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1 Introduction

Using data gathered from blogs, this work seeks to understand the structure
and formation of social networks, and the patterns of information propa-
gation through these networks. Blogs have become an important medium
of communication and information on the World Wide Web. Due to their
accessible and timely nature, they are also an intuitive source for data in-
volving the formation of social networks and the spread of information and
ideas. By studying link patterns of existing entities and new arrivals to a
blog network, we can infer the way in which social networks are formed.
And, by examining linking patterns from one blog post to another, we can
infer the way information spreads through a social network over the Web.

We seek to discover how information propagates through an existing
network. Do trees representing the flow of information maintain certain
structural properties? Does traffic in the blog network exhibit bursty and/or
periodic behavior? After a topic becomes popular, how does interest die off
– linearly, or exponentially? What models best exhibit such behavior?

We would also like to gain an understanding of how different entities in
the social network function with regard to the propagation of information.
Do some blogs act as hubs of information, often starting cascades of informa-
tion to flow? Do certain subnetworks have different patterns of information
propagation?
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1.1 Summary of findings and contributions

We note several temporal and topological observations in a blog network.
Temporally, we note periodic behavior in traffic, and demonstrate that, sur-
prisingly, post popularity drops off with a power law. Most topological
network characteristics follow power laws: in-degree, out-degree, cascade
size, and size of particular cascade shapes. We also produce a simple epi-
demiological model which captures most of the topological characteristics.

Delving further into the network entities, we use PCA to show that posts
belonging to the same blog cluster into certain network behaviors, and that
blogs in the same genre tend to cluster together based on their participation
in different cascade shapes. In one specific case, we show that conservative
blogs have more tree-like structures, while humorous blogs behave more like
“stars”.

2 Related Work

2.1 Blogs and social networks

Much work on modeling link behavior in large-scale on-line data has been
done in the blog domain [1, 2, 22]. The authors note that, while information
propagates between blogs, examples of genuine cascading behavior appeared
relatively rare. This may, however, be due in part to the Web-crawling and
text analysis techniques used to infer relationships among posts [2, 15]. Our
work here differs in a way that we concentrate solely on the propagation of
links, and do not infer additional links from text of the post, which gives us
more accurate information.

There are several potential models to capture the structure of the blogo-
sphere in particular, and of social networks in general. Work on information
diffusion based on topics [15] showed that for some topics, their popularity
remains constant in time (“chatter”) while for other topics the popularity is
more volatile (“spikes”). Authors in [22] analyze community-level behavior
as inferred from blog-rolls – permanent links between “friend” blogs. Au-
thors extended this work in [23] to analysis of several topological properties
of link graphs in communities, finding that much behavior was characterized
by “stars”. Analysis based on thresholding as well as alternative probabilis-
tic models of node activation is considered in the context of finding the most
influential nodes in a network [18], and for viral marketing [26]. Such ana-
lytical work posits a known network, and uses the model to find the most
influential nodes.
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A number of generative models have been proposed for social networks in
general [14, 19, 21, 33] Fitting static statistical models has also proved suc-
cessful. They may be fit directly to the data, and parameters are estimated.
A well-known class is exponential random graph, or p∗, models. Based on
Frank and Strauss’ Markov graphs [12], p∗ models are models defined by
certain statistics of a graph, such as transitivity (if a is a friend of b and
c of b, c is a friend of a), or triangles. The model places binary values on
potential links, and parameters are then fit to empirical data. They may be
used to define complicated dependency patterns [28].

2.2 Information cascades

Information cascades are phenomena in which an action or idea becomes
widely adopted due to the influence of others, typically, neighbors in some
network [5, 13, 14]. Cascades on random graphs using a threshold model
have been theoretically analyzed [32]. Empirical analysis of the topologi-
cal patterns of cascades in the context of a large product recommendation
network is in [25] and [24].

As Carley addresses in [6], the diffusion of information and influence
through a social network is greatly affected by the topology of the network.
For this reason, it is important to address topological structure before study-
ing cascades, which we will do in this work.

