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ABSTRACT
Motivation: When analyzing expression experiments researchers
are often interested in identifying the set of biological processes that
are up or down regulated under the experimental condition studied.
Current approaches, including clustering expression profiles and
averaging the expression profiles of genes known to participate in
specific processes, fail to provide an accurate estimate of the activity
levels of many biological processes.
Results: We introduce a probabilistic Continuous Hidden Process
Model (CHPM) for time series expression data. CHPM can
simultaneously determine the most probable assignment of genes to
processes and the level of activation of these processes over time. To
estimate model parameters CHPM uses multiple time series datasets
and incorporates prior biological knowledge. Applying CHPM to yeast
expression data, we show that our algorithm produces more accurate
functional assignments for genes compared to other expression
analysis methods. The inferred process activity levels can be used to
study the relationships between biological processes. We also report
new biological experiments confirming some of the process activity
levels predicted by CHPM.
Availability: A Java implementation is available at http :

\\www.cs.cmu.edu\ ∼ yanxins\chpm

Contact: zivbj@cs.cmu.edu

1 INTRODUCTION
The Gene Ontology (GO) maps genes to a collection of biological
processes and functions. When analyzing microarray expression
data researchers often discuss their results in the context of these
processes identifying those that are up or down regulated in the
condition studied (Newman and Weiner, 2005). This is especially
true for time series expression data where the goal is often to
determine not only the biological processes that are activated
or repressed but also the temporal relationships between these
processes (Ramakrishnan et al., 2005). This practice was recently
shown to be an effective way to analyze expression data. Tan et al.
(2003) concluded that while the set of genes determined to be over
or under expressed in a specific study may depend on the specific
microarray platform used, the set of biological processes identified
is often in good agreement across different platforms.

To identify the various biological processes involved, researchers
often use one of several clustering algorithms to group genes
according to their expression profiles. These clusters are then
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analyzed to find enriched GO terms, and the results are displayed
for each cluster in decreasing significance (Segal and Koller, 2002).
An alternative approach starts with the set of genes known to be
assigned to each of the processes, and plots their average expression
profile to determine the activity level of a process in the condition
studied (Smid and Dorssers, 2004). Both of these methods are
less than ideal for identifying and quantifying the set of biological
processes involved in a specific response. Clustering, while very
useful for grouping co-expressed genes, is an unsupervised method
which fails to take advantage of prior knowledge regarding which
genes are known to be associated with specific processes. As
a result, the discovered gene clusters contain genes from many
different biological processes, and in many cases genes known to be
in the same process are assigned to different clusters (Gibbons and
Roth, 2002). On the other hand, beginning with annotations derived
from GO, averaging expression levels for each GO process ignores
the fact that many genes are associated with multiple biological
processes. Averaging expression values from such genes introduces
influences from other processes and can artificially increase or
decrease the recovered profile for a specific process. In addition,
even for genes in the same process some may be required in higher
quantity than others and so simple averaging may not be the optimal
representation. Of course, this approach also suffers when the
information in GO is imperfect or incomplete.

To solve these problems we present the Continuous Hidden
Process Model (CHPM). CHPM models the observed gene
expression levels as being generated by a combination of multiple
biological processes whose activity levels vary over time. We
represent the activity levels of processes at each time point as
hidden values of random variables which are linked over time.
Associated with each process is a set of genes whose expression
levels depend both on the activity level of the process, and on a
gene-specific weight parameter. We use GO to determine priors for
process-gene associations. Using a large collection of time series
expression datasets our algorithm utilizes a Kalman filter (Murphy,
2002) to infer the values of the hidden process nodes and to learn
the parameters of the model.

The model learned from the data can be used for several purposes.
Gene-process associations and the weights of these associations
can be used to make predictions regarding the function of genes
and to recover the set of biological processes that accounts for
the expression profiles. New biological experiments confirmed
some of the predictions made by our algorithm regarding process
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activity levels. Using processes activity levels we can also determine
temporal relationships between biological processes.

