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Abstract

Location proteomics is concerned with the systematic analysis of the subcellular location 

of proteins. In order to perform high-resolution, high-throughput analysis of all protein 

location patterns, automated methods are needed. Here we describe the use of such 

methods on a large collection of images obtained by automated microscopy to perform 

high-throughput analysis of endogenous proteins randomly-tagged with a fluorescent 

protein in NIH 3T3 cells. Cluster analysis was performed to identify the statistically 

significant location patterns in these images. This allowed us to assign a location pattern 

to each tagged protein without specifying what patterns are possible. To choose the best 

feature set for this clustering, we have used a novel method that determines which 

features do not artificially discriminate between control wells on different plates and uses 

Stepwise Discriminant Analysis (SDA) to determine which features do discriminate as 

much as possible among the randomly-tagged wells. Combining this feature set with 

consensus clustering methods resulted in 35 clusters among the first 188 clones we 

obtained. This approach represents a powerful automated solution to the problem of 

identifying subcellular locations on a proteome-wide basis for many different cell types.

Key terms: Protein Subcellular Location, Subcellular Location Trees, Subcellular 

Location Features, CD-tagging, Fluorescence Microscopy, Cluster Analysis, Location 

Proteomics
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I. Introduction

Current work in proteomics includes systematic analysis of protein structure, expression 

levels, and interactions. These projects will provide critical data for understanding and 

modeling cell and tissue behavior. Knowledge of the subcellular location of each protein 

is equally important to this task.  However, this area has received far less attention.

There are two major ways of analyzing protein subcellular location: prediction and 

determination. A number of systems for predicting protein localization from sequence 

have been described.5,8,14,17,18 The limitation of these systems is that they can only assign 

new proteins to the location categories with which they have been trained. This means 

that proteins with previously unseen location patterns cannot be properly categorized. In 

addition, since they have been trained to recognize only low-resolution classes, they are 

typically able to predict the organelle to which a protein will be localized, but not the 

specific area of the organelle.  Due to lack of training data, they are also unable to predict 

differential localization of proteins in different cell types or under different conditions.

A. Determination of Protein Location

Due to the limitations of prediction, there is a need for projects that will collect data on 

subcellular location for entire proteomes under a variety of conditions. These projects 

determine protein location rather than predict it. Although these projects are useful in 

their own right, they also serve as a way to expand the capabilities of prediction systems

by providing training examples for higher-resolution and complex patterns.
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Fluorescence microscopy has been widely used for determining protein subcellular 

location, and visual examination has been the primary means of analyzing the resulting 

images. Some large-scale projects have used fluorescence microscopy to screen hundreds 

to thousands or proteins for particular patterns or to assign proteins to major location 

classes.11,13,20,22 A particular ambitious and valuable project has been the tagging of all 

predicted protein coding regions in the yeast Saccharomyces cerevisiae.11

Visual examination of images is not only inefficient for high-throughput projects, but it is 

also subjective and irreproducible. Fortunately, automated methods of analyzing protein 

location have been described by our group 1-3,10 and more recently by others.6,7,21  These 

methods have been shown not only to perform as well as visual examination for 

distinguishing major subcellular patterns, but also to be able to discriminate patterns that 

a human observer cannot.16

There is not only a need for automated analysis of images, but large-scale projects also 

require high-throughput methods for acquiring images. Automated fluorescence 

microscopes originally developed for drug screening can meet this need.19,23 These 

microscopes use multi-well plates, contain autofocus capabilities and are capable of 

multi-color imaging as well as 3D-time-series imaging.

B. CD-tagging of NIH 3T3 cells

In order to perform systematic analysis of protein location by fluorescence microscopy, a 

high-throughput means of tagging all (or most) proteins is also needed. One such method 
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is CD-tagging.12 This method inserts a guest exon into genomic DNA. The insert consists 

of an enhanced green fluorescent protein (EGFP) coding sequence flanked by splicing 

signals.  Therefore, when the protein with the guest exon insertion is expressed, it 

contains an internal fluorescent tag. Previous studies have shown that CD-tagging has 

minimal impact on protein folding, function and localization.13 Here, we combine CD-

tagging, automated microscopy and automated analysis to identify statistically 

distinguishable location patterns NIH 3T3 cells. We present the combination of high-

throughput methods from tagging to analysis as well as fully automated methods of 

imaging and analysis.

