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Abstract — In [13], a new algorithm was proposed for ef-
ficiently solving the simultaneous localization and mapping
(SLAM) problem. In this paper, we extend this algorithm to
handle data association problems and report real-world re-
sults, obtained with an outdoor vehicle. We find that our ap-
proach performs favorably when compared to the extended
Kalman filter solution from which it is derived.
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1 INTRODUCTION

This paper investigates a scalable algorithm for the simulta-
neous mapping and localization (SLAM) problem, and evalu-
ates it in the context of outdoor navigation. The SLAM problem
is the problem of acquiring a map of an unknown environment
with a moving robot, while simultaneously localizing the robot
relative to this map [2, 5]. The SLAM problem addresses sit-
uations where the robot lacks a global positioning sensor, and
instead has to rely on a sensor of incremental ego-motion for
robot position estimation (e.g., odometry, inertial navigation).
Such sensors accumulate errors over time, making the problem
of acquiring an accurate map challenging. The SLAM problem
has attracted immense attention in the past a few years [4].

This paper addresses computational issues in performing
real-world SLAM. The classical SLAM solution, based on the
extended Kalman filter (EKF) [8, 9, 12, 11], scales quadrat-
ically with the number of landmarks in the map. As a re-
sult, practical implementations of this approach are limited to
a few hundred landmarks [2]. This deficiency has long been
recognized and has spurred a flurry of research on more ef-
ficient SLAM algorithms. One thrust of research involves
the development of hierarchical techniques, which decompose
large maps into smaller, computationally more manageable
sub-maps [1, 3, 6, 15]. Such techniques are more efficient than
the quadratic time EKF, but most of them still require quadratic
time for maintaining global consistency between multiple sub-
maps. Additionally, the consistency is difficult to maintain
as the vehicle crosses boundaries between different sub-maps.
One recent technique updates the estimate in constant time [6]
by restricting all computation to the submap in which the robot
presently operates. Using approximation techniques for transi-
tion between submaps, this work demonstrated that consistent
error bounds can be maintained with a constant-time algorithm.
However, the method does not propagate information to pre-
viously visited submaps unless the robot subsequently revisits
these regions. Hence, this method suffers a slower rate of con-
vergence in comparison to the O(N 2) full covariance solution.

In this paper, we follow a different approach. In a recent
paper [13], we proposed a SLAM algorithm that requires con-

stant time for updating. This approach is based on the informa-
tion form of the Kalman filter [7, 10], known as extended infor-
mation filter (EIF). EIFs are mathematically identical to EKF,
yet they represent map estimates by sets of pairwise constraints
between landmarks. In practice, these constraints are usually
sparse. This insight led us to define the sparse extended infor-
mation filter, or SEIF. SEIFs can be updated in constant time,
which is significantly faster than the quadratic update time of
EKFs. Meanwhile it maintains a globally consistent estimate of
the robot pose and the map. However, the original paper [13]
only provided theoretical results and did not analyze the perfor-
mance of SEIFs using real-world data. It also did not provide a
method for handling data association problems that commonly
occur in real-world settings.

This paper describes SEIFs, our extension to handle data as-
sociation problems, and empirical results. Because SEIFs are
approximations of EKFs, an important question is the accuracy
of this approximation. This paper presents experimental results
that compare SEIFs with EKFs using both simulated and real-
world data sets. We find that empirically, SEIFs are highly ac-
curate approximations to EKFs. Our empirical comparison uti-
lizes a benchmark data set recorded with an outdoor vehicle [2].
On the computational end, we find that SEIFs are significantly
more efficient as is predicted, and their efficiency makes them
scalable to much larger maps than EKFs can handle.

2 SPARSE EXTENDED INFORMATION FILTERS

2.1 Introduction

The standard approach for solving feature-based SLAM
problems is based on the extended Kalman filter (EKF) [11, 2].
Figure 1 shows the result of EKF mapping in an environment
with 50 landmarks. The normalized covariance of the EKF is
the correlation matrix, which is visualized in Figure 1a. Each
of the two axes lists the robot pose (x-y location and orienta-
tion) followed by the x-y-locations of the 50 landmarks. Dark
entries indicate strong correlations. It is known that in the limit
of SLAM, all x-coordinates and all y-coordinates become fully
correlated [2]. The checkerboard appearance of the correlation
matrix illustrates this fact.