1.1 Related work
While most clustering methods are completely unsupervised,
a few clustering methods incorporate gene functions as prior
knowledge (Fang et al., 2006; Huang and Pan, 2006). However,
these methods still aim to group genes based on expression levels.
The resulting clusters often contain genes from several different
functional categories making it hard to recover a profile for a specific
category. Similarly bi-clustering (Cheng and Church, 2000; Tanay
et al., 2002) may also result in several enriched categories for each
cluster. SVD can decompose genes into a group of orthogonal
“eigen-genes” (Alter et al., 2000). Unlike our method, the biological
meaning of each of these “eigen-genes” is not clear and thus they
require a post-processing step to infer functional annotations and to
determine the significance with which we can associate a gene with
a specific function.

Several tools allow users to determine the set of enriched GO
categories in a list of genes (Khatri and Draghici, 2005). Many of
these methods can also be used to visualize the average expression
of genes assigned to a specific category. While these are useful for
many applications, they differ from our method in that they rely
on the deterministic assignment of genes to categories. Thus, the
resulting profiles do not account for multiple functional annotations
for a specific gene and also ignore the fact that some genes may be
more important to a specific process than others.

Supervised learning algorithms were proposed for annotating
genes with new biological functions (Huttenhower et al., 2006;
Barutcuoglu et al., 2006). In these methods GO categories are used
as class labels and a discriminative model is learned for each of
these categories. Unlike these methods we use a temporal generative
model to decompose expression data. This allows us to recover
not only functional assignments but also the hidden process profile
for the category. In addition, it allows our method to deconvolve
the relative contributions of several simultaneously active biological
processes associated with the same gene.

Segal et al. (2003) proposed a method to decompose gene
expression to infer activity levels of several abstract processes and
simultaneously predict the gene-process association. While their
goal is similar to ours, the two methods differ in several important
ways. First, unlike our method Segal et al. do not use prior
knowledge about gene functions. As a result, the inferred processes
are not directly associated with a process defined in GO. Another
difference is the temporal model we employ. Segal et al. treat each
experiment as independent (enabling them to use both static and
time series data) while our method is restricted to time series data.
The advantage of this restriction is that it helps constrain the set of
profiles we recover and can help overcome noise as we discuss in
Methods. Finally, the running time of the algorithm presented in
Segal et al. (2003) is exponential in the number of processes. While
this allows for a better search, it is not appropriate for the problem
we consider in this paper that aims at determining the hidden profiles
of more than 100 processes.

In the context of gene regulation Nachman et al. (2004) presented
a temporal model to infer activity levels of transcription factors
(TFs) from time series expression data. Their model is similar to
ours in the use of a hidden Markov chain in the transition model.
However, it differs in other aspects. Unlike Nachman et al. we

focus on biological processes rather than regulatory interactions.
This leads to differences in our search strategy due to the non-
negativity constraint we place on the relationship between genes
and processes. In addition, we use prior knowledge as part of our
likelihood score whereas Nachman et al. use it only to initialize
their model.

The term Hidden Process Model (HPM) was introduced by
Hutchinson et al. (2006) in the context of decoding hidden processes
from fMRI data. There are key differences between our method
and that of Hutchinson et al.. First, in Hutchinson’s HPMs model
process activities is either “on” or “off.” In contrast, we model
the activity level of a process with a continuous value. Second,
Hutchinson et al. do not utilize any prior knowledge associating
observed features with hidden processes. Third, Hutchinson et al.
allow optional input about their timings, whereas we do not assume
any prior knowledge regarding the timing of these processes.

2 METHODS
In this section we first elaborate our biological experiments procedure and
then introduce the Continuous Hidden Process Model (CHPM) and an
associated EM algorithm to learn the model parameters and to infer the
activity levels of hidden biological processes. To learn the model CHPM uses
time-series microarray expression data from multiple conditions and a set of
functional assignments from GO. The learned model assigns a global weight
(0 or higher) for the contribution of each process to the expression level of
each gene. These weights can be used for inferring functions for unknown
genes. The resulting model can also be used to infer the activity levels of the
biological processes at each of the time points of a new experiment.

