
Conditional Density Estimation using Finite Mixture Models with

an Application to Astrophysics

Alex L. Rojas

Advisors:

Christopher R. Genovese, Christopher J. Miller, Robert Nichol

and Larry Wasserman

Center of Automatic Learning and Discovery and Department of Statistics

Carnegie Mellon University

July 26, 2005

Abstract

Conditional density estimation (CDE) is a statistical technique that allows for a better understanding
of the relationship between a response variable and a set of covariates, in comparison with usual regression
methods. Therefore, this technique is of great importance to many scientific fields where knowledge about
conditional means, obtained by regression methods, is not enough to draw valuable conclusions about the
problem at hand. There are a variety of conditional density estimators, but most of them lack generality
or ease of interpretation. We present a solution to this problem by modeling the conditional density of
Y given X using finite mixture models and estimating the parameter functions using local likelihood
estimation. We use the proposed estimator to analyze the relationship between galaxy evolution and
local density.
Keywords: Mixture Models, EM algorithm, kernel density estimation, local likelihood regression.

1 Introduction

We consider the problem of estimating the conditional density of Y given X, where Y ∈ R and X ∈ R.
Addressing this problem is important because the conditional density of Y given X provides a complete
description of the stochastic behavior of the response variable given any specific value of its covariates.
Therefore, CDE generalizes the usual regression model, where the main focus is the conditional mean (i.e.,
the “center” of the conditional distribution) and quantile regression, which aims to model any conditional
quantile. This generalization is most relevant when the conditional mean itself does not reveal the underlying
relationship between X and Y . For example, consider the following model:

Y |X = x ∼
3

∑

i=1

πi,xN (µi,x, 92), (1)

where N (µ, σ2) denotes a normal distribution with parameters µ and σ2,

πx,i =























1

3
i = 1

exp (x/20− 2.3)

0.9
i = 2

2

3
− πx,2 i = 3

and µx,i =















20 · µx,2(1 − 3 · πx,2) − 25 i = 1

(x − 5)2 + 40

2
i = 2

−µx,2 i = 3

(2)
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Figure 1: (a) Conditional density of Y |X = x, fY |X=x(y|x), in Eq. (1), (b) a random sample of size
10000 drawn from fY |X=x(y|x) and estimated conditional mean using local linear regression, (c) mixture
proportions πx,i, i = 1, 2, 3 in Eq. (2), and (d) mixture means µx,i, i = 1, 2, 3 in Eq. (2).
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Figure 1(a) shows the conditional density of Y given X for some values of X . Figure 1(c) and Fig-
ure 1(d) display the means and proportions in Eq. (2) as functions of x, respectively. In this model,
E(Y |X = x) = −25/3, and this is what regression methods will estimate (see Figure 1(b)). It is clear
that the conditional mean does not give us important information about the relationship between X and
Y . The situation just illustrated does not only appear in “toy” examples, but in “real-world” applications
as well. For example, in astrophysics, scientists are interested in studying the relationship between galaxy
evolution and its local environment; however, the conditional mean does not give any insight into the cos-
mology behind this relationship and another statistical tool is needed to study this problem.

Current approaches for CDE are presented in Section 2 and our approach is introduced in Section 3. An
application of our CDE approach to the study of the relationship between galaxy evolution and its local
environment appears in Section 4. Finally, Section 5 presents our conclusions and future extensions of our
work.

2 Current approaches to conditional density estimation

The conditional density function of a variable Y given X is defined as:

fY |X(y|x) =
fX,Y (x, y)

fX(x)
,

where fX(x) 6= 0. Therefore, a “natural” estimator of the conditional density of Y |X can be found if we
had an estimator of the joint density fX,Y (x, y) and an estimator of the marginal density of X, fX(x). The
best well-known density estimator is the kernel density estimator. In the multivariate case, it is defined as
follows:

f̂XXX(x) =
1

n|H |

n
∑

i=1

Kd

(

H−1(x − xi)
)

(3)

where H is a d×d nonsingular matrix and Kd : R
d → R is a d-dimensional kernel, that is, a smooth function

such that
∫

R
d
Kd(w)dw = 1, (4)

∫

R
d
wKd(w)dw = 0. (5)

There are various choices for Kd; however, it can be shown theoretically and empirically that the choice of
Kd is not crucial. Given this fact, the kernel of choice is usually the product kernel

Kd(w) =

d
∏

i=1

K(wi), (6)

where K is a 1-dimensional kernel, usually a Gaussian kernel, and H is a diagonal matrix with elements
hj = sjh, such that sj is the standard deviation of the jth variable. The choice of h is the most important
problem in kernel density estimation, and it is usually made using plug-in methods or cross-validation (see
e.g. Loader, 1999a).

