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Abstract

We report the results of a study on topic spotting
in conversational speech. Using a machine learn-
ing approach, we build classifiers that accept an
audio file of conversational human speech as in-
put, and output an estimate of the topic being dis-
cussed. Our methodology makes use of a well-
known corpus of transcribed and topic-labeled
speech (the Switchboard corpus), and involves
an interesting double use of the BOOSTEXTER

learning algorithm. Our work is distinguished
from previous efforts in topic spotting by our ex-
plicit study of the effects of dialogue length on
classifier performance, and by our use of off-the-
shelf speech recognition technology. One of our
main results is the identification of a single clas-
sifier with good performance (relative to our clas-
sifier space) across all subdialogue lengths.

1. Introduction

While significant advances have been made over the last
two decades in automatic speech recognition (ASR) in
controlled acoustic environments, major challenges remain
for ASR in noisy environments and conversational speech,
such as everyday human-human dialogue. For example,
while speech recognizers achieve word error rates as low
as 7.8% for read speech in quiet environments, such as
news broadcasts (Pallet et al., 1999), the best recognizers
for conversational speech over the telephone achieve word
error rates around 36% (Martin et al., 1998). It seems likely
that highly accurate transcriptions of conversational speech
will be beyond ASR technology in the near term. However,
even noisy ASR transcripts may be of value for a variety of
natural language problems.

This paper reports the results of a study on the problem
of conversational topic spotting. Rather than striving for

a faithful transcription of conversational spoken language,
we consider the potentially easier but still useful goal of es-
timating the topic of the conversation from among a fixed
set of possible topics. As an example of a potential appli-
cation of this topic spotting task, we are building a system
named EnE (for “Eyes and Ears”) that will reside in a cof-
fee room at AT&T Labs and will include a PC, microphone,
video camera, and other sensors and actuators. We want the
system to learn to interact in simple yet natural ways with
the community of humans in its environment. As such, EnE
must have an appropriately high-level internal representa-
tion of the current state of the environment. To complement
other features we have designed, we would like to include
features that can provide even coarse and noisy estimates
of the current topic of conversation, leading us to under-
take the work we describe here.

Topic spotting has been the subject of several previous
studies. Like many earlier works, we use the Switchboard
corpus of conversational speech (Godfrey, Holliman, &
McDaniel, 1992). This corpus consists of audio files and
text transcriptions, labeled by topic, for roughly 2500 spon-
taneous telephone conversations on topics such as music,
books, movies and sports. A partial transcription of such a
conversation is in Table 1. We address the problem of learn-
ing, from Switchboard corpus training data, a classifier that
accepts as input only an audio file (and no text transcript),
and outputs a topic label.

Our interest in eventually incorporating our learned clas-
sifier into the EnE system places some constraints on our
study and solution that may be of independent interest.
First, our desire for the EnE system to be able to form
even crude estimates of topic from ever-shorter fragments
of conversation (orsubdialogues)1 has led us to undertake

1We want the EnE system to form topic estimates from short
subdialogues in order to make natural and timely conversational
contributions—for instance, giving the score of a recent game if
it detects that the topic is sports.



Table 1.Verbatim transcript of the first 10 turns of a Switchboard
conversation on the topic Music. As described in Section 2, we re-
move the first five turns (marked with asterisks) from the training
and test data, since they often “give away” the topic.

�A.1: [Laughter].
�B.2: Uh-huh.
�A.3: Um, I guess we’re supposed to

talk about music.
�B.4: Okay.
�A.5: And, uh, let me go ahead and push

one here. [tone] Uh, do you ha-,
are you a musician yourself?