2.1 Budding index experiments
Yeast cells (s288c background strains) were grown to early logarithmic
phase (OD 600 nm 0.2-0.5) and H2O2 in a final concentration of 0.3
mM was added to the cell culture. 100 cells were sampled every 10 min,
between 0 and 120 min, fixed (1% formaldehyde) and observed under a light
microscope. Cells were observed to determine bud size and the fraction of
cells with no bud, small bud (smaller than one half of the yeast cell) or a
large bud was documented. In Figure 4(c) we present the results of one of
these experiments. In that figure we annotate the no bud fraction as G1, small
bud as S and large bud as G2/M. See supplementary material for complete
results.

2.2 Continuous Hidden Process Model
Suppose we have m genes whose expression levels are measured at a series
of time points under a variety of experimental conditions (datasets), and
suppose we have n biological processes. A Continuous Hidden Process
Model (CHPM) defines a probability distribution over time series of gene
expression levels in terms of a set of biological processes with unobserved
time-varying activity levels. We use a CHPM to estimate which genes are
associated with each biological process, with what weights, and to estimate
the hidden activity level of each biological process over time.

Let Gi,d,t represent the expression level of gene i in dataset d at time
t. Similarly, let Pj,d,t denote the activity level (i.e., intensity) of biological
process j in dataset d at time t. Each gene may be associated with zero,
one, or several biological processes. Let wi,j denote the non-negative weight
with which gene i is associated with biological process j (wi,j = 0 if gene i
is not associated with process j). A CHPM models the observed expression
level for gene i at any time point as the linear superposition of contributions
from each of its associated biological processes. More precisely:

Gi,d,t ∼





N (0 , α2
d) if gene i is not associated

with any biological process

N (
∑n

j=1 wi,jPj,d,t , β2
d) otherwise

(1)
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Fig. 1. A graphical model representation of the CHPM. Observed variables
are shaded. Pj,d,t is the (hidden) activity level of process j at time point t
in dataset d. Gi,d,t is the observed expression level for gene i at time point
t in dataset d. The edge from biological process j to gene i exists if and only
if gene i is associated with process j, i.e. wi,j > 0, where wi,j represents
the weight for each edge. D plates correspond to the D datasets.

As can be seen in Equation 1, the expression profile of a gene over time
is a noisy realization of the weighted sum of the profiles of processes with
which this gene is associated. At each point in time the expression level is
modeled using a Gaussian distribution whose variance is either α2

d or β2
d ,

depending on whether the gene is believed to be associated with at least one
of the biological processes (i.e., depending on whether for gene i the weights
wi,j are zero for all j). If the gene is associated with at least one process,
then the variance β2

d is intended to capture simple noise in the observed
expression level. If the gene is not associated with any of the processes
under consideration, it may be the case that the gene is participating in some
process that is not included in the model. The α2

d variance captures this
possibility in addition to the usual observational noise.

The evolution over time of activity levels for each biological process is
modeled as a hidden Markov chain (see Figure 1). The activity level of the
process at time point t (i.e. Pj,d,t) is dependent on the activity level of this
same process at time point t−1 (i.e. Pj,d,t−1). This dependency is modeled
as a Gaussian random walk, i.e., Pj,d,t ∼ N (Pj,d,t−1, γ2

d). The variance
γ2

d imposes a smoothing effect on the possible change in the process activity
level between consecutive time points. The activity level of each process
at the very first time point in the dth experimental dataset is modeled as
a Gaussian distribution with mean 0 and variance σ2

d . This dataset-specific
variance allows integrating multiple datasets in which the activity levels at
the first time point for some processes may differ from 0, for example cell
cycle experiments. Figure 1 presents the graphical model used by CHPM.

Note the expression noise parameters α2
d, β2

d are shared across genes
within a particular dataset, and the process smoothness term γ2

d is shared
across processes. However, we estimate different parameter values for each
dataset d, to allow for the possibility that noise levels may differ across
datasets from different labs using different array platforms. On the other
hand, we assume the association between gene i and biological process j is
independent of experimental conditions. Therefore, the weight parameters
wi,j are shared across all datasets.