2.3 Virus propagation models in epidemiology

The study of epidemics offers powerful models for analyzing the spread of
viruses. Our topic propagation model is based on the SIS (Susceptible-
Infected-Susceptible) model of epidemics [3]. This is models flu-like viruses,
where an entity begin as “susceptible”, may become “infected” and infec-
tious, and then heals to become susceptible again. A key parameter is the
infection probability β, that is, the probability of a disease transmission in
a single contact. Of high interest is the epidemic threshold, that is, the crit-
ical value of β, above which the virus will spread and create an epidemic,
as opposed to becoming extinct. There is a huge literature on the study
of epidemics on full cliques, homogeneous graphs, infinite graphs (see [16]
for a survey), with recent studies on power-law networks [10] and arbitrary
networks [31].

There have also been applications of these models in the domain of com-
puter viruses. For example, Chen and Carley propose using state models
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similar to SIR for modeling countermeasure propagation, in order to com-
pete with virus propagation [7].

2.4 Self-similarity and heavy-tailed distributions

Self-similarity is often a result of heavy-tailed dynamics. Human interactions
may be modeled with networks, and attributes of these networks often follow
power law distributions [11]. Such distributions have a PDF (probability
density function) of the form p(x) ∝ xγ , where p(x) is the probability to
encounter value x and γ is the exponent of the power law. In log-log scales,
such a PDF gives a straight line with slope γ. For γ < −1, we can show
that the Complementary Cumulative Distribution Function (CCDF) is also
a power law with slope γ + 1, and so is the rank-frequency plot pioneered
by Zipf [34], with slope 1/(1 + γ). For γ = −2 we have the standard
Zipf distribution, and for other values of γ we have the generalized Zipf
distribution.

Fitting heavy-tailed distributions is done in different ways. The method
used in this work is done by taking histogram data, then taking the logarithm
f both axes, and fitting a least-squares regression line to the log-log data. An
R2 coefficient greater than 0.95 suggests the data may be well-approximated
with a power law distribution. Sometimes the tail is truncated, in this case
because of artifacts of the data. One may also fit the empirical distribution,
instead of the histogram data, with least-squares regression.

There are statistical methods of determining exactly which heavy-tailed
distribution (if any) by which data are best approximated, such as maximum
likelihood, and the Komolgorov-Smirnov test in Bayesian model selection.
Detail of these methods may be found in work by Clauset, Shalizi, and
Newman [8] and by Stouffer, Malmgren, and Amaral [29].

3 Preliminaries

In this section we introduce terminology and concepts regarding blog net-
works and information cascades.

3.1 Blogs and Cascades

Blogs (weblogs) are web sites that are updated on a regular basis. Blogs
have the advantage of being easy to access and update, and have come to
serve a variety of purposes. Often times individuals use them for online
diaries and social networking; other times news sites have blogs for timely
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Figure 1: The model of the blogosphere (a). Squares represent blogs and
circles blog-posts. Each post belongs to a blog, and can contain hyper-
links to other posts and resources on the web. We create two networks:
a weighted blog network (b) and a post network (c). Nodes a, b, c, d are
cascade initiators, and node e is a connector.

stories. Blogs are composed of posts that typically have room for comments
by readers – this gives rise to discussion and opinion forums that are not
possible in the mass media. Also, blogs and posts typically link each other, as
well as other resources on the Web. Thus, blogs have become an important
means of transmitting information. The influence of blogs was particularly
relevant in the 2004 U.S. election, as they became sources for campaign
fundraising as well as an important supplement to the mainstream media
[1]. Understanding the ways in which information is transmitted among
blogs is important to developing concepts of present-day communication.

We model two graph structures emergent from links in the blogosphere,
which we call the Blog network and the Post network. Figure 1 illustrates
these structures. Blogosphere is composed of blogs, which are further com-
posed of posts. Posts then contain links to other posts and resources on the
web.

From Blogosphere (a), we obtain the Blog network (b) by collapsing all
links between blog posts into directed edges between blogs. A blog-to-blog
edge is weighted with the total number of links where a post in source blog
points to a post in destination blog. From the Blog network we can infer a
social network structure, under the assumption that blogs that are “friends”
link each other often.