B.6: Uh, well, I sing.
A.7: Uh-huh.
B.8: I don’t play an instrument.
A.9: Uh-huh. Where, do you sing in,

in a choir or a choral group?
B.10: Oh, not right now.

a systematic study of the effects of decreasing test set con-
versation length on classifier accuracy. To our knowledge,
all previous topic spotting studies on the Switchboard cor-
pus have measured classifier accuracy on full conversations
only. Second, since we are not speech recognition spe-
cialists, we incorporated “off-the-shelf” ASR technology
rather than building specialized ASR systems for the task.
Third, the desire for real-time interaction induces a bias
towards faster performance, even at the possible expense
of classification accuracy. Finally, we selected a subset
of Switchboard topics with the coffee room target environ-
ment in mind.

Our learning algorithm involves an interesting double use
of the BOOSTEXTER algorithm for document classifica-
tion (Schapire & Singer, 2000), combined with the WAT-
SON ASR system (Sharp et al., 1997), both developed at
AT&T Labs. Our results show we can identify the topic
on complete Switchboard conversations with a classifica-
tion accuracy of 45% (versus the majority-class baseline of
13%).2 Furthermore, our results on the newly defined sub-
dialogue problem establish a baseline for topic spotting on
smaller segments of Switchboard conversations. We show
that we can achieve topic classification accuracies ranging
from 2% to 32% absolute improvement over the majority-
class baseline, depending on subdialogue length, and that,
as expected, the topic classification problem becomes more
difficult as subdialogue length decreases. One of our main
results is the identification of a single classifier whose per-
formance is competitive (within our classifier space) across
all subdialogue lengths.

The main contributions of this work are the first study of

2Direct quantitative comparison of our results to earlier topic
spotting studies is difficult due to the experimental differences
stemming from the EnE constraints described above.

the effects of test conversation length on topic classifica-
tion accuracy; a careful analysis of the effects of algorithm
parameters (which include the way the Switchboard data
are segmented for training, and the size of the grammar
learned for the ASR) on classifier accuracy; and a new topic
spotting algorithm using off-the-shelf technologies like the
BOOSTEXTER classifier and the WATSON ASR system.

2. Methodology and Algorithms

This section describes both the data used to train and test
our topic spotting classifiers and our learning algorithm. It
begins with a summary of the Switchboard corpus.

2.1 The Switchboard Corpus

To create the Switchboard corpus (Godfrey, Holliman,
& McDaniel, 1992), an automated system prompted the
two participants in each telephone conversation to discuss,
in unrestricted conversational English, a designated topic
from a set of approximately 70 topics. For our experiments,
we selected 10 topics that seemed representative of the type
of “small talk” often encountered in public areas. We ran-
domly divided the conversations for each topic into dis-
joint training, validation, and test sets, as shown in Table 2.
(Note that this resulted in zero counts for a single category
in both the validation and test sets.) The Sports topic forms
the majority class (13%) over all the data, which serves as
our classification accuracy baseline.

Table 2.Counts of conversations by topic in the training, valida-
tion, and test sets, obtained by random division of the full data set.
The Sports topic combines conversations on Football, Basketball,
Golf, and Baseball, and forms the majority class, accounting for
38=292 = 13:0%.

TOPIC TRAIN VALID TEST

BOOKS AND LITERATURE 15 3 0
EXERCISE AND FITNESS 26 2 4
FAMILY LIFE 27 3 1
MOVIES 26 4 7
MUSIC 25 3 3
PETS 25 5 2
RECIPES, FOOD, COOKING 27 3 3
RESTAURANTS 15 1 3
WEATHER AND CLIMATE 17 0 4
SPORTS 31 5 2
Total 234 29 29

In addition to audio files, each five-minute conversation has
a verbatimtext transcript3 produced by paid human listen-
ers, as well as a label indicating which topic the participants

3The term verbatim distinguishes these transcripts from a
noisy version discussed shortly.



were prompted to discuss. Thus, each conversation in the
Switchboard corpus may be viewed as a triple: the audio
of the conversation, an accurate text transcription, and the
topic label. While our learning algorithm takes advantage
of the verbatim transcripts, (as have previous approaches
to topic spotting) the topic classifiers we learn classify con-
versations based only on the audio data.