2.3 Penalized likelihood function
Given a set of processes, a set of genes, and a collection of gene expression
datasets, we train the CHPM by inferring which genes are associated with
each process, and by estimating the various CHPM parameters wi,j , αd, βd,
γd and σd. These estimates are chosen to maximize a penalized complete
log-likelihood score subject to the constraint that all weights wi,j be non-
negative, and to the constraint that any gene be associated with at most C

processes (i.e., that it has at most C non-zero wi,j ). This second constraint
accounts for the fact that it is unlikely for most genes to be associated
with more than two processes (only ∼10% of yeast genes are associated
with more than two processes according to current GO annotations). The
constrained penalized log-likelihood score is Score(o,h : W, θ) where
o,h represent all observed and hidden variables, respectively, and θ includes
all model parameters other than the association weights W .

Score(o,h : W, θ) =
D∑

d=1

log(P (od,hd|W, θ))− λ1

m∑

i=1

n∑

j=1

|wi,j |

− λ2

m∑

i=1

n∑

j=1

δ(wi,j > 0) (Ei,jπ1 + (1− Ei,j)π0)

subject to : wi,j ≥ 0 for all i, j

(|{wi,j |wi,j > 0}| ≤ C) for all i (2)

Here od and hd are the observed expression levels for genes and the
unobserved activity levels for biological processes in dataset d, respectively.
The score contains two regularization terms. The first one imposes sparsity
constraints by limiting the number of non-zero edges. We use an L1 penalty
on the weights leading to selection of a few high weighted edges and setting
most other possible gene-process association weights to zero (Tibshirani,
1996). The second term incorporates prior knowledge encoded in GO. Ei,j

is a binary indicator which is 1 if gene i is annotated with process j in GO
and 0 otherwise. δ(wi,j > 0) is 1 if wi,j > 0, and 0 otherwise. π1 is a
penalty term for edges that are supported by GO. π0 is a similar penalty term
for edges that are currently not in GO. Since we are using experimentally
validated GO terms and since for a given process j most genes do not
belong to j, the penalty for adding an edge not supported by GO is much
higher than the penalty for an edge supported by GO, or π0 >> π1. Both
π1 and π0 are user defined and depend of our confidence in the accuracy
and completeness of GO annotations. Note we do not penalize for genes
assigned by GO but not selected by our model. Such genes may be post-
transcriptionally regulated and since our goal is to represent transcriptional
models they should not be enforced upon the model. Hence we do not
penalize for them.

2.4 Inference and learning for CHPM
To learn the CHPM we use an approximate EM algorithm to attempt to
maximize Score(o,h : W, θ). It iteratively performs an E step in which
the current model parameters W and θ are used to calculate the expected
values of the hidden process activity levels h, followed by an M step in
which these activity levels h are used to re-estimate the model parameters.
These two steps are iterated until convergence.

E step: Given all model parameters, we can represent the CHPM using
matrix notation. Let

−−→
Pd,t denote an n-dimensional column vector describing

the activity of all processes at time point t in dataset d. That is, the jth

dimension in this vector is the activity level of process j at time point t in
dataset d, i.e. Pj,d,t. Let

−−→
Gd,t denote the m-dimensional column vector for

gene expression levels for this dataset at this time point. That is, the ith

dimension in this vector is the expression level of gene i at time point t in
dataset d, i.e. Gi,d,t. Based on our model we can then write:

−−→
Pd,t =

−−−−→
Pd,t−1 + Qd,t, where Qd,t ∼ N (0, ΣQd

); (3)
−−→
Gd,t = W ×−−→Pd,t + Rd,t, where Rd,t ∼ N (0, ΣRd

); (4)

where W is the m-by-n association weight matrix (0 indicates no edge).
Here ΣQd

is a n-by-n diagonal matrix where all diagonal elements are γ2
d ,

and determines the probable rate of change of the process activities over
time (i.e., Qd,t). Similarly, ΣRd

is a m-by-m diagonal matrix where the
ith diagonal element is α2

d if wi,j = 0 for all j and β2
d otherwise. It

determines the variance in the noise in the observed expression levels (i.e.,
Rd,t). All elements in the activity level vector for the first time point follow
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an independent and identical Normal distribution with mean 0 and variance
σ2

d.
As Equation 3 and 4 show, when the parameters are known the model

reduces to the standard Kalman filter (Murphy, 2002) model. Inference in
this model can be done efficiently by computing posterior probabilities of
the hidden variables

−−→
Pd,t which consist of the hd in the Score function. The

probabilities are all normally-distributed and the computation is tractable
because of the conjugacy of the normal distribution.