In contrast, to obtain the Post network (c), we ignore the posts’ parent
blogs and focus on the link structure. Associated with each post is the date
of the post, so we label the edges in Post network with the date difference
∆ > 0 between the source and the destination posts. Let tu and tv denote
post times of posts u and v, where u links to v, then the link time ∆ = tu−tv.
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Figure 2: Cascades extracted from Figure 1. Cascades represent the flow of
information through nodes in the network. To extract a cascade we begin
with an initiator with no out-links to other posts, then add nodes with edges
linking to the initiator, and subsequently nodes that link to any other nodes
in the cascade.

From the Post network, we extract information cascades, which are in-
duced subgraphs by edges representing the flow of information. A cascade
(also known as conversation tree) has a single starting post called the cascade
initiator with no out-links to other posts (e.g. nodes a, b, c, d in Figure 1(c)).
Posts then join the cascade by linking to the initiator, and subsequently new
posts join by linking to members within the cascade. Figure 2 gives a list
of cascades extracted from Post network in Figure 1(c). Since a link points
from the follow-up post to the existing (older) post, influence propagates
following the reverse direction of the edges.

We define a non-trivial cascade to be a cascade containing at least two
posts. Therefore, a trivial cascade is an isolated post. Figure 2 shows all non-
trivial cascades in Figure 1(c), but not the two trivial cascades. Cascades
form two main shapes, which we refer to as stars and chains. A star occurs
when a single center post is linked by several other posts, but the links do
not propagate further. This produces a wide, shallow tree. Conversely, a
chain occurs when a root is linked by a single post, which in turn is linked
by another post. This creates a deep tree that has little breadth. As we will
later see most cascades are somewhere between these two extreme points.

3.2 Principal component analysis

Given many vectors in D-dimensional space, how can visualize them, when
the dimensionality D is high? This is exactly where principal component
analysis (PCA) helps. PCA will find the optimal 2-dimensional plane to
project the data points, maintaining the pair-wise distances as best as pos-
sible. PCA is even more powerful than that: it can give us a sorted list of
directions (“principal components”) on which we can project. See [17] or
[20] for more details.
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Figure 3: Number of posts by day over the three-month period.

Traditional PCA assumes a Gaussian distribution. However, the data
we will be dealing with is heavy-tailed, and may be approximated with a
lognormal distribution. Therefore, in our experiments we will choose to
take the logarithm of each value– if the data is close to a lognormal this will
transform it to a normal distribution and thereby behaves well with PCA.
A similar method of improving PCA’s performance by normalizing data is
TF-IDF (term frequency– inverse document frequency), detailed in [27].

A generalized, more robust, version is exponential family PCA. While
PCA may be interpreted as fitting maximum likelihood of parameters Θ in a
multivariate unit Gaussian. Using generalized linear models, this approach
extends PCA to estimate parameters for any exponential family model, and
not simply Gaussians. This appraoch is particularly valuable for integer-
valued or binary-valued data, which may be better approximated with Pois-
son or Bernoulli distrubitions. Details may be found in [9]. We choose
traditional PCA for this work, and believe this approach is suitable since
the data may be closely approximated with a lognormal.

4 Observations and Experiments

4.1 Temporal patterns

Traffic in the blogosphere is not uniform. As Figure 3 illustrates, there is
a seven-day periodicity. Posting and blog-to-blog linking patterns tend to
have a weekend effect, with frequency sharply dropping off at weekends. In
Figure 3 we plot the number of posts per day over the span of our dataset.
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Figure 4: Number of in-links vs. the days after the post in log-linear scale,
after removing the day-of-the week effects. Power law fits to the data, based
on reasonable lookahead of 30 days, produce exponents −1.6 and −1.46.

Next, we examine how a post’s popularity grows and declines over time.
We collect all in-links to a post and plot the number of links occurring after
each day following the post. This creates a curve that indicates the rise and
fall of popularity. By aggregating over a large set of posts we obtain a more
general pattern.

However, the weekend effect creates abnormalities in the plots we must
account for. We smooth the in-link plots by applying a weighting parameter
to the plots separated by day of week. For each delay ∆ on the horizontal
axis, we estimate the corresponding day of week d, and we prorate the count
for ∆ by dividing it by l(d), where l(d) is the percent of blog links occurring
on day of week d. This simulates a popularity drop-off that might occur if
posting and linking behavior were uniform throughout the week.