II. Methods

A. Production and Isolation of CD-tagged NIH 3T3 cells

The procedure described previously13 was followed, with some minor alterations.  A CD-

tagging cassette containing the EGFP coding sequence was packaged into retrovirus 

using Phoenix-GP cells. Phoenix-GP cells were seeded at a rate of 1.3x106 cells per 

75cm2 flask in complete Phoenix media (Dulbecco's Modified Eagle's Medium (DMEM) 

containing 10% fetal bovine serum). The Phoenix-GP cells were transfected the next day 

with 9 µg Stealth plasmid and 1 µg VSV-G plasmid per flask using Mirus Trans-IT-LT-1 

lipofection reagent as per manufacturer’s protocol. Briefly, 15 µl Trans-IT-LT-1 was 

added to 500 µl serum-free media and incubated for 5 min at room temperature. The 

DNA was then added to this mixture, which was then incubated for an additional 20 min 

at room temperature. The resulting DNA complexes were then added to the Phoenix-GP 

cells in 10 ml fresh complete media and the cells were incubated for 24 h at 37oC and 5% 
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CO2. After 24 h, the media was replaced with 10 ml fresh media and the flasks were 

incubated at 32oC and 5% CO2 for 48 h. The resulting viral supernatant was flash frozen 

in 1ml aliquots in liquid nitrogen and stored at –80oC.  Viral supernatants were created 

using three different versions of the Stealth plasmid, P19, P20 and P21, which encode 

EGFP appropriately for class 0, class 1 and class 2 introns, respectively.  A different virus 

was used each week so that introns of all types could be sampled.

For infection, NIH 3T3 cells were plated at 2x105 cells per well of a 6-well plate 

containing complete media (DMEM containing 10% fetal calf serum, 100 U/ml penicillin, 

and 100 µg/ml streptomycin). Six h later, the media was aspirated and viral supernatant 

was added with 6 µg/ml polybrene (to neutralize the charge on the cell surface so that 

viral particles will not be repelled) and incubated for 24 h at 37oC and 5% CO2.

The cells were then trypsinized, expanded into a 10 cm dish and incubated for 48 h. 

EGFP-expressing cells were sorted using a FACS Vantage SE using a threshold set to 

include only 0.1% of untagged, control cells. Positive, singlet cells were sorted into black 

polystyrene, glass-bottomed 96-well plates (Whatman) containing 200 µl of complete 

medium (Dulbecco’s modified Eagles medium, 10% fetal calf serum, 100 U/ml penicillin 

and 100 µg/ml streptomycin). Plates were incubated for 8 d before adding 1x104

untagged and positive control cells to one well each in each row (cells expressing tagged 

Procollagen Type I alpha 2 were used as the positive control).  
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On days 11-15, the media was aspirated and the DNA-binding vital dye Hoechst 33342 

was added at a concentration of 0.5 µg/ml in OptiMEM (Invitrogen Corporation, 

Carlsbad, CA, USA).  Plates were then incubated for 45 min at 37oC and 5% CO2 before 

imaging.

B. Automated Fluorescence Imaging

Two color images (Hoechst 33342 and EGFP) were acquired using an automated 

fluorescence microscope (Beckman Coulter IC-100). Images were acquired with a 40x 

0.9NA objective and a Hamamatsu Orca-ERG camera at a fixed camera gain and 

exposure time. 25 fields were imaged for each well using autofocus on the Hoechst 

channel.  Images of empty wells were discarded. The remaining images of EGFP-positive 

cells were used for analysis. 