Since one of our main objectives is a systematic study
of the dependence of topic spotting performance on the
length of the conversation being classified, we augmented
the Switchboard data by dividing the audio data of the vali-
dation and test sets intosubdialoguesof decreasing lengths
(full conversations, halves, quarters, and so on), thus cre-
ating six distinct subdialogue lengths for measuring classi-
fication accuracies. As we move to shorter subdialogues
(say, quarters), the number of validation and test exam-
ples increases (by a factor of four), while the length of the
corresponding audio decreases (by a factor of four). The
subdialogues are always labeled by the same topic as the
full source dialogue. Clearly the topic spotting problem
becomes more difficult as we reduce conversation length.
(Consider the limiting case where each “subdialogue” con-
tains only a single word.)

2.2 A Two-Phase Learning Algorithm

Looking ahead slightly, we note that our learning algorithm
has three parameters that can together assume 72 different
values. We thus run our algorithm 72 times (exhaustively
exploring the parameter space) to obtain 72 different clas-
sifiers. Since this set is too large to optimize directly on the
test set, we use the validation set to select the “best” hy-
pothesis for each subdialogue length. All results are then
reported on the remaining independent test set.

We now describe our learning algorithm. Figure 1 shows
a block diagram of the two-stage classifier constructed by
our learning algorithm. At the highest level, this classifier
first gives the audio input file to the ASR, producing what
we call theASR transcript. This transcript, which is quite
different from the verbatim transcripts that form part of the
training data discussed above, should be thought of as an
extremely noisy text transcript of the audio. (See the sam-
ple ASR transcript in Table 3.) However, we can still hope
to succeed in the topic spotting task as long as these errors
are nearly invariant across topics (Seymore & Rosenfeld,
1997). The ASR transcript is then fed to a text topic clas-
sifier, which outputs the topic for the audio input (or more
precisely, a weighting over the 10 topics). To instantiate
such a two-stage classifier, we must learn two things: a
grammar for the ASR, and a text topic classifier mapping
noisy ASR transcripts to topics. We discuss these in turn.

(Phase One)
ASR Grammar

ASR

Generic

Audio File

Learned

(Phase Two)
Classifier

Learned
ASR Transcript

Weights
Topic

Transcript
ASR

Acoustic Model

Figure 1.Simplified representation of the components of our two-
stage topic spotting classifiers.

Table 3.Excerpts from an ASR transcript for the conversation in
Table 1. The ASR has successfully spotted the keyword “sing”,
which is indicative of the Music topic, but much of the transcript
consists of false recognition of unrelated words.

...east any uh...the deer the grass dip

...that i dip...sing ankle cook

...the fish...cat the sing yeah and um

2.3 Phase One: Learning the ASR Grammar

The WATSON ASR requires that we provide a language
model orgrammarspecifying the universe of phrases or
sentences we expect the ASR to recognize in the audio in-
put. One approach would be to build a grammar from a
very long list of English phrases to cover as many utter-
ances as possible (the so-calledlarge vocabulary recogni-
tion (LVR) approach uses several thousand phrases). We
chose tolearn considerably smaller grammars because of
our interest in the fastest possible classification, as the ASR
running time grows with grammar size, which is not in-
considerable for very large grammars under real-time con-
straints. However, there are performance trade-offs of a
precision-recall nature: smaller grammars typically result
in more accurate spotting of the included phrases, at the
obvious expense of missing phrases not in the grammar.
For this reason, we compare performance across a number
of grammar sizes, all of them considerably smaller than in
LVR.

How will we learn the ASR grammar? We chose
to take advantage of the verbatim transcripts, applying
the BOOSTEXTER text classification algorithm to them.
BOOSTEXTER (Schapire & Singer, 2000) is a document
classification algorithm that works by finding a linear
combination of simple rules, each of which has a (per-
haps slight) advantage over random guessing on some
(re)weighting of the training data. The algorithm proceeds
in rounds, with each round adding a new rule to the linear
combination. Our motivation in using BOOSTEXTER was
an interest in its performance in this application, as well
as the ease with which one can naturally extract a variable
sized set of rules from its output, as described below.