M step: Given the expected activity levels of biological processes inferred
by the E step, we use an approximate algorithm to select new parameters to
attempt to maximize the Score function in the M step. We can calculate exact
solutions for the variance terms γ and σ by zeroing the partial derivatives of
the penalized complete log-likelihood of data defined in Equation 2. Fixing
the association weights W , we can also estimate the MLE for α and β. See
supplementary material for the complete derivation.

Because the Score function is constrained to require non-negative wi,j

and to allow at most C non-zero weights for each gene, we cannot employ
a straightforward process to estimate W . Instead, we first conduct a greedy
search to associate processes with each gene, and then solve a constrained
optimization problem to obtain estimates for W . To find the optimal set
of processes for each gene i, the algorithm first computes the penalized
likelihood score in the case that gene i is not associated with any process
(wi,j = 0 for all j). It next adds one process at a time up to C. Assume
we have selected a set of processes c (|c| < C). We loop over all processes
j where j /∈ c. For each one we create the set cj = c ∪ {j} and solve
the following optimization problem which is equivalent to maximizing the
penalized complete likelihood score using processes in cj :

for gene i, minimize:

F (cj) =
1

D

D∑

d=1

1

Td × β2
d

Td∑

t=1

(Gi,d,t −
∑

j∈cj

wi,j P̂j,d,t)
2

+λ1

∑

j∈cj

|wi,j |

+λ2

∑

j∈cj

δ(wi,j > 0)(Ei,jπ1 + (1− Ei,j)π0);

subject to:

wi,j ≥ 0 for any j ∈ cj (5)

where Td is the number of time points in dataset d and P̂j,d,t is the inferred
expected activity level of process j at time t in dataset d. All other notations
are adopted from Equation 2. This optimization problem is solved using a
subspace trust region method (Coleman and Li, 1996).

We choose the process j that minimizes F (cj) among all processes not in
c. If F (cj) < F (c) we set c = c ∪ {j} and repeat the above search until c
contains C processes. Otherwise we assign to gene i all processes in c using
weights computed from the solution to the optimization problem for c. All
other weights are set to 0.

2.5 Process selection
The GO database defines a hierarchical structure on the set of biological
processes, each of which contains a set of annotated genes. Our goal
is to choose a subset of well characterized processes that jointly contain
most annotated genes with a small overlap between every pair of selected
processes. We are also interested in specific functions (i.e. leaf nodes which
convey a more specific function). We thus choose candidate biological
processes in the following way. We start by checking leaf processes. If the
number of genes associated with a leaf process is more than a pre-defined
threshold T this process is selected. Otherwise, we assign the annotated
genes to its parent process(es), and delete this leaf (resulting in new leaves).
This procedure is repeated until all leaf processes in the current structure are

selected. As a post-processing step, we check for overlap between all pairs
of selected processes. If any pair has an overlap of over 50% we remove the
smaller process.

3 EXPERIMENTS AND RESULTS
We compared the performance of CHPM on both simulated and real
expression data with a number of other methods listed below. We
note that a number of these methods have very different goals, but
here we focus on the goals defined in the introduction (recovering
process activity levels and functional assignments of genes to
processes).
• Averaging (avg): Process activity levels are obtained by

averaging the expression of genes assigned to the process in
GO (Ramakrishnan et al., 2005). We rank processes for each gene
based on correlation coefficient.
• Singular Value Decomposition (SVD): To predict process

assignments genes are first clustered using the eigen-vectors (Alter
et al., 2000). We rank GO terms for the genes in each cluster
based on their enrichment (using the hypergeometric distribution).
Activity levels for enriched biological processes in each cluster
are estimated by averaging the expression profiles of genes in the
cluster.
• K-means (km) and bi-clustering (bic): As with SVD, genes

are first grouped and rankings and profiles are derived using GO
enrichment analysis. For bi-clustering we use the implementation
in EXPANDER (Shamir et al., 2005) and associate genes with
the most significant processes (choosing from all clusters the gene
belongs to). We only average expression levels for the time points
represented in the cluster.
• Support Vector Machine (SVM): Expression levels are used as

feature vectors in a “one-vs.-all” strategy resulting in a multi-class
SVM. We used LIBSVM (Chang and Lin, 2001) which outputs
a probability estimate for each class based on the distance to the
hyperplane. This probability is used to rank processes for each
gene. Note that SVM cannot be used directly for process activity
inference.