C. Feature Calculation and Selection

The most common approach to describing subcellular pattern is to use features calculated 

on single cell images.  This requires segmenting each image into single cell regions, a 

task that can be quite error prone.  For the large number of images in this study, we 

therefore used a new set of our Subcellular Location Features that are not sensitive to the 

number of cells in an image.  The starting point for this set was SLF21, which has 

previously been shown to provide good performance for classifying subcellular patterns 

without cell segmentation.9 It includes 3 morphological features, 5 edge features and 13 

Haralick texture features.  We augmented this set by calculating the 13 Haralick texture 

features after downsampling the protein image from two to six fold and adding a new 
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feature which measures the percentage of pixels that are above threshold in the protein 

(EGFP) image which are also above threshold in the DNA (Hoechst) image.  

(Thresholding is performed as described previously. 9)  These additional 66 features gave 

us a total of 87 features to describe each image.  We define this set as SLF25.

To assess the sensitivity of a given feature to undesirable well-to-well and plate-to-plate 

variation, t-tests were performed for all pairs of images (fields) of positive control cells. 

Average p-values were calculated for all pairwise tests for a given feature, and various 

thresholds on this average were used for feature elimination.

Step Discriminant Analysis (SDA) was then done for the remaining features on the entire 

image dataset to select those with good discriminating power: the features that can 

differentiate the patterns.

D. Clustering of Protein Patterns

A three-step process was used to cluster the wells that contained tagged proteins.  First, k-

means clustering with a z-scored Euclidean distance function was performed on the 

image varying k from 1 to 100. Akaike information content (AIC) was then calculated to 

select an optimal k and corresponding clustering of the images. Second, each well was 

allocated to that cluster which contains a plurality of the images in the well and only the 

images in this cluster were kept for further analysis. If, however, the number of images 

assigned to the plurality cluster was less than 1/3 of the total number of images for a 
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given well, that well was considered not to have a unique pattern and it was removed 

from the analysis. 

Lastly, a consensus tree algorithm4 was applied to the remaining images. In this 

algorithm, a hierarchical cluster tree (dendrogram), was generated from a random half of 

images of each well. This was repeated 200 times and a consensus tree was generated in 

which only the branches of the trees that were present in at least half of the trees were 

kept.

Visual inspection was also used to cluster the tagged wells. During this process, 

descriptive terms were assigned to each well by one of the authors (E.G.O.) after 

carefully examining the representative images of each well (representative images were 

chosen as described previously15). Whatever terms that were felt to accurately describe 

the protein pattern were used, and for the consistency, the same terms were used for the 

same patterns.  Wells were then grouped into those that shared a unique combination of 

the descriptive terms.

In order to measure the agreement of different clustering results, we calculated Cohen’s 

statistics on each pair of clustering results A and B:

where expected agreement is that expected for two random samplings from the same 

clustering. 4
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E. Software and data availability

All data and Matlab code used in this paper are available at 

http://murphylab.web.cmu.edu/data and http://murphylab.web.cmu.edu/software, 

respectively.

III. Results

We have previously demonstrated the feasibility of automated clustering of randomly-

tagged proteins by their location pattern using high-resolution images obtained with a 

spinning disk confocal microscope. This required major efforts in three areas: time and 

culture expense for isolating, expanding and maintaining individual clones, large reagent 

costs for identifying the tagged gene by RT-PCR and sequencing, and extensive time for 

individually plating and carrying out 3D imaging for each clone.  The results provided 

information about the location of each protein but also about the number and type of 

patterns that were observed.  Given the expense of this approach, we sought to evaluate a 

much less expensive alternative for just determining the set of possible patterns: sorting 

individual tagged cells directly into 96-well plates and imaging them without identifying 

the tagged gene.  To test the feasibility of this approach, we generated and imaged ten 

plates per week for four weeks.  After eliminating edge rows and columns (which could 

not be imaged due to interference by the plate skirt with the 40x objective) and the 

negative and positive control wells (three each per plate), we obtained images for 54 

randomly-tagged wells per plate or a total of 2160 wells.   Of these, 222 contained EGFP-

positive cells. Examples of these images can be seen in Figure 1. After removing those 

images which were overcrowded or those for which valid features could not be calculated 

http://murphylab.web.cmu.edu/data
http://murphylab.web.cmu.edu/software
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due to low fluorescence signal, a total of 174 wells with at least 10 images remained.  