Thus, by means of kernel density estimation, a “natural” estimator of the conditional density is

f̂Y |X(y|x) =
f̂X,Y (x, y)

f̂X(x)
, (7)
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where f̂X,Y (x, y) is a kernel estimator of fX,Y (x, y) and f̂X(x) is a kernel estimator of fX(x). Hyndman
et al. (1996) studied asymptotic properties of this estimator and found two optimal bandwidths, one for the
numerator and one for the denominator, with respect to integrated mean-square error.

Conditional density estimation can also be regarded as a nonparametric regression problem (Fan et al.,
1996), by noticing that as h̃ → 0

E{Kh̃(Y − y)|X = x} =

∫

R

Kh̃(Y − y)fY |X(y|x)dy

=

∫

R

K(u)f(uh̃ + y|x)du

≈ fY |X(y|x), (8)

where K is a symmetric density function on R and Kh(t) = h−1K(t/h). Therefore, we can estimate fY |X(y|x)
by regressing Kh̃(Y − y) on X . This regression problem can be solved using local polynomial regression (see
e.g. Fan and Gijbels, 1996) or local likelihood estimation (Tibshirani and Hastie, 1987; Loader, 1999b).

Let (X1, Y1), . . . , (Xn, Yn) be a random sample from fX,Y (x, y). Applying the local polynomial technique
to the constructed data (X1, Kh̃(Y1 − y)), . . . , (Xn, Kh̃(Yn − y)) reduces the estimation of the conditional

density, fY |X(y|x), to find β̂(x, y) = (β̂0, . . . , β̂p) such that

β̂(x, y) = argmin
β

n
∑

i=1

{

Kh̃(Yi − y) − A(Xi − x, β)
}2

Wh(Xi − x) (9)

where

A(Xi − x, β) =

p
∑

j=0

βj
(Xi − x)j

j!
(10)

and W is a symmetric density function on R and Wh(t) = h−1W (t/h). The local polynomial estimator of

f
(j)
p (y|X = x) is β̂j , in particular

f̂p(y|x) = A(0, β̂(x, y)) = β̂0. (11)

From now on, we refer to this class of estimators as ‘double-kernel’ estimators. Note that if p = 0, the
double-kernel estimator reduces to

f̂0(y|x) =

n
∑

i=1

wi(x)Kh̃(Yi − y) (12)

where

wi(x) =
Wh(Xi − x)

∑n
l=1 Wh(Xl − x)

.

The estimator in Eq. (12) was first presented by Hyndman et al. (1996) and corresponds to the estimator
in Eq. (7) when fX,Y (x, y) is estimated with the product kernel Kh̃ × Wh. When p = 1, the estimator
in Eq. (11) has a smaller bias than the estimator in Eq. (12) (Fan and Gijbels, 1996); however, it is not
guaranteed to be non-negative and to integrate to 1, as is the case when p = 0 (Hyndman and Yao, 2002).
Recognizing this problem, Hyndman and Yao (2002) proposed two new non-negative estimators. The first
proposal adds the constraint β0 > 0 to the minimization problem in Eq. (9), by setting β0 = `(α) = exp (α).
The second proposal takes

A(Xi − x, β) = exp







p
∑

j=0

βj(Xi − x)j







(13)
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and f̂Y |X(y|x) = A(0, β̃(x, y)) = exp {β̃0}. Hyndman and Yao (2002) noticed that their second proposal is
equivalent to using local likelihood estimation for the regression of Kh̃(Yi − y) against Xi with the Gaussian
likelihood and link function log (·). They also proposed an algorithm for bandwidth selection.