The verbatim transcripts from the Switchboard corpus and
their topic labels were given to BOOSTEXTER, which was
run for 1000 rounds to produce a text classifier comprised
of 1000 classification rules.4 These rules test whether a
particular sequence of one to five words appears in the tran-
script (that is, the rulefires), and assign weights to the 10
topics if it does.

While the usual use of such a BOOSTEXTER rule list would
be to take a linear sum of the firing rules to determine the
output weightings on topics, here we would like to derive
an ASR grammar from the rule list by selecting the word
sequences from the rules that “best” distinguish among top-
ics. As an example, consider the two BOOSTEXTER rules
and weights in Table 4. As we might hope, the presence
of the word sequence “listen to” yields a strong positive
weight for the topic Music and negative weights for every-
thing else. In contrast, the word sequence “uh yeah” leads
to weights comparable in magnitude across topics. Intu-
itively, we want to keep “listen to” in our ASR grammar,
and eliminate “uh yeah”. One way to quantify this is with
thevarianceof the topic weights given by BOOSTEXTER.
In the example here, the weights for “listen to” have a much
higher variance than those for “uh yeah”. We ranked the
rules (word sequences) learned by BOOSTEXTER by their
weight variances and selected the best ones for our gram-
mar. In keeping with our earlier comments on investigating
the performance variation over (relatively small) grammar
sizes, we examined performance for ASR grammars with
20, 100, 200, and 400 word sequences. Thisgrammar size
is one of the three parameters of our training procedure.

Table 4.Weights assigned to each topic by two BOOSTEXTER

rules when the given word sequence appears in the text.

TOPIC ‘ LISTEN TO’ ‘ UH YEAH’

BOOKS AND LITERATURE -0.183 -0.474
EXERCISE AND FITNESS -0.972 -0.548
FAMILY LIFE -0.815 -0.077
MOVIES -1.604 0.530
MUSIC 2.044 -1.122
PETS -1.022 -0.976
RECIPES, FOOD, COOKING -1.089 -1.542
RESTAURANTS -2.371 -0.998
WEATHER AND CLIMATE -0.605 0.456
SPORTS -0.639 -0.138
Variance 1.306 0.470

One possible concern with this approach to learning the

4We removed the first five conversational turns from each tran-
script to avoid the tendency to “give away” the topic, as in Table 1
(“Um, I guess we’re supposed to talk about music.”). We also
stripped the remaining text of punctuation, the non-verbal tags
like “[Laughter]”, and the speaker/turn indicator (“A.1”, “B.2”).

ASR grammar is that by training BOOSTEXTER on the
complete verbatim transcripts, we may “overfit” by choos-
ing word sequences accurate in classifying full conversa-
tions but unlikely to appear in shorter subdialogues. For
instance, a 5-minute conversation on movies may be quite
likely to contain the term “movies”, but very short conver-
sations on movies may be better identified by less obvious
terms like “to see it”. For this reason, we varied the size
of the verbatim transcripts used for ASR grammar learning
by running BOOSTEXTER on verbatim transcripts divided
into smaller segments (full, eighths, and sixteenths). For
instance, in the case of eighths, each verbatim transcript
yields eight labeled training documents for BOOSTEXTER,
each containing a contiguous one-eighth segment of the
original verbatim transcript and having the same label as
this original transcript. Thisverbatim transcript lengthis
another of the three parameters of our learning algorithm.