These were used in clustering analysis.

An important issue for any image clustering approach is the nature of the features to be 

used.  Given that the images we wished to cluster were collected on different days over 

many weeks (albeit under nominally the same conditions each day), one concern in this 

respect is that features that are sensitive to day-to-day variations might result in clustering 

proteins by day of acquisition (or position within a plate) rather than by protein pattern.  

The presence of the positive controls wells in each plate allowed us to design a strategy to 

minimize this concern.  We sought to select features that can tell the difference between 

the different randomly-tagged proteins but not be sensitive to the variance among the 

positive controls from plate to plate.  As described in the Methods, we did extensive t-

tests on each feature for each pair of images from control wells to eliminate features that 

were significantly different between the controls.  We used three thresholds (0, 0.1 and 

0.2) on the average p-values to eliminate plate dependent features. The remaining 

features were then subjected to Stepwise Discriminant Analysis (SDA) to eliminate 

features that did not provide any discriminating power between the randomly-tagged 

wells.  A total of 76, 64, and 42 features were retained for thresholds of 0, 0.1 and 0.2, 

respectively.

Using these features, we then performed k-means clustering on all images for the 174 

clones (plus 14 positive control wells) for various values of k (the number of clusters).  

The goodness of these different clustering runs was evaluated using the Akaike 
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Information Criterion (AIC), which balances tightness of the clusters against the number 

of clusters. These AIC values are plotted as a function of k in Figure 2. The results 

indicate that the optimal numbers of clusters are 41, 35 and 70 for the feature sets 

selected using a p-value threshold of 0, 0.1 and 0.2.

Consensus trees were then built for each feature set.  These can be viewed through a web 

interface at http://murphylab.web.cmu.edu/services/PSLID that permits display of 

representative images for each well. The consensus tree built with a p-value threshold of 

0.1 is shown in Figure 3.

Different feature sets led to different clustering results. In order to measure how much 

they agree with each other, the Cohen  statistics was calculated for each pair of 

clustering results. Since different sets of clones were retained in each final clustering, 

only the common clones in both clustering results were considered in each calculation. 

Additionally, labels of subcellular location patterns were assigned to each well by visual 

inspection (shown in Figure 3), and a clustering was generated by grouping wells with 

the same labels. The Cohen  statistics was also calculated between visual inspection and 

all three automated clustering results. The results are shown in Table 1. The agreements 

between visual inspection and k-means clustering results are obviously lower than those 

between different k-means clustering results. This indicates the consistency of automated 

methods of cluster analysis.

IV. Discussion

http://murphylab.web.cmu.edu/services/PSLID
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We have described a high-throughput method of analyzing randomly-tagged NIH 3T3 

cells. This method is automated and results in clusters of protein patterns that have 

similar distributions. This method allows us to analyze images without any previous 

knowledge of the protein subcellular location.  The work is distinguished from our prior 

work in that we describe a higher throughput pipeline for infecting, sorting and imaging 

tagged lines, the use of a internal control and a modified feature selection procedure to 

minimize the effects of variability during the imaging process, and the use of a new set of 

field level features that do not require segmentation into single cells.

It should be noted that in the work described here only proteins for which a consistent 

location pattern could be found were analyzed.  Future work will extend the analysis to 

identify proteins with variable patterns, such as those that show cell cycle dependence.  

The data collected in this study are being made publicly available to facilitate 

development of methods for this type of analysis.

The current results show that many, but not all, of the positive controls were clustered 

together.  This suggests that additional effort is needed in the future to ensure consistency 

between different runs.  Incorporating a larger number of positive controls that represent 

additional major subcellular locations would therefore appear useful. We are adopting 

this approach in our ongoing experiments to expand our database to include thousands of 

tagged proteins.  Our goal is then to use cluster analysis as described here to determine 

the number and types of subcellular location families that are present in NIH 3T3 cells. 