We fit the power-law distribution with a cut-off in the tail (bottom row).
We fit on 30 days of data, as most posts in the graph have complete in-link
patterns for the 30 days following publication. We performed the fitting
over all posts and for all days of the week separately, and found a stable
power-law exponent of around −1.5, which is exactly the value predicted by
the model where the bursty nature of human behavior is a consequence of a
decision based queuing process [4] – when individuals execute tasks based on
some perceived priority, the timing of the tasks is heavy tailed, with most
tasks being rapidly executed, whereas a few experience very long waiting
times.
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the number of blog-to-blog links, i.e. the distribution over the Blog network
edge weights (b).

4.2 Blog network and Post network topology

The first graph we consider topologically is the Blog network. As illustrated
in Figure 1(c), every node represents a blog and there is a weighted directed
edge between blogs u and v, where the weight of the edge corresponds to the
number of posts from blog u linking to posts at blog v. Connectivity-wise,
half of the blogs belong to the largest connected component and the other
half are isolated blogs.

We show the in- and out-degree distribution in Figure 5. Notice both
follow a heavy-tailed distribution. The number of posts per blog, as shown
in Figure 6(a), also follows a heavy-tailed distribution. The deficit of blogs
with low number of posts and the knee at around 40 posts per blog can
be explained by the fact that we are using a dataset biased towards active
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Figure 8: Common cascade shapes ordered by frequency. Cascade with label
Gr has the frequency rank r.

blogs. However, our sample still maintains the power law in the number of
blog-to-blog links as shown in 6(b).

In contrast to Blog network the Post network is very sparsely connected.
98% of the posts are isolated, and the largest connected component accounts
for 106, 000 nodes, while the second largest has only 153 nodes. Figure 7
shows the in- and out-degree distributions of the Post network which, not
surprisingly, follow a power law.

4.3 Information propagation through cascades

We are especially interested in how information propagates, and this phe-
nomenon is illustrated by cascades. Given the Post network we extracted all
information cascades using the following procedure. We found all cascade
initiator nodes, i.e. nodes that have zero out-degree, and started following
their in-links. This process gives us a directed acyclic graph with a single
root node. To obtain the examples of the common shapes and count their
frequency we used algorithms described in [25]. We find a total of 2, 092, 418
cascades.

We give examples of common Post network cascade shapes in Figure 8.
A node represents a post and the influence flows from the top to the bot-
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Figure 9: Out-degree distribution over all cascades extracted from the Post
network (a), and the in-degree distribution at level L of the cascade (b).
Note all distributions are heavy tailed and the in-degree distribution is re-
markably stable over the levels.

tom. Cascades tend to be wide and not too deep– stars and shallow bursty
cascades are the most common type of cascades.

We next examine the general cascade behavior by measuring and charac-
terizing the properties of real cascades. First, we observe the degree distri-
butions of the cascades. This means that from the Post network we extract
all the cascades and measure the overall degree distribution. Essentially we
work with a bag of cascades, where we treat a cascade as separate discon-
nected sub-graph in a large network. Similar to other networks, in- and
out-degree distribution of the bag of cascades follow power laws with expo-
nents of -2.2 and -1.92, respectively (Figure 9). Further examination showed
that the in-degree exponent is stable and does not change much given level
L in the cascade (a node is at level L if it is L hops away from the cascade
initiator). This means that posts still attract attention (get linked) even if
they are somewhat late in the cascade and appear towards the bottom of it.

We next ask: what distribution do cascade sizes follow? Does the proba-
bility of observing a cascade on n nodes decreases exponentially with n? We
examine the Cascade Size Distributions over the bag of cascades extracted
from the Post network. We consider three different distributions: a distribu-
tion over all cascade sizes, and separate size distributions of star and chain
cascades. We chose stars and chains since they are well defined and given
the number of nodes in the cascade, there is no ambiguity in the topology
of a star or a chain.

Figure 10 gives the Cascade Size Distribution plots. Notice all follow a
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Figure 10: Size distribution over all cascades (a), only stars (b), and chains
(c). They all follow heavy tailed distributions with increasingly steeper
slopes.

heavy-tailed distribution, with slopes ≈ −2 overall (Figure 10(a)). So the
probability of observing a cascade on n nodes follows a Zipf distribution:
p(n) ∝ n−2. Stars have the power-law exponent ≈ −3.1 (Figure 10(b)), and
chains are small and rare and decay with exponent ≈ −8.5 (Fig. 10(c)).