The maximum number C of associated processes for one gene
was set to 2 in all experiments below.

3.1 Results on simulated data
Simulated experiment allows a quantitative assessment of model
performance based on known underlying activity levels of
processes. We first synthesized n biological process activation
profiles using a random walk model. Next we randomly generated
a number of process-gene association matrices by varying the
expected number of processes a gene is associated with. Since none
of the other methods model association weights, we intentionally
fixed all association weights to be 1. Based on the hidden processes
and the association matrix we generated the observed expression
values for all genes and added random noise to each time point for
each gene.

By varying the noise levels β2 and the expected number of
process-gene associations we can test the influence of various
combinations of parameters on the performance of the different
methods. For all cases we sampled n = 100 processes and m = 800
genes. For other parameters, we used the values learned from real
data to make the simulation realistic.

Figure 2(a) presents the mean squared error between the true and
inferred process activation profiles for each of the methods. The
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Fig. 2. (a) Mean squared error (MSE) between actual and inferred hidden processes. Rows correspond to a different observation noise level β2. Columns
correspond to different expected number of gene-process associations. Red line is the median. Blue box indicates upper and lower quantiles. The black bars
are the range of the MSE. Outliers are plotted by “+”. (b) Comparison of precision-recall curves in 8-fold CV.

prior confidence on evidences were set to π0 = 0.9 and π1 = 0.1 by
cross validation. As can be seen, CHPM consistently outperformed
all other methods. Among other methods, deterministic averaging
(avg) had the best performance. This is partly because all other
methods employ prior knowledge only as a post-processing step.

Figure 2(b) shows precision-recall curves of an 8 fold cross
validation. In each fold we hid the associations of 100 out of
the 800 genes and used all methods to predict the functions for
these genes. The precision-recall curves were drawn by increasing
the cutoff for the estimated weights, correlation coefficients or
significance (depending on the method, see above). Again, CHPM
outperformed other baseline methods. In both tasks, clustering and
SVD performed poorly. The goal of these methods is to recover
patterns in expression data and these seldom correlate with one
distinct process.

3.2 Yeast expression data
We applied CHPM to saccharomyces cerevisiae microarray time
series data collected under 17 experimental conditions including
various stresses, cell cycle and DNA damage (see supplementary
material for complete list). The number of time points in these
datasets ranges from 8 to 24. We first tested our approach using
cross-validation. For this, we removed all genes that were not known
to participate in any of the 108 processes we modeled (see below).
This left 848 genes. To construct the prior evidence matrix E we
only used experimentally validated GO annotations. We set the prior
knowledge π0 = 0.9, π1 = 0.1 indicating our belief in the high
quality of these GO assignments.

For process selection, we set the threshold T for the minimum
number of genes to 25. Applying our selection process to the GO
annotations released on 06/06 resulted in 108 biological processes.
See supplementary material for complete list.

Predicting gene-process associations: We first tested the ability of
CHPM to predict gene-process associations by performing 8-fold
cross validation. Figure 3(a-f) plots the precisions and recalls for

various weight cutoffs. Similarly, we plot the precisions and recalls
for all other methods by varying the cutoff for correlation coefficient
or significance.