Figure 2(a) displays the estimate for a set of conditional densities using the double-kernel estimator
(see Eq. (9)) with the function A defined as in Eq. (13) and p = 1, for the simulated data in Figure 1(b).
As can be seen in this figure, the double-kernel estimator fails to detect the changing behavior that the
conditional density presents for x ∈ (2, 6). This situation is due to the fact that this estimator is not
considering information locally in the sample space to estimate the local structure. Another disadvantage
of this estimator is that we cannot unveil the underlying structure of the data. We propose an approach
to conditional density estimation, such that these two drawbacks are solved. We propose to model the
conditional density as a finite mixture model (FMM). In this case, each conditional density has a set of
parameters that we model as a function of the conditioning information. Although FMMs involve stronger
distributional assumptions than the nonparametric methods previously presented, they require less data and
are more easily interpretable. In addition, kernel estimates may be approximated by much smaller mixtures
without losing significant information (Scott and Szewczyk, 2001).

3 Conditional Density Estimation using Finite Mixture Models

We assume that the conditional density fY |X(y|x) of Y given X can be written in the form

fY |X(y|x) =

kx
∑

i=1

πi(x)gi(y; θi(x)) (14)

where the gi(y; θi(x)), i = 1, . . . , kx, are densities with a set of parameters θi(x) that depends on x, and the
πi(x)’s are a set of mixing proportions that sums to one for each x. Denote θ(x) = (θ1(x), . . . , θkx

(x)) and
π(x) = (π1(x), . . . , πkx

(x)). Assuming the model in Eq. (14), we propose to estimate the conditional density
by modeling πi(·) and θi(·), i = 1, . . . , kx, as a function of the conditioning information. We model these
“parameter functions” using local likelihood estimation (Loader, 1999b).

Let η(x) = (π1(x), . . . , πkx
(x), θ1(x), . . . , θkx

(x)) and `(yj , η(xj)) = log fY |X(yi|xi), with fY |X as in
Eq. (14). The local polynomial log-likelihood of a parameter vector

η = (π1(x1), . . . , πkx1
(x1), θ1(x1), . . . , θkx1

(x1), . . . , π1(xn), . . . , πkxn
(xn), θ1(xn), . . . , θkxn

(xn))

is

Lx(β) =

n
∑

j=1

wj(x)`(Yj ,A(xj − x, β)), (15)

where

A(t, β) = (A1,1(t, β1,1), . . . , A1,q1
(t, β1,q1

), . . . , Akx,qkx
(t, βkx,qkx

), . . . , Akx,qkx
(t, βkx,qkx

)),

with Al,m(·, βl,j) as in Eq. (10), m = 1, . . . , ql, l = 1, . . . , kx and ql the number of parameters of the lth

component. The β’s are vectors of coefficients and

wj(x) = W

(

xj − x

h(x)

)

, (16)

with W (u) a weight function that assigns largest weights to observations close to x.
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Let β̂̂β̂β be the maximizer of the local likelihood Eq. (15), that is,

β̂̂β̂β(x) = arg max
β

n
∑

j=1

wj(x)`(Yj ,A(xj − x, β))

= arg max
β

n
∑

j=1

wj(x) log

kx
∑

i=1

Ai,1(xj − x, βi,1) · gi(Yj ; Ai,2(xj − x, βi,2), . . . , Ai,qi
(xj − x, βi,qi

)).(17)

The local likelihood estimate of the set of parameters η(x) is then defined as η̂̂η̂η(x) = A(0, β̂̂β̂β(x)).

We are mainly interested in the parameter functions θi(x) and πi(x), and not in their derivatives; there-
fore, we set the degree of the local approximation to be zero or one, that is, A(t, β) = β0 or A(t, β) = β0+β1t.
Letting gi(y; θi) = φ(y; µi, σ

2
i ), a density function with parameters µi and σ2

i , the number of parameter func-
tions is three for all the mixture components and Eq. (17) can be written as

β̂̂β̂β(x) = arg max
β

n
∑

j=1

wj(x) log

kx
∑

i=1

β0
i,1 · φ(yj ; β

0
i,2, β

0
i,3) (18)

for A(t, β) = β0 and

β̂̂β̂β(x) = argmax
β

n
∑

j=1

wj(x) log

kx
∑

i=1

(β0
1 i + β1

11x) · φ(y; β0
2 i + β1

2 ix, β0
3 i + β1

i,3x) (19)

for A(t, β) = β0 + β1t, with βk
l i is the lth position of the kth vector of coefficients of the ith component.

Notice that when A(t, β) = β0, the original problem is reduced to solving a finite mixture problem (see
e.g., McLachlan and Peel, 2000; Ripley, 1996); therefore, we can make use of some existing techniques used
in mixture models to obtain a conditional density estimate.