2.4 Phase Two: Mapping ASR Transcripts to Topics

The second phase of our algorithm is to learn a mapping
from the noisy ASR transcripts into weightings over topics.
For this we apply BOOSTEXTER a second time, this time
on the ASR transcripts produced by running all the training
audio files through the ASR (using the grammar learned in
Phase One). Again, we face the issue that topic-identifying
phrases from the full ASR transcripts of five-minute train-
ing conversations might not be useful for testing on shorter
test conversations. Therefore, we created six training data
sets of ASR transcripts by dividing the full ASR transcripts
into pieces of different lengths, exactly as was done for the
verbatim transcripts in the grammar learning.5 This final
parameter of our algorithm is theASR transcript length.

In summary, our two-phase training process has three pa-
rameters: the length of the verbatim training transcripts
for the first application of BOOSTEXTER (verbatim tran-
script length); the size of the grammar extracted from this
first application of BOOSTEXTER (grammar size); and the
length of the ASR transcripts for the second application of
BOOSTEXTER (ASR transcript length). These three pa-
rameters and their values are summarized in Table 5. To-
gether, we explored3 � 4 � 6 = 72 different parameter
settings, resulting in 72 different classifiers mapping audio
input to weightings over topics.

2.5 Testing the System

As mentioned above, exhaustive exploration of the param-
eter space of our two-phase learning algorithm results in
72 classifiers of the form given in Figure 1. Since this is
a large number of classifiers, we used the validation set to

5Since the beginnings of Switchboard conversations are often
unnaturally rich in keywords (as noted earlier), we removed the
ASR transcripts of the first three audio files for each speaker.



Table 5.Parameters varied in training the learning algorithm. The
particular values explored were chosen to yield wide coverage,
while obeying our constraints and keeping the total number of
classifiers constructed manageable.

VERBATIM TRNSCRPT GRAMMAR ASR TRNSCRPT
LENGTH SIZE LENGTH

FULL 20 FULL
EIGHTH 100 HALF

SIXTEENTH 200 FOURTH
400 EIGHTH

SIXTEENTH
THIRTY-SECOND

choose a single “best” classifier for each of the six subdi-
alogue lengths. This results in a much smaller set of six
classifiers, each “tuned” to a different subdialogue length.
In the next section, we present a variety of performance
measures over these six classifiers, with all results being
reported on the independent test set.

3. Results and Analysis

3.1 Overview of Classification Performance

Before analyzing the test set performance of the six clas-
sifiers maximizing validation set accuracy, we first present
a summary of test set accuracy across the original pool of
72. Figure 2 shows six boxplots corresponding to the six
subdialogue lengths; each boxplot summarizes the test set
classification accuracy of the 72 classifiers on the indicated
length.6 (Note that although for this particular analysis we
are reporting test errors for a large number of classifiers,
no explicit optimization over this large pool is being per-
formed, so there is no risk of overfitting the test data.)

The boxplots clearly demonstrate the increased difficulty of
the problem as the subdialogue length get smaller. In ad-
dition, the high variability in the boxplots indicate that the
parameter settings do indeed impact performance, particu-
larly for longer test subdialogues. (Note that some settings
lead to classifiers that perform worse than the majority-
class baseline of 13% accuracy.)

3.2 Analysis of Optimized Parameters

We now proceed to analyze the test set performance of the
six classifiers obtained by optimizing validation set accu-
racy at each subdialogue length. The parameter settings of
these six classifiers and the numeric values of their test set

6A boxplot is a graphical representation of a five-number sum-
mary: it shows the locations of the minimum, first quartile, me-
dian, third quartile, and the maximum points in the data, as labeled
in the left-most boxplot in Figure 2.
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Figure 2.Boxplots of classification accuracy on the test set. Each
boxplot corresponds to a single subdialogue length, and summa-
rizes the 72 test set classification accuracies obtained by varying
the learning parameters. The majority-class baseline is 13%.

classification accuracies are given in Table 6 (along with
many other quantities we discuss shortly). We note that the
classifiers chosen for lengths eighth and sixteenth are iden-
tical, meaning we really only have a pool of five classifiers
(to be evaluated on six different lengths).