Since clustering and SVD do not use the gene-process
associations as prior knowledge it is not surprising that they did not
perform well on this task. For averaging (avg), as the correlation
coefficient between a gene and a process increases the precision
also increases significantly, though it does not reach the level of
the CHPM method. For SVM, as the cutoff for probability increases
the precision increases to over 50%. However, the recall decreases
rapidly to 2.1%. In contrast, by relying on prior knowledge and
by considering the weights of the associations using a generative
model, CHPM outperformed all other methods. The precision curve
of CHPM increases dramatically when we increase the weight cutoff
while the recall does not significantly decrease. Since each gene can
only be assigned to up to 2 out of 108 processes, a precision rate of
close to 60% is quite impressive. The recall rate is low indicating
that more expression data and other sources of data are required
for high quality prediction of other genes. Still, the fact that higher
weight correlates well with correct functional assignments indicates
that the recovered process profiles are a good representation of the
underlying profiles.

To test whether more data can improve the performance of
our algorithm we measured precision-recall curves using different
numbers of datasets. Figure 3(g) shows five curves corresponding
to the performance of CHPM with 1, 2, 4, 8 and 16 datasets.
Indeed, more datasets improved both precision and recall. Figure
3(h) shows the penalized likelihood scores versus the number of
iterations. As can be seen, the score converges quickly, reaching
a (local) maximum after three iterations. Note that while this
convergence may seem fast, it is a direct result of the fact that we
are initializing our model with known GO annotations rather than
random initializations that are common in many EM applications.

In Figure 3(i) we present the precision-recall curves for CHPM
when setting the maximum number C of processes for each gene
to 3. The computation time for on a desktop with 3.2GHz CPU
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Fig. 3. (a-f) The precision and recall curves and error bars of methods tested using yeast expression data. (g) The precision-recall curves as a function of the
number of expression datasets used for CHPM, ranging from 1 to 16 datasets (DS). (h) The penalized likelihood score curve for CHPM versus the number of
iterations. (i) Precision and recall curves and error bars for CHPM when setting the maximum number of processes associated with each gene to 3.

and 2.0G RAM increases from approximately 2 to 3 hours when
changing from C = 2 to C = 3. Compared to the case of C = 2 (as
shown in Figure 3(a)), the recall does not change significantly while
the precision slightly drops. Note that most genes in our training
data are associated with two or fewer processes in GO which may
explain the drop in precision.

Representing expression datasets using process models: For a
new expression dataset we can use CHPM (including the learned
weight parameters for all genes) to infer the subset of processes that
are activated or repressed under the condition studied. To choose
the significant subset of processes we first infer the activity levels of
all processes. Using these levels and the weights we can reconstruct
the expression profiles for all genes. Next, we greedily drop one
process at a time, minimizing the resulting reconstruction errors
for the expression data. We can either set a predefined number of
processes to retain or choose based on the average residual error
(see Figure 4(b)).

We tested this using the hydrogen peroxide dataset (0.32mM
H2O2) from Gasch et al. (2000). A CHPM learned from 16 other

datasets was applied to infer hidden activity levels in the H2O2

dataset. Figure 4(b) shows the squared reconstruction error versus
the number of processes kept. Figure 4(a) is a screenshot from our
software displaying five of the 20 most significant processes. These
processes correctly include “response to oxidative stress”, the major
process known to be activated under this condition. It also includes
“ubiquitin-dependent protein catabolism” which is known to be
induced by mild oxidative stress (Gomes-Marcondes and Tisdale,
2002). Repression of ribosomal genes is also well documented
under stress condition (Gasch et al., 2000).

Experimental validation of reconstructed profiles: For some
biological processes it is possible to carry out experiments that
measure phenotypic changes which are assumed to be correlated
with the activity of the process. We selected one such process, the
“G1/S transition of mitotic cell cycle”. The profile for this process
(Figure 4(a)) was predicted to be gradually decreasing (repressed)
reaching a low point between 30 and 60 minutes and then recovering
to its original (pre-treatment) levels at 120 minutes. A possible
explanation for the predicted repression of G1/S genes which is
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Fig. 4. (a) A color screenshot from our software displaying inferred profiles of 5 significant processes for the H2O2 experiment. Red represents induced
activity, green repressed activity and black no change. The 5 processes are: response to oxidative stress; ubiquitin-dependent protein catabolism; chromatin
silencing; ribosome biogenesis and G1/S transition of mitotic cell cycle. (b) Squared error for reconstructed gene expressions as a function of the number of
processes kept. (c) Budding index counts. The percentage of “G1”, “S” and “G2/M” cells are plotted at 10 min intervals. (d) Schematic diagram of the yeast
cell cycle.