The most popular algorithm to estimate the mixture parameters is the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977), which converges to a maximum likelihood estimate of the mixture parame-
ters. This algorithm requires the knowledge of kx, plus it is highly dependent on the parameter initialization.
These drawbacks may be multiplied in our case, since we need to fit a mixture for each value x; therefore, it
is critical to modify this algorithm or find other approaches. In this paper, we use two approaches that avoid
the drawbacks of the EM algorithm for mixture fitting: (i) the algorithm proposed by Figueiredo and Jain
(2002), and (ii) the Iterative pairwise replacement algorithm (IPRA, Scott and Szewczyk, 2001). Before we
describe these three algorithms, we introduced some model selection criteria and a similarity measure for
densities.

3.1 Model selection

When the number of mixtures kx is unknown, we could estimate kx as follows. Use the EM algorithm to
obtain a sequence of parameter estimates for a range of values of kx and estimate kx as

k̂x = argmin
k

{C(β̂̂β̂β(x), k), k = kx,min, . . . , kx,max} (20)

where C(·, k) is some model selection criterion. There are many choices for C(·, k), in this paper we make
use of the Bayesian Information Criterion (BIC, Schwarz, 1978; Kass and Raftery, 1995) and the Integrated
Squared Error (ISE) criterion.
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The BIC is defined as

BIC(β̂̂β̂β(x), k) = − logLx(β̂̂β̂β) +
N(k)

2
log nx (21)

where N(k) is the total number of estimated parameters and nx is the sample size. The ISE is defined as

ISE(β̂̂β̂β(x), k) =

∫ ∞

−∞

(fk(y|x; β̂̂β̂β(x)) − f(y|x))2dy (22)

where fk(y|x; β̂̂β̂β(x)) is a conditional density estimate of Y given X using a mixture of k components.

Another approach, proposed by Figueiredo and Jain (2002), is to consider a mixture of kx components
as a mixture of k(> kx) components where kz(< k) components have zero weight. In this case, we need
to have a criterion that can select the “best” model in the entire set of available models. As noticed by
Figueiredo and Jain (2002), This approach resembles the Minimum Message Length (MML) philosophy
(Wallace and Freeman, 1987). MML criteria are based on the idea that statistical inference can be viewed
as data compression. In other words, if we can build a short code for the available data, then we will have
a good data generation model (Rissanen, 1989). Figueiredo and Jain (2002) developed the following MML
criterion

β̂̂β̂β(x) = arg min
β

− logLx(β̂̂β̂β) + N(k)knz log nx +
knz

2
log nx +

N(k)

2
·

∑

j:πj (x)>0

log πj(x) (23)

where knz is the number of non-zero-probabilities components.

We finish this section by introducing the similarity measure for densities given by Scott and Szewczyk
(2001). They defined a similarity measure between two density functions g1, g2 as

sim(g1, g2) =

∫ ∞

−∞
g1(t)g2(t) dt

(

∫ ∞

−∞
g2
1(t) dt

∫ ∞

−∞
g2
2(t) dt

)1/2
, (24)

based on the intuition that when g1 and g2 are similar,
∫

g1(x)g2(x) dx should be larger than when g1 and
g2 are not similar. Scott and Szewczyk (2001) showed that 0 ≤ sim(g1, g2) ≤ 1.

3.2 Figueiredo and Jain’s algorithm

Figueiredo and Jain (2002) noticed that the MML criterion for mixtures in Eq. (23) is equivalent to an a
posteriori density resulting from the use of a Dirichlet-type prior for the πi(x)’s and a flat prior for the

θθθi(x)’s. Therefore, to minimize Eq. (23), the values π̂
(t+1)
i (x), i = 1, . . . , k, calculated in the M-step of the

traditional EM algorithm for mixtures are changed to

π̂
(t+1)
i (x) =

max







0,

nx
∑

j=1

γ
(t)
j −

N

2







kx
∑

m=1

max







0,

nx
∑

j=1

γ
(t)
j −

N

2







, for i = 1, . . . , k, (25)

where N is the number of parameters that specify each component, and the γ
(t)
j ’s are the values obtained

in the traditional E-step.
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Note that the modified M-step eliminates components that are not supported by the data; therefore, the
EM algorithm can be initialized with a “large” number of components, which helps to move components
across low-likelihood regions and then eliminate all unnecessary components. However, if the algorithm is
initialized with an “extremely large” number of components, the first iteration of the modified M-step may
eliminate all of them. To avoid this problem, Figueiredo and Jain (2002) used the component-wise EM
algorithm (CEM, Celeux et al., 1999). The CEM algorithm differs from the traditional EM algorithm in
that it updates the estimation of the πi(x)’s and θθθi(x)’s one by one, instead of all together. That is, CEM
updates the estimates π1(x) and θθθ1(x) and continues with the E-step, then it updates the estimates of π2(x)
and θθθ2(x) and goes to the E-step, and so on.