The key insight that motivates our approach is shown in
Figure 1b. Shown there is the inverse covariance matrix (also
known as information matrix [7, 10]), normalized just like the
correlation matrix. Elements in this normalized information
matrix can be thought of as constraints, or links, between the
locations of different landmarks: The darker an entry is in the
display, the stronger the link is. As this depiction suggests, the
normalized information matrix appears to be naturally sparse:
It is dominated by a small number of strong links between



Figure 1: Typical snapshot of EKFs applied to the SLAM problem:
(a) a correlation matrix (normalized covariance) and (b)
the normalized inverse covariance, or information matrix.
This plot illustrates the basic insight of SEIFs: Correlation
matrices are dense, whereas their normalized inverses are
naturally sparse.

(a) (b)

Figure 2: Illustration of the network of landmarks generated by our
approach. Shown on the left is a sparse information ma-
trix, and on the right a map in which entities are linked
when the corresponding elements in the information ma-
trix are non-zero. As argued in the paper, the fact that not
all landmarks are connected is a key structural element of
the SLAM problem, and at the heart of our constant time
solution.

geographically nearby landmarks, and possesses a large num-
ber of links whose values, when normalized, are near zero.
Furthermore, link strengths are related to distances between
landmarks: Strong links are found only between geometrically
nearby landmarks. The more distant two landmarks are from
each other, the weaker their link is.

SEIFs exploit this structure by maintaining a sparse infor-
mation matrix, in which only nearby landmarks are linked
through a non-zero element. The resulting network structure is
illustrated in the right panel of Figure 2, where disks correspond
to landmarks and dashed arcs to links, as specified in the infor-
mation matrix visualized on the left. Shown also is the robot,
which is linked to a small subset of landmarks only. This subset
of landmarks are called active landmarks and drawn in black.
Storing a sparse information matrix requires linear space. More
importantly, updates can be performed in constant time regard-
less of the number of landmarks in the map. The resulting filter
is a sparse extended information filter, or SEIF.

2.2 Information State

Let xt denote the pose of the robot at time t, and yn with
1 ≤ n ≤ N the location of the n-th landmark, with N being
the total number of landmarks in the environment (a quantity
that is estimated during mapping). The robot pose xt and the
set of all landmark locations Y together constitute the state of
the environment:

ξt = ( xt y1 . . . yN )
T (1)

As is common in SLAM literature, SEIFs present the posterior
by a multi-variate Gaussian over the state ξt. Such a Gaussian
can be represented by a mean µt and a covariance Σt, or equally
by the so-called natural parameters of the Kalman filter:

bt = µTt Σ−1
t (2)

Ht = Σ−1
t (3)

The EKF representation using the information vector bt and the
information matrix Ht is known as the information form of the
EKF, or extended information filter (EIF). The mean µt and
covariance Σt are easily recovered from the information form:

Σt = H−1
t (4)

µt = Σtb
T
t (5)

The information matrix Ht was already discussed above, and
an example was shown in Figure 1b. Sparse EIFs, or SEIFs,
are EIFs whose information matrix Ht is sparse. Put differ-
ently, each row and each column in Ht contains only a limited
number of non-zero elements, and the limit does not depend on
the size of the matrix N . Sparseness is achieved by an update
rule that occasionally removes links from the posterior so as to
maintain sparseness, as described further below.

2.3 Measurement Updates

One of the key update steps in SLAM involves the incorpo-
ration of a measurement (a landmark sighting). The measure-
ment at time t is denoted zt. In [13], it is assumed the index of
this landmark can be sensed without error—a classical assump-
tion known in SLAM as “known data association,” necessary
for maintaining Gaussian estimates. For now, let us adopt this
assumption; further below, we will discuss our approach for
estimating the landmark identity during the estimation process.

Figure 3 illustrates the effect of measurements on the infor-
mation matrix Ht. Suppose the robot senses landmark y1, as
illustrated in Figure 3a. This observation links the robot pose
xt to the location of y1. The strength of the link is given by
the level of noise in the measurement. Updating EIFs based on
this measurement involves the manipulation of the off-diagonal
element Hxt,y1

and its symmetric counterpart Hy1,xt that link
together xt and y1. Additionally, the diagonal elements Hxt,xt
and Hy1,y1

are also updated. These updates are additive: Each
observation of a landmark y increases the strength of the total
link between the robot pose and this very landmark, thus the to-
tal information in the filter. Figure 3b shows the incorporation
of a second measurement of a different landmark, y2. In re-
sponse to this measurement, the EIF updates the links Hxt,y2

,
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Figure 3: The effect of measurements on the information matrix and
the associated network of landmarks: (a) Observing y1 re-
sults in a modification of the information matrix element
Hxt,y1 . (b) Similarly, observing y2 affects Hxt,y2 . Both
updates can be carried out in constant time.