followed by an increase to normal levels is a stress related cell
cycle arrest and recovery. To test these predictions we counted the
budding index of cells following treatment by H2O2. As Figure 4(c)
shows, following treatment the percentage of “small bud” (S)
cells gradually drops reaching a low point between 30-50 minutes.
Combined with the increase in “no bud” (G1) cells at this time
interval these findings indicate a G1 arrest. Next, starting at 60
minutes the cell cycle resumes and cells transition from G1 to S.
Finally at 120 minutes the percentage of cells in S is close to its
pre-treatment percentage.

The minor difference between the timing of these events (a low
point at 50 minutes for budding index vs. 60 minutes for the
expression data) can be explained by the different yeast strains
used, different labs and differences in sampling rates. However, the
general trend (slow repression reaching a low value for∼20 minutes
and then recovery) is the same indicating that our model was able to
accurately reconstruct the hidden profile for this process.

As mentioned above, a naive method to estimate the activity
level of processes is by using the average expression profiles of
genes assigned to that process in GO (termed avg above). To
compare CHPM’s prediction to avg for the “G1/S transition of

mitotic cell cycle” process we have looked at the average expression
levels of genes assigned to this process in GO. The results clearly
demonstrate the advantage of our generative model. Unlike CHPM
which shows a gradual decrease during the first few time points, in
the avg result (Figure S1 in Supplementary Material), the first 5 time
points (0-50 minutes) are flat. At time point 6 (60 minutes) the avg
activity level sharply decreases but it then returns to normal again
for time points 7 to 10 (80-160 minutes). In contrast, CHPM shows
a more gradual increase which agrees well with an arrest and release
behavior. Thus, while the CHPM predictions are supported by the
experimental data, the levels reconstructed using the avg method do
not always agree with that data.

Exploring process dependencies: An interesting direction in the
study of biological processes is exploring the inter-dependencies
among these processes. A key challenge for this analysis is the lack
of quantitative measurements of the activities for most biological
processes. CHPM solves this problem and can thus be used to
study these relationships. To test the use of CHPM for this task
we inferred the hidden activity profiles for all 108 processes in
all 17 experimental conditions. As a post-processing step, the
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inferred activity levels were discretized into three states: “induced”,
“repressed” and “no change”. Next we employed the REVEAL
algorithm (Liang, 1998) assuming one time point delay and a
maximum fan-in of 2. REVEAL learns inter-slice adjacency matrix
given fully observable discrete time series by maximizing the BIC
score between parents and child nodes.

In the inferred structure, all processes are connected to themselves
(as a result of our Markov model assumptions). However, most
processes also contain an incoming edge from a different process.
For example, the more general “response to chemical stimulus”
was determined to be the parent of “response to DNA damage
stimulus” indicating that cells activate a general response which
becomes more specific over time. In addition, “maintenance of
chromatin architecture” was determined to be a parent of “response
to DNA damage”. This might indicate that chromatin maintenance
genes identify DNA damage and activate (through a signaling or
transcription pathway) the response. See supplementary material for
a full list of significant dependencies and supporting references.

4 CONCLUSIONS AND FUTURE WORK
We have presented the Continuous Hidden Process Model (CHPM)
and associated algorithms that simultaneously estimate the most
probable assignment of genes to biological processes, and the
hidden level of activation of each process over time. This CHPM
approach integrates data from multiple experiments with prior
knowledge of suggested gene-process associations.

Applying our algorithm to yeast we showed that it improves
upon current expression based function prediction methods. While
function prediction is not the ultimate goal of CHPM, this shows
the accuracy of the inferred profiles and weight assignments. The
reconstructed profiles agree with current knowledge and can be used
to recover the set of important processes for a given experiment.
They are also useful for studying relationships between processes.
New biological experiments validated the reconstructed profile for
one of the processes. CHPM is fully implemented in Java. In the
future we would like to apply CHPM to study other organisms
including humans, and to enrich the CHPM formalism to directly
model dependencies and couplings among different processes.
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