3.3 Iterative Pairwise Replacement Algorithm

Scott and Szewczyk (2001) proposed the Iterative Pairwise Replacement Algorithm (IPRA), which is an
algorithm for fitting mixture models sequentially. The main idea behind IPRA is that kernel estimates may
be approximated by much smaller mixtures. This algorithm starts by first constructing a kernel density
estimate, using either the unbiased cross-validation (UCV) bandwidth (Rudemo, 1982; Browman, 1984) or
the normal reference rule (Silverman, 1986). Second, it sequentially eliminates the redundant components
in the mixture until k̃ components remain, where k̃ is selected based on the sample size. Each time, the
two closest components, in terms of the similarity measure in Eq. (24), are combined using the method of
moments (MoM); that is, given two components with parameters (w1, µ1, σ

2
1) and (w2, µ2, σ

2
2), respectively,

the new component will have parameters

(wi + wi+1, w
′
iµi + w′

i+1µi+1, w
′
iσ

2
i + w′

i+1σ
2
i+1 + w′

iw
′
i+1(µi − µi+1)

2) (26)

where w′
i = wi/(wi + wi+1) and w′

i+1 = 1 − w′
i. At this point, we end up with a mixture of k̃ components

with the set of parameters {(w1, µ1, σ
2
1), . . . , (wk̃ , µk̃, σ2

k̃
)}, such that µ1 < . . . < µk̃. Third, the similarity

function in Eq. (24) is used to compare the current k∗-component mixture and the (k∗ − 1)-component
mixture obtained by combining each pair of adjacent components using the MoM. The pair that maximizes
sim(ĝk, ĝk−1) are then combined as in Eq. (26). This process continues until a model with only k0 compo-
nents (k0 is usually less than 30) is obtained. Next, using “L2E with data,” explained below, a pairwise
combination is carried out until there is only one component left. At each step the BIC and the L2E criterion
are collected. Finally, an appropriate number of components is chosen based on these criteria.

“L2E with data” refers to the method of finding the best (k − 1)-component mixture, fk−1(y|x; β̂̂β̂β(x)),

by keeping all but one component fixed on an initial k-component estimate, fk(y|x; β̂̂β̂β(x)), in terms of ISE.
That is, we need to find the set of parameters such that

β̂̂β̂βk−1(x) = argmin
β

∫ ∞

−∞

(fk−1(y|x; β(x)) − f(y|x))2 dy

= argmin
β

∫ ∞

−∞

fk−1(y|x; β(x))2 dy −

∫ ∞

−∞

2fk−1(y|x; β(x))f(y|x) dy +

∫ ∞

−∞

f(y|x)2 dy

= argmin
β

∫ ∞

−∞

fk−1(y|x; β(x))2 dy −

∫ ∞

−∞

2fk−1(y|x; β(x))f(y|x) dy

≈ argmin
β

∫ ∞

−∞

fk−1(y|x; β(x))2 dy − 2

nx
∑

j=1

wj(x)fk−1(yj |x; β(x)). (27)
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3.4 Simulated Example

In this section we apply the proposed algorithm using IPRA and Figueiredo and Jain’s algorithm (FJEM)
to fit the mixture parameters for each given x, to the data shown in Figure 1(b). The BIC was used to select
the number of components for each value of X . Figure 2 shows the estimated conditional density of Y given
X , while Figure 3 shows the conditional mean for each component as function of x.
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(a) double-kernel with p = 1
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(b) EM
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(c) IPRA
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(d) FJEM

Figure 2: Conditional density estimates for the data in Figure 1(b)
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(a) Usual EM
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(b) Figueiredo and Jain’s algorithm
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(c) IPRA

Figure 3: True (solid lines) and estimated mean and proportion functions for the model in Eq. (1). The
green (dashed) lines in the second column are the sum of the proportions corresponding to the closes two
components.
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Notice how the estimates obtained using the EM algorithm, FJEM and IPRA capture the overall struc-
ture of the conditional density (see Figure 1(a)), while the double-kernel, as mentioned before, fails. Even
though these three estimates capture the general shape of the conditional density, there are some extra
bumps. These bumps are due to extra components that these algorithm consider to be important. It is
important to mention that for some values of X , the IPRA with three components was very close to the true
values; however, the BIC preferred a model with only two components. This situation only happened with
IPRA and not with FJEM nor the EM algorithm.