Once the set of possible patterns is known, the methods described here can be used to 
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screen for clones with particular patterns so that the tagged gene can be sequenced. This 

will be useful for identifying novel patterns and proteins that display them as well as 

providing new data for training location prediction methods. 
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k-means/AIC with p-value threshold

0 0.1 0.2

visual inspection 0.13 (0.01) 0.06 (0.01) 0.18 (0.03)

0 0.36 (0.02) 0.75 (0.04)
k-means/AIC

0.1 0.49 (0.04)

Table 1. Comparison of clustering results. Cohen’s  statistic was calculated to measure 

the degree of agreement between each pair of clustering results. Higher values indicate 

better agreement. The numbers in the parentheses are the standard deviation of the 

statistics. 
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Figure Captions

Figure 1.  Example images from the dataset acquired in this study. The clones varied in 

protein expression level, and therefore each panel was fully contrast-stretched to facilitate 

visualization (hence the background appears different in each panel).

Figure 2. Determination of the optimal number of clusters using AIC. Three p-value 

thresholds were used (solid: 0, dashed:0,1, dotted:0.2) to select a set of features and then 

k-means clustering was performed for various values of k. AIC was calculated to measure 

the goodness of each clustering.  The optimal values of k are 41, 35 and 70, respectively.

Figure 3. A consensus subcellular location tree built from 126 wells of the randomly 

tagged 3T3 image dataset. A threshold of 0.1 was used on the average p-value of the 

statistic tests on control wells to select features. The first column of labels shows the well 

name and (positive control wells are marked with an asterisk). The second column of 

labels shows the locations assigned by visual inspection. In this tree, the sum of the 

lengths of the branches connecting two clones is proportional to the distance between 

them in feature space.
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Figure 1. García Osuna, Elvira
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Figure 2. García Osuna, Elvira



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

20

Figure 3. García Osuna, Elvira



Reviewer #1:

We see three major points raised. First, the reviewer raises a question regarding 
eliminating wells that exhibit variations in pattern. This point has been addressed in the 
manuscript in the “Discussion” section. Briefly, although we eliminate images from wells 
that do not exhibit the same pattern as the majority pattern in the well, we do retain those 
images that do demonstrate the majority pattern. Dealing with variations in pattern will 
be something that needs to be addressed in future work.

Secondly, the reviewer raises a very valuable point: the need for more positive controls. 
The results suggest that the inclusion of more positive control patterns would be useful in 
identifying the patterns in the cluster. We have addressed this concern in the 
“Discussion” section of the manuscript. At this point there is little that can be done to 
address the issue in dataset used for the manuscript, but it is a suggestion that can be 
included in future studies. 

Lastly, it has been shown in previous studies that CD-tagging has minimal impact on 
protein localization (Jarvik, J.W., et al, 2002). However, it is entirely possible that for 
certain proteins, the inclusion of the EGFP encoding sequence changes the location of the 
protein for some insertion sites. We expect that since as the number of tagged clones 
grows we will have multiple instances of the same protein being tagged, a majority 
pattern can be discerned and presumably this will be the normal pattern. 

Reviewer #3:

There are three points raised by this reviewer. The first point is that there is a need to 
clarify the advancement of this work with respect to previous work. We discuss this now 
at the end of the Introduction and again in the Discussion.  The new things are the higher 
throughput pipeline, incorporation of internal controls and new approach to feature 
selection, use of field features instead of single cell features.

The second point is connections to other proteomics database.  We are part of the NCIBI 
integrated database project, and PSLID is being connected to that database so that high-
resolution information can be integrated with other data sources.  PSLID also can be 
linked to directly from other databases.  We have mentioned these items briefly in the 
discussion.

The third point is well taken.  We have been working on generative models to capture 
and distribute subcellular patterns for each cluster and are about to submit a manuscript 
describing that work.  Linking directly from integrated databases (previous point) also 
can help with this.
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