Hy2,xt , Hxt,xt , and Hy2,y2
). As this example suggests, mea-

surements introduce links only between the robot pose xt and
observed landmarks. Measurements never generate links be-
tween pairs of landmarks, or between the robot and unobserved
landmarks.

Incorporating measurements into the information filters nat-
urally requires constant time. The canonical update rule is the
following:

Ht = H̄t + CtZ
−1CTt (6)

bt = b̄t + (zt − h(µt) + CTt µt)
TZ−1CTt (7)

Here h is the measurement function that maps state ξt into
measurement zt. The measurement noise is Gaussian with co-
variance Z. Finally, the matrix Ct is the gradient of the mea-
surement function h with respect to the state vector ξ, taken at
ξ = µt:

Ct = ∇ξh(µt) (8)

In general filter applications, such an update may require more
than constant time. In SLAM, however, each measurement in-
volves only a single landmark (or a limited number of land-
marks, regardless of N ). For this reason, Ct is zero except for
a limited number of elements. With such a sparse matrix Ct,
constant time updates can be implemented.

2.4 Motion Updates

Figure 4a illustrates an information matrix and the associ-
ated network before the robot moves. The robot is linked to
two (previously observed) landmarks. If robot motion was free
of noise, this link structure would not be affected by robot mo-
tion. However, the noise in robot actuation weakens the link
between the robot and all active landmarks. Hence Hxt,y1

and
Hxt,y2

are decreased by certain amounts. This decrease reflects
the fact that the noise in robot motion causes a loss of informa-
tion about the relative positions of the landmarks with respect
to the robot. Not all of this information is lost, however. Some
of it is shifted into between-landmark linkHy1,y2

, as illustrated
in Figure 4b. This reflects the fact that even though the motion
induces a loss of information of the robot relative to the land-
marks, no information is lost between individual landmarks.
Robot motion, thus, has the effect that landmarks that were in-
directly linked through the robot pose become linked directly.

Motion updates in the information form of the Kalman filter
are usually not achievable in constant time. However, as proven

(a) (b)

Figure 4: The effect of motion on the information matrix and the
associated network of landmarks: (a) before motion, and
(b) after motion. If motion is non-deterministic, motion
updates introduce new links (or reinforce existing links)
between any two active landmarks, while weakening the
links between the robot and those landmarks. This step
introduces links between pairs of landmarks.

in [13], the update can be performed in constant time if the
information matrix Ht is sparse. The equations for the general
case are as follows:

Ψt = I − Sx(I + [STx AtSx]−1)−1STx

H ′t−1 = ΨT
t Ht−1Ψt

∆Ht = H ′t−1Sx[U−1
t + STxH

′
t−1Sx]−1STxH

′
t−1 (9)

H̄t = H ′t−1 −∆Ht

b̄t = bt−1 − µTt−1(∆Ht +H ′t−1 −Ht−1) + ∆̂T
t H̄t

Here Sx is the canonical projection matrix from the full state
to the robot pose coordinates. These equations are mathemati-
cally exact (not just approximations) and constant time. How-
ever, they may cause violations to the sparseness constraints by
adding new links (non-zero elements) in the information ma-
trix Ht. The removal of some links is a key approximation step
in SEIFs, which enables them to maintain sparse information
matrices.

2.5 Sparsification

SEIF’s sparsification technique is illustrated in Figure 5.
Shown there are the situations before and after sparsification.
The removal of a link in the network corresponds to setting an
element in the information matrix to zero. However, this re-
quires the manipulation of some links between the robot and
other active landmarks. The resulting network is only an ap-
proximation to the original one, and its quality depends on the
strength of the link before its removal.

H ′t = Sx,Y +,Y 0STx,Y +,Y 0HtSx,Y +,Y 0STx,Y +,Y 0

b′t = btSx,Y +,Y 0STx,Y +,Y 0

L′t = [Sx(STxHtSx)−1STx + SY 0(STY 0HtSY 0)−1STY 0

−Sx,Y 0(STx,Y 0HtSx,Y 0)−1STx,Y 0 ]H ′t (10)

H̃t = Ht −H ′tL′t
b̃t = bt − b′tL′tSY 0STY 0 + (µTt H̃t − bt)Sx,Y +STx,Y +

To implement these equations, it is necessary to subdivide the
set of landmarks into three subsets: the set of active landmarks
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Figure 5: Sparsification: A landmark is deactivated by eliminating
its link to the robot. To compensate for this change in in-
formation state, links between active landmarks and/or the
robot are also updated. The entire operation can be per-
formed in constant time.