Regarding the parameter functions, the three algorithms determine that there are only two components
for most values of x. Notice how these algorithms replace the two closest means by their weighted average
for each x. This was somehow expected given that for values of x where two components are very close (less
than one standard deviation apart) and the proportion parameter of one of them is small; therefore, the
bimodality is not evident (see Figure 1(a)). For values values of x close to three, there is an important change
on the structure of the conditional density, which is captured by increasing the number of components to
three or even four.

4 Application: galaxy evolution vs. local environment

The galaxy population today is primarily described by two distinct populations. The first are red, ellipti-
cally shaped galaxies with little ongoing star-formation. The second are blue, disk-like or morphologically
disturbed galaxies with active star-formation. This segregation, while not entirely understood, has been
known for a long time.

One of the most fundamental questions in modern astrophysics is how these populations came about.
For example, cosmological models indicate that over time, small galaxies will merge into larger and larger
systems. While physically, pressure and friction will strip galaxies of the cool gas they need to form new
stars. Observationally, it is fairly common to detect highly disrupted galaxy pairs (perhaps merging) un-
dergoing bursts of star-formation. Thus, it has been hypothesized that the old, red population of galaxies
formed from less massive star-forming galaxies via this hierarchical structure formation. Alternative theories
include top-down approaches, where galaxies fragment from large systems into smaller pieces.

One evolutionary measure that has received recent attention is a galaxy’s star formation rate (e.g., Heav-
ens et al., 2004; Gomez et al., 2003; Balogh et al., 2004). The star formation rate (SFR) can be measured
by looking back to galaxies with increasing redshifts1 at different wavelengths. In this work, we use the
Hα “emission line” (visible in the galaxy spectra) as an indicator of the recent star-formation in any given
galaxy. The emission at this specific wavelength is from the process of hot, bright, young stars ionizing
the cool, neutral hydrogen that permeates the intergalactic medium. The greater the flux in this line, the
greater the amount of star-formation. When no star-formation is present in the galaxy, light at this same
wavelength is often seen as an “absorption line”, as electrons in the hydrogen atoms can get excited into a
higher energy level. Thus, the two known populations of galaxies show either Hα emission (star-forming) or
Hα absorption (non-star-forming).

We use 47252 galaxies of the Sloan Digital Sky Survey (SDSS) to study the relationship between galaxy
evolution and local environment. The available data consist of the X, Y, Z positions of these galaxies, mea-

sured in Megaparsecs (Mpc), and their hydrogen emission line equivalent width at the wavelength 6564
◦

A
(EW (Hα)). The X, Y, Z positions have been calculated from the galaxy position in the Right Ascension-
Declination (RA-Dec) coordinate system and their redshift positions. These calculations have been carried
out assuming the following cosmological model: Hubble parameter (or present-day expansion rate of the

1A relevant glossary appears at the end of this paper
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Universe) H0 = 70, cosmological constant λ = 0.7 and the matter density ΩM = 0.3.

To study the role environment plays in the process of galaxy evolution, we map the density field using
a kernel density estimator on the point-like spatial galaxy distribution. The bandwidth selection for this
estimator was carried out using least-squares cross-validation. All computations were carried out using
the software written by Gray and Moore (2003). We can then analyze the Hα emission as a function of
environment. The scatter plot of EW (Hα) versus local density is displayed in Figure 4(a). As can be seen in
this figure, galaxies located in very dense regions have a low star formation rate, while star-forming galaxies
are found in less dense regions.
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(a) Scatter plot and estimated conditional mean
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(b) Estimated quantile functions, α = 0.05, .25, .5, .75, .95

Figure 4: EW (Hα) versus Local density.