4.4 Cascade generation model

We present a conceptual model for generating information cascades that
produces cascade graphs matching several properties of real cascades. Our
model is intuitive and requires only a single parameter that corresponds
to how interesting (easy spreading) are the conversations in general on the
blogosphere.

Intuitively, cascades are generated by the following principle. A post is
posted at some blog, other bloggers read the post, some create new posts,
and link the source post. This process continues and creates a cascade. One
can think of cascades being a graph created by the spread of the virus over
the Blog network. This means that the initial post corresponds to infecting
a blog. As the cascade unveils, the virus (information) spreads over the
network and leaves a trail. To model this process we use a single parameter
β that measures how infectious are the posts on the blogosphere. Our model
is very similar to the SIS (susceptible – infected – susceptible) model from
the epidemiology [16].

Next, we describe the model. Each blog is in one of two states: infected
or susceptible. If a blog is in the infected state this means that the blogger
just posted a post, and the blog now has a chance to spread its influence.
Only blogs in the susceptible (not infected) state can get infected. When a
blog successfully infects another blog, a new node is added to the cascade,
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and an edge is created between the node and the source of infection. The
source immediately recovers, i.e. a node remains in the infected state only
for one time step. This gives the model ability to infect a blog multiple
times, which corresponds to multiple posts from the blog participating in
the same cascade.

More precisely, a single cascade of the Cascade generation model is gen-
erated by the following process.

(i) Uniformly at random pick blog u in the Blog network as a starting
point of the cascade, set its state to infected, and add a new node u
to the cascade graph.

(ii) Blog u that is now in infected state, infects each of its uninfected
directed neighbors in the Blog network independently with probability
β. Let {v1, . . . , vn} denote the set of infected neighbors.

(iii) Add new nodes {v1, . . . , vn} to the cascade and link them to node u
in the cascade.

(iv) Set state of node u to not infected. Continue recursively with step (ii)
until no nodes are infected.

We make a few observations about the proposed model. First, note that
the blog immediately recovers and thus can get infected multiple times.
Every time a blog gets infected a new node is added to the cascade. This
accounts for multiple posts from the blog participating in the same cascade.
Second, we note that in this version of the model we do not try to account
for topics or model the influence of particular blogs. We assume that all
blogs and all conversations have the same value of the parameter β. Third,
the process as describe above generates cascades that are trees. This is not
big limitation since we observed that most of the cascades are trees or tree-
like. In the spirit of our notion of cascade we assume that cascades have a
single starting point, and do not model for the collisions of the cascades.

4.4.1 Validation of the model

We validate our model by extensive numerical simulations. We compare
the obtained cascades towards the real cascades extracted from the Post
network. We find that the model matches the cascade size and degree dis-
tributions.

We use the real Blog network over which we propagate the cascades.
Using the Cascade generation model we also generate the same number of
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Figure 11: Top 10 most frequent cascades as generated by the Cascade
generation model. Notice similar shapes and frequency ranks as in Figure 8.

cascades as we found in Post network (≈ 2 million). We tried several values
of β parameter, and at the end decided to use β = 0.025. This means that
the probability of cascade spreading from the infected to an uninfected blog
is 2.5%. We simulated our model 10 times, each time with a different random
seed, and report the average. We believe that since there was little variance
in the behavior of the Cascade generation model 10 runs was sufficient.

First, we show the top 10 most frequent cascades (ordered by frequency
rank) as generated by the Cascade generation model in Figure 11. Com-
paring them to most frequent cascades from Figure 8 we notice that top
7 cascades are matched exactly (with an exception of ranks of G4 and G5

swapped), and rest of cascades can also be found in real data.
Next, we show the results on matching the cascade size and degree dis-

tributions in Figure 12. We plot the true distributions of the cascades ex-
tracted from the Post network with dots, and the results of our model are
plotted with a dashed line. We compare four properties of cascades: (a)
overall cascade size distribution, (b) size distribution of chain cascades, (c)
size distribution of stars, and (d) in-degree distribution over all cascades.

