieval. ACM Transactions on Information Systems, 3, 252-295.