Y + that contain a non-zero link to the robot pose in the infor-
mation matrix Ht; the set of passive landmarks Y −; and finally
the set of landmarks Y 0 that are active before the sparsification
step, but passive afterwards. Our sparsification equations have
the effect of removing links between Y 0 and the robot pose —
a step necessary if the number of landmarks linked to the robot
exceeds a given sparsity threshold. By doing so, the number
of between-landmark links also remains limited. Consequently,
the sparsification step ensures the sparseness of the information
matrix Ht in SEIFs. We note that this step is approximate. The
question as to whether this approximation affects SEIF’s per-
formance in practice has not been addressed previously. The
sparsification may cause SEIFs to be over-confident on land-
mark positions. Empirically, this over-confidence is mostly on
the absolute positions of the landmarks rather than on their rel-
ative positions. Empirically, the approximation works well for
our experiments on recovering relative maps.

2.6 Amortized Map Recovery

Finally, SEIFs offer an algorithm that also requires constant
time for recovering the means µt from the information form.
The recovery of the means might be interesting if one would
like to visualize the map: The information form contains the
map only implicitly, and the obvious recovery via Equations (4)
and (5) would require cubic time. More importantly, the means
of the robot pose and active landmarks’ locations are required
in several of the above update steps, (8), (9) and (10). SEIFs use
an amortized iterative method, similar to the Jacobi method or
the slightly different Gauss-Seidel method, to gradually recover
µt. One sufficient condition for this kind of method to converge
is the positive definite condition which the Ht matrix satisfies.

To describe the algorithm in detail, let us write Ht in four

blocks Ht =

(
H11 H12

H21 H22

)
and accordingly have µt =

(µ1 µ2), bt = (b1 b2). Block H11 should include the com-
ponents of Ht that correspond to robot pose, active landmarks’
positions and possibly a constant number of other elements,
such as the locations of those landmarks linked to active land-
marks. To recover µt in one step, one needs to solve two equa-
tions

H11µ1 +H12µ2 = b1
H21µ1 +H22µ2 = b2 (11)

Following the idea of iterative methods mentioned above, only
part of µt, i.e. µ1 is updated by µ1 = H−1

11 (b1−H12µ2) in one

step. Since matrices H11 and H12 have only a limited number
of nonzero elements, an update shall be carried out in constant
time. Iterations are performed whenever components of µt are
needed. If some components of µ1 are changed by significant
amounts, for example, when a loop is being closed, extra steps
may be taken to update those components together with land-
marks linked directly with them. Further, such extra steps can
be buffered to work out when the computer is idling, thus the
computing power is better utilized. As the robot explores the
environment, active landmarks change, so all the components
of µt get chances to be updated. This amortized map recov-
ery introduces additional error to the system. However experi-
ments show that the error is insignificant when compared to the
advantages of SEIF in other aspects.

3 DATA ASSOCIATION

3.1 Recovering Data Association Probabilities

Finally, practical domains are characterized by data associ-
ation problems. Data association problems arise when individ-
ual landmarks in the environment cannot be identified uniquely
based on sensor measurements alone. The data association
problem is pervasive in real-world SLAM problems. How-
ever, the original publication [13] did not address this important
problem.

Our mechanism for handling the data association problem
uses a maximum likelihood estimator, together with a thresh-
olded χ2 test. In particular, our approach selects the landmark
that best explains a measurement. If we write nt as the land-
mark index of the landmark seen at time t, the maximum like-
lihood estimator determines

n∗t = argmax
n

p(nt|zt, ut)

= argmax
n

p(nt|zt) p(ξt|zt−1, ut)︸ ︷︷ ︸
H̄t,b̄t

(12)

where zt = z1, ...., zt and ut = u1, ...., ut. If the expression
inside the argmax is smaller than a threshold α, that is, none of
the landmarks in the map explains the measurement with a min-
imum required probability, the landmark is considered new and
the filter is grown accordingly. By using this test, the result-
ing SEIF gradually builds up a network of landmarks, while
nearby landmarks are connected by links. This approach is
commonly used in the context of EKFs [2]. In EKFs, calcu-
lating p(nt|zt, ut) is easy since it is straightforward to extract
the mean and the covariance of a landmark position together
with the robot pose from the full state estimate. The mean and
the covariance define a probability density p(xt, yn|zt−1, ut)
which are then used to calculate the probability p(nt|zt, ut).