Notice a very good agreement between the reality and simulated cas-
cades in all plots. The distribution over of cascade sizes is matched best.
Chains and stars are slightly under-represented, especially in the tail of the
distribution where the variance is high. The in-degree distribution is also
matched nicely, with an exception of a spike that can be attributed to a set
of outlier blogs all with in-degree 52. Note that cascades generated by the
Cascade generation model are all trees, and thus the out-degree for every
node is 1.

It is worth noting that exponential random graphs would be another
option for fitting and choosing a parameter β. We would go about this by
taking statistics of the number of triangles, stars, and paths in the real data
and comparing it to simulated data. Since cascades are very sparse it may
be difficult due to the small number of larger structures and comparatively
large number of isolated posts, but is a wortwhile direction for future work.
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Figure 12: Comparison of the true data and the model. We plotted the
distribution of the true cascades with circles and the estimate of our model
with dashed line. Notice remarkable agreement between the data and the
prediction of our simple model.

4.5 Network Entities

Finally, we would like to gain an understanding of how different entities in
the social network function with regard to the propagation of information.

4.5.1 Clustering blogs by Cascade Shapes

Our first experiments involved performing PCA on a large, sparse matrix
where rows represented blogs and columns represented different types of
cascades. Each entry was a count, and in order to reduce the variance, we
took the log of each count. Our dataset consisted of 44, 791 blogs with 8, 965
cascade types.

It was of interest to impose social networks upon the blogs, based on
what topics the blogs tended to focus on. We hand-classified a sample of
the blogs in the data by topic, and found that we acould often separate
communities based on this analysis. For the purposes of visualization we
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(a) First vs. second PC (b) Second vs. third PC

Figure 13: Principal components for blogs by CascadeType labeled by
topic. PC’s were generated by analyzing a matrix of blogs by counts of
cascade types. Note that there is a clear separation between conservative
blogs (represented by red crosses), and humorous blogs (represented with
by circles), both on axes of the first and second PC (a), and on axes of the
second and third PC (b). Ovals indicate the main clusters

chose to focus on two of the larger communities, politically conservative
blogs and “humorous” blogs (such as blogs for different web-comics and
humorists). Figure 13(a) shows these blogs plotted on the first two principal
components, and Figure 13(b) shows them plotted on the second and third
principal components. Ovals are drawn around the main clusters. We notice
a distinct separation between the conservative community and the humor
community; this means that the two communities engage in very different
conversation patterns.

Upon closer analysis, we find this is the case because conservative blogs
tend to form deep, chainlike graphs whereas the humorous blogs form stars.
Some similar observations may be made for other communities; we used
these two because they were the most distinct. This result shows that blog
communities tend to follow different linking patterns. We believe that by
looking at a blog’s cascade types that one can better make inferences about
what community a blog might belong to.

Furthermore, The number of trivial cascades that a blog participates
in–that is, its number of solitary posts with no in- or out-links, may be a
key indicator of its community. Removing the trivial cascades caused the
clusters to become less clear, which indicates that these trivial cascades still
play a significant role in the inferences one can make about that blog.
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4.5.2 Clustering posts based on features

We next sought to find how posts themselves behave. In order to do this, we
performed PCA on a 6-column matrix. Each row represented a post, while
the columns were as follows:

• Number of inlinks

• Number of outlinks

• Conversation mass upwards

• Conversation mass downwards

• Depth upwards

• Depth downwards

There were 6, 666, 188 posts in the dataset. When we ran PCA, we found
that the major two components that determined the blog’s place in this space
were conversation mass upwards and downwards. Therefore, we also plotted
the posts on the two axes of conversation mass upwards and conversation
mass downwards (See Figure 14. To illustrate, we have plotted all posts, with
special markers for two distinct popular blogs, Dlisted 1 and MichelleMalkin
2. We have circled the main clusters in the plots. Notice that while Dlisted
and MichelleMalkin points overlap, their clusters are centered differently.
The mean and variance of these clusters can serve as another viewpoint into
the profile of a blog.

Thus, we observe that Posts within a blog tend to take on common
network characteristics, which may serve as another means of classification.
Individual posting patterns may serve as another way of clustering blogs,
because different blogs maintain different posting patterns.