The clearest conclusion we can draw from the optimized
parameter settings given in Table 6 is that the longer (200-
and 400-term) grammars perform best across all test sub-
dialogue lengths. However, due to our aforementioned in-
terest in fast classification, we explicitly examined the ef-
fect of smaller grammar sizes on classification accuracy.
Figure 3 shows the test set performance of the best classi-
fiers within each fixed grammar size on each subdialogue
length. (Thus, grammar size was held fixed, and the re-
maining two parameters of learning were optimized for val-
idation set classification accuracy; Figure 3 presents the test
set errors of the resulting classifiers.) We see that while
the 400-term grammar performs best overall in all but one
case, the 200-term grammar is reasonably close for all test
lengths, whereas the 20-term grammar performs consider-
ably worse, especially on longer test dialogues. The ap-
parent leveling off of the performance in the 200- to 400-
term range suggests that acceptable performance may be
obtained far short of large vocabulary methods.

The dependence of classification accuracy on grammar size
is confirmed by ANOVA analyses establishing that gram-
mar size is a significant predictor of accuracy at the 0.05
level for all six subdialogue lengths. The importance of
the other two parameters (verbatim and ASR transcript
lengths) is less clear, as the ANOVAs indicate significance
only at some subdialogue lengths. Furthermore, at those
subdialogue lengths where significance occurs, there is no
clear monotonic relationship between accuracy and ver-
batim or ASR transcript lengths (unlike the situation for



Table 6.Summary of best classifiers for each subdialogue length, selected by classification accuracy on the validation set. The perfor-
mance measures are over the test set.

BEST PARAMETER SETTINGS(VALIDATION SET) PERFORMANCEMEASURES(TEST SET)

SUBDIALOGUE VERBATIM TRNSCRPT GRAMMAR ASR TRNSCRPT CLASSIFICATION MEAN MAX
LENGTH LENGTH SIZE LENGTH ACCURACY REGRET REGRET

FULL FULL 200 FULL 0.4483 0.0806 0.1207
HALF SIXTEENTH 400 FULL 0.4828 0.0422 0.0862

FOURTH EIGHTH 200 FOURTH 0.3534 0.0528 0.1034
EIGHTH SIXTEENTH 400 THIRTY-SECOND 0.3017 0.0201 0.0862

SIXTEENTH SIXTEENTH 400 THIRTY-SECOND 0.2371 0.0201 0.0862
THIRTY-SECOND FULL 200 SIXTEENTH 0.1541 0.0517 0.1034

grammar size discussed above). The only significant inter-
actions uncovered by the ANOVAs are between grammar
size and verbatim transcript length for longer subdialogues.
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Figure 3.Performance of the best classifiers within each grammar
size for each subdialogue length. The classifiers were chosen by
performance on the validation set; the figure shows performance
over the test set.

3.3 Anytime Classification

Given the large variation in performance across parame-
ter settings and the increasing difficulty of the problem on
shorter conversations, it is natural to ask whether there is
asinglesetting of the parameters that performs well across
all test subdialogue lengths. In other words, we would like
to find a setting of parameters resulting in a singleany-
time topic spotter—able to form a reasonable estimate of
the topic from very short conversations, with performance
improving on longer conversations—rather than relying on
a multiplicity of classifiers tuned to differing lengths.

The last two columns in Table 6 show that there is such an
anytime classifier, as measured by a comparison of mean
and maximumregretsfor each classifier. For each classi-
fier h among the five listed in Table 6, we compared the

test set classification accuracy ofh on a given length with
the best test set classification accuracy at that length among
the five. This gives us the regret ofh at the given length—
that is, how much we lose in performance by using clas-
sifier h rather than the best classifier for that length. Av-
erage and maximum regrets over all six lengths can then
be computed. We see in the table that the classifier tuned
for eighth- and sixteenth-length subdialogues jointly min-
imizes the mean and maximum regrets, and so is the best
(and a rather good) anytime classifier.7