In SEIFs, the situation is more complicated: Recovering the
covariance of a landmark location and the robot pose in the
naive way would require inverting a large matrix, which is a
O(N3) operation. However, we can once again exploit the
sparseness of the information matrix to obtain a high fidelity
approximation of the necessary covariances.
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Figure 6: The combined Markov blanket of landmark yn and robot
xt is sufficient for approximating the posterior proba-
bility of the landmark locations, conditioning away all
other landmarks. This insight leads to a constant time
method for recovering the approximate probability distri-
bution p(xt, yn|zt−1, ut).

Suppose we would like to calculate the probability distribu-
tion of the n-th landmark yn and the robot pose xt. The idea
is to do so by conditioning on all state variables outside the
Markov blankets of these variables. The Markov blanket of the
robot pose xt is simply the set of all active landmarks. Like-
wise, the Markov blanket of landmark yn is the set of all land-
marks (and possibly the robot pose) directly connected to this
landmark in the SEIF. Figure 6 illustrates the situation. Shown
there is a landmark, a robot pose, the Markov blanket of the
landmark (the squares) and the set of all active landmarks (in
black). All other variables are not considered during this op-
eration, since they do not assert a direct influence on the robot
pose or landmark in question.

Mathematically, we do the following approximation, where
Y +
n is the combined Markov blanket:

p(xt, yn|zt−1, ut)

=

∫
p(xt, yn|Y +

n , Y
−
n , z

t−1, ut) ·

p(Y +
n |Y −n , zt−1, ut) p(Y −n |zt−1, ut)dY +

n dY
−
n

≈
∫
p(xt, yn|Y +

n , Y
−
n = µ−n , z

t−1, ut) ·

p(Y +
n |Y −n = µ−n , z

t−1, ut)dY +
n (13)

Here

Y −n = Y \{xt, yn}\Y +
n (14)

is the set of all state variables not included in the Markov blan-
ket Y +

n , and also excluding yn and xt; µ−n are the means corre-
sponding to Y −n . This approximation ignores a residual uncer-
tainty in remote state variables. However, we found that empir-
ically it approximates the true posterior probability needed for
data association with double-digit accuracy in our real world
test.

Apart from the mathematical reasoning, the operation in ma-
trix form is simple. The distribution p(xt, yn|zt−1, ut) is ap-
proximated by a Gaussian with covariance

Σt:n = STxt,yn(ST
xt,yn,Y

+
n
HtSxt,yn,Y +

n
)−1Sxt,yn

µt:n = µtSxt,yn (15)

This calculation is constant time, since it involves a matrix
whose size is independent of N .

3.2 Map Management

Our exact mechanism for building up the map is closely
related to standard procedures in the SLAM community [2].
Due to erroneous landmark detections caused for example by
moving objects or measurement noise, additional care has to be
taken to filter out those interfering measurements. For any de-
tected object that can not be explained by existing landmarks,
a new landmark candidate is generated but not put into SEIF
directly. Instead it is added into a waiting list with a weight rep-
resenting its probability of being a useful landmark. In the next
measurement step, the newly arrived candidates are checked
against all candidates in the waiting list; reasonable matches
increase the weight of corresponding candidates. Candidates
that are not matched lose weight because they are more likely
to be a moving object. When a candidate has its weight above
a certain threshold, it joins the SEIF network of landmarks.

We notice that data association violates the constant time
property of SEIFs. This is because when calculating data asso-
ciations, multiple landmarks have to be tested. If we can ensure
that all plausible landmarks are already connected in the SEIF
by a short path to the set of active landmarks, it would be fea-
sible to perform data association in constant time. In this way,
the SEIF structure naturally facilitates the search of the most
likely landmark given a measurement. However, this is not the
case when closing a cycle for the first time, in which case the
correct association might be far away in the SEIF adjacency
graph. Using kd-trees, it appears to be feasible to implement
data association in logarithmic time by recursively partitioning
the space of all landmark locations using a tree.

Finally, we notice that another important operation can be
done in constant time in SEIF: the merge of identical landmarks
previously mistreated as two or more unique ones. It is simply
accomplished by adding corresponding values in the Ht ma-
trix and bt vector. This operation is necessary when collapsing
multiple landmarks into one upon the arrival of further sensor
evidence.