5 Discussion

Our finding that the the popularity of posts drops off with a power law dis-
tribution is interesting since intuition might lead one to believe that people
would “forget” a post topic in an exponential pattern. However, since link-
ing patterns are based on the behaviors of individuals over several instances,
much like other real-world patterns that follow power laws such as traffic
to Web pages and scientists’ response times to letters [30], it is reasonable

1
dlisted.blogspot.com, a celebrity gossip blog.

2
www.MichelleMalkin.com, a politically conservative blog.
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(a) All posts (b) MichelleMalkin (c) Dlisted

Figure 14: Conversation mass for posts, an aspect of PostFeatures6. The
top figure shows the Dlisted and MichelleMalkin clusters superimposed over
points for all posts. The next two show the clusters separately, superimposed
on all blog points for reference. Ovals are drawn around the main clusters.
Note that while there is overlap between posts features of two blogs, they
have different centers. This tells us that different blogs maintain different
means and variances in conversation masses

to believe that a high number of individuals link posts quickly, and later
linkers fall off with a heavy-tailed pattern.

Our findings have potential applications in many areas. One could argue
that the conversation mass metric, defined as the total number of posts in
all conversation trees below the point in which the blogger contributed,
summed over all conversation trees in which the blogger appears, is a better
proxy for measuring influence. This metric captures the mass of the total
conversation generated by a blogger, while number of in-links captures only
direct responses to the blogger’s posts.

For example, we found that BoingBoing, which a very popular blog about
amusing things, is engaged in many cascades. Actually, 85% of all Boing-
Boing posts were cascade initiators. The cascades generally did not spread
very far but were wide (e.g., G10 and G14 in Fig. 8). On the other hand
53% of posts from a political blog MichelleMalkin were cascade initiators.
But the cascade here were deeper and generally larger (e.g., G117 in Fig. 8)
than those of BoingBoing.

The methods chosen for clustering were decided mainly for simplicity, as
the main goal was to present ideas for some blog characterization. For Cas-

cadeType and PostFeatures6 we ran PCA after taking the log counts.
There are other methods available for reducing variance, however, we chose
log for the sake of simplicity. It may be of interest to use different forms of
TF-IDF, a method often used in text mining. A description of TF-IDF is
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provided in [27].
We have analyzed many characteristics of blogs, based on conversation pat-
terns, post features, and post patterns over time. From this basis, given a
blog, we can infer a number of things about that blog based on these metrics.

6 Conclusion

We analyzed one of the largest available collections of blog information,
trying to find how blogs behave and how information propagates through
the blogosphere. We studied two structures, the “Blog network” and the
“Post network”. Our findings are summarized as follows:

Temporal Patterns: The decline of a post’s popularity follows a power
law, rather than an exponential dropoff as might be expected. The slope is
≈-1.5, the slope predicted by a very recent theory of heavy tails in human
behavior [30].

Topological Patterns: Almost any metric we examined follows a power
law: size of cascades, size of blogs, in- and out-degrees. Finally, stars and
chains are basic components of cascades, with stars being more common.
Most cascades are tree-like.

Generative model: Our idea is to reverse-engineer the underlying so-
cial network of blog-owners, and to treat the influence propagation between
blog-posts as a flu-like virus, that is, the SIS model in epidemiology. De-
spite its simplicity, our model generates cascades that match very well the
real cascades with respect to in-degree distribution, cascade size distribu-
tion, and popular cascade shapes. The model achieved this accuracy with a
constant infectiousness value of β and by weighting the closeness of linked
blogs equivalently, even if they are linked multiple times.

Characterizing blogs: We have also made several observations on what
sort of features best characterize blogs in a network. We made some ob-
servations about cascade types. First, we note that the cascade types that
blogs participate may suggest to which community it belongs (‘humor’, ‘con-
servative’, etc.) . Second, the number of trivial (singleton) cascades that a
blog uses is a major indicator of cascade type. We can characterize blogs
based on their general network characteristics, and observed that blogs tend
to have posts that cluster together with respect to post features.

Future work abounds, because the blogosphere is an extremely rich
dataset, with multiple facets. Future research could try to include the con-
tent of the posts, to help us find even more accurate patterns of influence
propagation. Another direction is to spot anomalies and link-spam attempts,

19



by noticing deviations from our patterns.
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