The relationship between SFR and local density could be studied by using available quantile regression
techniques (Koenker and Bassett, 1978; Koenker et al., 1994; Yu and Jones, 1998). However, when using
quantile regression techniques (see Figure 4(b)), we cannot easily draw meaningful conclusions about the
underlying cosmology. Plus, it is impossible to determine how galaxy populations interact as galactic systems
become denser. Thus, we estimate the conditional density with the hope of finding more meaningful features
in this relationship.

Let X be the estimated local density and Y = EW (Hα) + λ, where λ is a location parameter. We model
the conditional density of Y given X using the following model Eq. (14) with

g1(y,θθθ1(x)) = N (µ1,x, σ2
x,1) (28)

g2(y,θθθ2(x)) = LN (µ2,x, σ2
x,2) (29)

g3(y,θθθ3(x)) = LN (µ3,x, σ2
x,3) (30)

where LN (µ, σ2) is the log-normal distribution with parameters µ and σ2. This model was selected, using the
BIC and the L2E criterion, over the set of possible models including from one to five normal components and
from zero to four log-normal components. We have included log-normal components because of the long tail
of the conditional densities. The location parameter λ was estimated using its profile likelihood (see Figure 5).
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Figure 5: λ’s profile likelihood

The estimated parameter functions estimated using the EM algorithm can be found in Figure 6. IPRA
and FJEM were not consider because, it is not perfectly clear how to implement these algorithms when
mixing normal and log-normal components.

We find that regardless of density, the distribution of Hα is best fit by three components. We detect a
high star-formation component and a component corresponding to absorption in Hα. The third component
lies in between these two, with a mean (or median) near zero. We can hypothesize that this is either (a)
the population of galaxies transitioning from star-forming to non-starforming; (b) a distinct population of
another type, for example Active Galaxy Nuclei (AGN) which could be related to (a); or (c) an artifact of
our fitting procedure, where the third component may simply indicate that the two main distributions are
not well characterized by Gaussians and/or Lognormals.

We examine how the means, dispersions, and proportions of these three populations vary as a function
of density. We find that the predominant effect is seen in the proportions, where the fraction of star-forming
galaxies decreases with increasing density. Likewise, the population of non-star-forming galaxies increases
with increasing density. The third component, while noisy, does not undergo a significant change in pro-
portion with density. The means and dispersions of the three populations seems to stay constant as density
changes.

In conclusion, the new, large, and high-quality astronomical datasets (e.g., the SDSS used here), have
allowed us to carefully study the distributions of Hα in galaxies as a function of environment. We detect
three (not two) components, and we hypothesize on the physical nature of this third component. Likewise,
we show that it is the proportions, and not the means or dispersions of the Hα distributions that vary with
environment.
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Figure 6: Estimated parameter functions
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5 Discussion

We have proposed a new valuable tool to carry out conditional density estimation based on local likelihood
estimation and finite mixture models. Our estimator allows us to obtain a better insight of the underlying
relationship between random variables than current approaches to conditional density estimation and quan-
tile regression. We have shown this fact with the Astrophysical data presented in Section 4. Even though
our estimator produces good results, there is still need for further research. For example, it is not clear which
finite mixture model estimator to use. The use of the EM algorithm is natural since it is well understood,
easy to implement and we can easily include different family density functions. Plus, it has produced good
results in the experiments we have carried out. However, it suffers from some drawbacks that may appear
when analyzing other data sets. For this reason we need to further study the other algorithms mentioned
in this paper (i.e. IPRA and FJEM) and other such that Dirichlet Process Mixture Models (Escobar and
West, 1995).

On future work we shall also concentrate on how to select an “optimal” bandwidth for the weighting
function in Eq. (16) and how to estimate the standard deviations of our estimated parameter functions.

Glossary

• One Parsec = 3.085678× 1016m.

• The RA-Dec coordinate system is the most natural coordinate system for the stars. Stars are fixed
in RA-Dec coordinates, and the coordinate is moving with the sky as time goes by.

• The term electromagnetic spectrum refers to the collection of possible wavelengths of electromag-
netic radiation.

• A redshift is a shift in the frequency of a photon toward lower energy, or longer wavelength. The
redshift is defined as the change in the wavelength of the light divided by the rest wavelength of the
light.

• The Cosmological Redshift is a redshift caused by the expansion of space. The wavelength of light
increases as it traverses the expanding universe between its point of emission and its point of detection
by the same amount that space has expanded during the crossing time.

• An emission line is the name for a portion of the electromagnetic radiation spectrum that is from a
unique photonic discharge.
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