3.4 Comparison to Perfect ASR

To what extent is the difficulty of the topic spotting problem
due to the spoken medium and the challenges of ASR, as
opposed to the difficulty of classifying conversational text
by topic? The Switchboard corpus makes a direct compar-
ison possible. We trained new BOOSTEXTER classifiers
exactly as in Phase Two, this time using the verbatim tran-
scripts rather than the noisy ASR transcripts. This might be
likened to training with “perfect” ASR performance. Ta-
ble 7 compares the performance of these new classifiers on
the verbatim transcripts with that of the five classifiers cho-
sen in Table 6 on the ASR transcripts. There is again clear
evidence of the increasing difficulty of the pure text classifi-
cation problem as subdialogue length decreases. There are
also considerable differences between pure text and pure
audio performance, as much as 55% at the longest dialogue
length. Thus the speech recognition component is adding
considerably to the difficulty of the problem, as expected.

7Note that this notion of regret is weaker than regret computed
over all 72 trained classifiers, instead of within the pool of five
optimized on the validation set. However, we feel there is not
enough test data to compute the former meaningfully, and that
since each classifier in the pool of five is obtained by a “good
faith” effort to optimize performance for the given length, the re-
sults indicate that a good anytime classifier has been found.



Table 7.Test set classification accuracies of BOOSTEXTER when
trained and tested on verbatim transcripts vs. ASR transcripts.

SUBDIALOGUE VERBATIM ASR
LENGTH TRANSCRIPTS TRANSCRIPTS

FULL 1.0000 0.4483
HALF 0.9483 0.4828

FOURTH 0.7845 0.3534
EIGHTH 0.7056 0.3017

SIXTEENTH 0.6442 0.2371
THIRTY-SECOND 0.5089 0.1541

3.5 Incorporating Confidence Measures

While our discussion thus far has focused on the basic and
important measure of raw classification accuracy, we can
also consider a richer profile of performance that incorpo-
rates some measure of confidence in our classifiers’ pre-
dictions. The final vector of weights over the 10 topics
that each of our classifiers produces provides a natural con-
fidence measure: the distance between the largest and
second-largest weights, which we might call themargin.
We can use to produce the curves in Figure 4 as follows.
Let A andB represent the total number of correctly and
incorrectly classified test examples, respectively, for some
classifierh. Let � be a threshold such that if the margin
in the output ofh is greater than� , we make the prediction
dictated by the highest-weight topic according toh; other-
wise weabstainfrom making any prediction. Each value
of � specifies valuesa� andb� , the number of correctly and
incorrectly classified test examples with margin exceeding
� . (Note thatA = a0 andB = b0.) Now we can calculate
theconditionalclassification accuracy asa�=(a� +b� ), the
proportion of correctly classified examples with margin ex-
ceeding� . This is they-axis in Figure 4. Thex-axis shows
the proportion of test examples on which we abstain, which
is 1� (a� + b� )=(A+B). As we vary the threshold� , we
trace out a curve profiling the tradeoff between conditional
accuracy and abstention for a given classifier.

Figure 4 shows such curves for each of the classifiers in
Table 6. Note the left-most point on each curve (corre-
sponding to� = 0) is just the raw classification accuracy
for that classifier as in Table 6. We see that considerable
gains in classification accuracy are possible if we abstain
on larger fractions of the test examples, confirming the le-
gitimacy of the margin as a predictive confidence measure.
Such abstention may be permissible in many contexts, in-
cluding the motivating EnE application. The curves again
show how the problem becomes more difficult as test sub-
dialogue length decreases.
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Figure 4.Conditional accuracy vs. abstention curves of the six
classifiers in Table 6 over the test set.

3.6 Confusion Matrices

In addition tooverallclassification accuracy, another ques-
tion is whether certaintopicsare more difficult to identify.
Table 8 shows a confusion matrix generated by running the
best anytime classifier on eighth-length test subdialogues.
Each column of the confusion matrix represents the true
topic of an eighth-length subdialogue, while each row en-
try indicates how the anytime classifier classified that sub-
dialogue. The diagonal of the matrix gives classification
accuracy percentages for each topic, where perfect perfor-
mance would be a diagonal matrix of ones.