4 EXPERIMENTAL RESULTS

The purpose of our comparison was to evaluate the perfor-
mance of SEIFs against that of the “gold standard,” which is
EKF from which SEIFs are derived. The vehicle and its envi-
ronment are shown in Figures 7 and 8. The vehicle is equipped
with a SICK laser range finder, and a unit for measuring steer-
ing angle and forward velocity. The laser is used to detect trees
in the park, but it also picks up hundreds of spurious features
such as corners of moving cars on a nearby highway. The raw
odometry of the vehicle is extremely poor, resulting in several
hundred meters of error when used for path integration along
the vehicle’s 3.5km path, see Figure 8(a). The data used for
our experiments was previously used as a benchmark in sev-
eral publications (see [2]). In our experiment on this real-
world data, SEIF correctly recovers the robot path shown in



Figure 7: The vehicle used in our experiments is equipped with a
2D laser range finder and a differential GPS system. The
vehicle’s ego-motion is measured by a linear variable dif-
ferential transformer sensor for the steering, and a wheel-
mounted velocity encoder. In the background, the Victoria
Park test environment can be seen.

Figure 8(b). Comparing with EKF, SEIF runs twice as fast and
consumes less than a quarter of the memory EKF uses. SEIF’s
landmark position estimations differ from those of EKF’s by
0.5 meter in terms of root mean square distance.

In addition to the real-world data, we also used a robot simu-
lator. The simulator has the advantage that we know the ground
truth (which is unknown for the real-world data sets), and that
it facilitates experiments on scaling our approach to different
environment sizes. In our simulations, we focused particularly
on the loop closing problem, which is generally acknowledged
to be one of the hardest problems in SLAM. When closing a
loop, usually many landmark locations are affected, testing our
amortized map recovery mechanism under the hardest possible
circumstances.

The robot simulator is set up so that unit area has 50 land-
marks on average. The landmarks are randomly distributed in
a squared region with a minimum distance of 0.05 between
landmarks. As the number of landmarks increases, so does the
area. The noise of robot motion and measurements are all mod-
eled by zero mean Gaussian noise. Specifically, the variance is
10−4 for forward velocity, 10−3 for rotational velocity, 0.002
for range detection and 0.003 for bearings measurements. In
each iteration of the simulation, the robot takes one move and
one measurement. For k number of landmarks, 20k iterations
are performed. This roughly makes the average number of vis-
its to each landmark the same for the simulations of different
number of landmarks. Maximum sensor range is set to 0.2,
which translates to 6 landmark detections on average for one
measurement step. The maximum number of active landmarks
is chosen to be 10. Figure 10 and 11 clearly show that SEIF
beats EKF in terms of computation and memory usage. In the
case of EKF, the usage of both computation and memory in-
creases quadratically with respect to the number of landmarks,
whereas for SEIF, CPU time per iteration comes to a constant
when the number of landmarks goes beyond 300, and the mem-
ory used to store the information matrix increases only linearly.
Due to the approximation of the information matrix and amor-
tized map recovery, SEIF has bigger error than EKF as is shown
in Figure 12. However the decrease in computation and mem-
ory costs can easily outweigh this small increase in errors.

Figure 8: The testing environment: A 350 meters by 350 meters
patch in Victoria Park in Sydney. (a) shows integrated path
from odometry readings (b) shows the path as the result of
SEIF.
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Figure 9: Overlay of estimated landmark positions and robot path.

5 DISCUSSION

This paper summarized a new algorithm for the simulta-
neous localization and mapping (SLAM) problem, which can
maintain globally consistent maps with constant update time.
Our approach is based on the observation that in the informa-
tion form of traditional Kalman-filter algorithms (EKF), most
elements in the normalized information matrix are near zero.
The sparse extended information filter, or SEIF, enforces a
sparse information matrix, which can be updated in constant
time. This paper also proposed a data association mechanism
for SEIFs based on the maximum likelihood principle.

Since this algorithm is approximate, we presented empirical
results, comparing SEIFs to the common EKF solution. Our
results show that SEIFs produce results comparable to that of
EKFs, but at a much improved computational time complexity
(constant instead of quadratic time). The results were obtained
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and EKF.

for a well-known reference data set, recorded by researchers at
the University of Sydney. Thus, with this paper, we fill an im-
portant gap: while previous results regarding SEIF were purely
theoretical in nature, the results presented here shed light on the
practical side of SEIFs. Based on our findings, we believe that
SEIFs are scalable to much larger maps than the EKF or related
hierarchical sub-mapping approaches.
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