The table points to some confusability between the Family
and Exercise topics, since the classifier predicted Exercise
in 38% of the Family conversations. Likewise, the Sports
topic is often predicted for Restaurant and Weather conver-
sations, and Family is often predicted for Sports. Some of
this confusability might be explained by the fact that the
Sports topic combines several Switchboard topics (see Ta-
ble 2), so that these conversations range quite broadly, or
there may be significant content overlap between, say, the
Family topic and Sports or Exercise. In general, though,
the table columns show that the classifier does reasonably
well in distinguishing topics, always predicting the correct
topic most or second-most often.

4. Discussion

While we have introduced a new subdialogue topic spot-
ting task in this paper, aspects of our work—such as the
use of a statistical learning method for learning an ASR
grammar, and the use of BOOSTEXTER to classify ASR
transcripts—are related to previous work. For instance,
Wright, Gorin, and Riccardi (1997) automated the selec-
tion of salient phrases to form grammars for an automatic
call routing task known asHow May I Help You?by us-
ing simple statistical tests on phrases from verbatim tran-



Table 8.Confusion matrix for best anytime classifier on eighth-length subdialogues, with cells giving column percentages. COUNTS

gives the number of subdialogues in the test set for each topic; % PRED indicates how many times the classifier predicted each topic.

TOPICS BKS EXER FAM MOV MUS PETS REC REST WTHR SPRT % PRED

BOOKS — 0.062 0.120 0.110 0.083 0.062 0 0.042 0.120 0.0620.078
EXERCISE — 0.310 0.380 0.036 0.083 0.062 0.170 0 0.062 0.1200.110
FAMILY — 0.190 0.120 0.140 0.120 0.062 0.083 0.120 0.031 0.3100.130
MOVIES — 0.031 0.120 0.250 0.083 0 0 0.120 0.062 0.062 0.100
MUSIC — 0.031 0 0.071 0.290 0.062 0 0 0 0 0.056
PETS — 0.220 0.120 0.110 0.250 0.560 0 0 0.094 0.120 0.150
RECIPES — 0.031 0.120 0.089 0.042 0 0.540 0.120 0.094 0 0.120
RESTAURANTS — 0.031 0 0.054 0.042 0.120 0.042 0.210 0.062 0.062 0.069
WEATHER — 0.031 0 0.036 0 0 0.083 0 0.220 0 0.052
SPORTS — 0.062 0 0.110 0 0.062 0.083 0.380 0.2500.250 0.140

COUNTS 0 32 8 56 24 16 24 24 32 16 232

scripts. Schapire and Singer (2000) applied BOOSTEX-
TER to classify ASR transcripts from this task but did not
learn the language model for the speech recognizer. Mc-
Donough et al. (1994), working with the Switchboard
corpus, explored many approaches, and recommended us-
ing ASR transcripts instead of verbatim transcripts for se-
lecting phrases for topic detection, since words that dis-
criminate well on text might be difficult to recognize reli-
ably. Using 4100-word grammars and specialized gender-
dependent acoustic models trained on Switchboard audio
data, they report classification accuracy of up to 88.3% on
full conversations within their set of ten topics. This sug-
gests that, not surprisingly, there is room to improve per-
formance with more sophisticated language and acoustic
models rather than off-the-shelf technology.

Our results differ from these and other previous efforts by
setting the baseline for topic spotting performance when
decreasing the length of Switchboard subdialogues, by us-
ing an off-the-shelf speech recognizer, and by demonstrat-
ing the existence of a good anytime topic spotting system
within our parameter space. As future work, we intend to
integrate our anytime classifier in the motivating “Eyes and
Ears” application, and to explore the use of richer stochas-
tic language models with the WATSON speech recognizer.
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