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Abstract
Traditional constraint-based and score-based methods for learning directed graph-
ical models from continuous data have two significant limitations: (i) they require
(in practice) assuming dependencies are linear with Gaussian noise; (ii) they cannot
distinguish between Markov equivalent structures. More recent structure learning
methods avoid both limitations by directly exploiting characteristics of the observed
data distribution resulting from nonlinear effects and non-Gaussian noise. We re-
view these methods and focus on the additive noise model approach, which while
more general than traditional approaches also suffers from two major limitations:
(i) it is invertible for certain distribution families, i.e. linear Gaussians, and thus
not useful for structure learning in these cases; (ii) it was originally proposed for
the two variable case with a multivariate extension that requires enumerating all
possible DAGs, which is ususally intractable. To address these two limitations,
we introduce weakly additive noise models, which extends the additive noise model
framework to cases where additive noise models are invertible and noise is not ad-
ditive. We then provide an algorithm for learning equivalence classes for weakly
additive noise models from data which combines a PC style search using recent ad-
vances in kernel measures of conditional dependence with greedy local searches for
additive noise models. This combined approach provides a more computationally
efficient search procedure for when nonlinear dependencies and/or non-Gaussian
noise may be present that learns equivalence classes of structures which are often
more specific than the Markov equivalence class even in the case of invertible addi-
tive noise models and non-additive noise models, addressing the limitations of both
traditional structure learning methods and the additive noise model. We evaluate
this approach using synthetic data and real climate teleconnection and fMRI data.

Keywords: structure learning, causal discovery, probabilistic graphical models,
Bayesian networks, additive noise model, kernel methods
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1. Introduction

Learning probabilistic graphical models from data serves two primary purposes: (i)
finding compact representations of probability distributions so that probabilistic in-
ference queries can be made efficiently and (ii) modeling unknown data generating
mechanisms and predicting causal relationships.

Traditional approaches for learning directed structures from continuous data suffer
from two major limitations: (i) in practice, they require assuming that all dependen-
cies are linear with Gaussian noise and (ii) they cannot always identify a unique
optimal structure, but rather can only reduce the set of possible structures to an
equivalence class of structures which entail the same Markov properties. While the
first limitation may not pose a significant problem in many contexts where a linear
Gaussian approximation may suffice, there are well known contexts, such as fMRI
images, where nonlinear dependencies are common and data may not tend towards
Gaussianity. Voortman and Druzdzel (2008) shows that while the accuracy of the
well known PC algorithm (Spirtes et al., 2000) for directed structure learning is not
significantly affected by violations of the assumption that noise is Gaussian, it is sig-
nificantly affected by violations of the assumption that dependencies are linear. The
second limitation may not be a serious limitation if one is only interested in learning
graphical models to do probabilistic inference, since any structure in the equivalence
class will yield the same results. However, if one is interested in predicting causal re-
lationships or the effects of intervening on variables, then this does pose a significant
limitation since such inferences cannot be made in general using only the equivalence
class.

While the linear Gaussian assumption was originally made to simplify the prob-
lem of structure learning, it has recently become clear that nonlinearity and non-
Gaussianity can actually be a blessing and reveal more information about the true
data generating process than Markov relations. New methods have been developed for
learning directed structures from continuous data when relationships are linear with
non-Gaussian noise and when relationships are (possibly) nonlinear with Gaussian
or non-Gaussian noise. These methods can often learn a unique directed structure
instead of an equivalence class.

The key objective of this work is to (i) extend these new methods for structure
learning so that they are applicable under weaker assumptions and (ii) overcome
some of the current limitations with using these methods in practice. After first
reviewing the traditional constraint-based and score-based approaches for structure
learning, we introduce two of the most popular methods that learn structure by
exploiting nonlinear dependencies and non-Gaussian noise, LiNGAM (Shimizu et al.,
2006) and the additive noise model approach (Hoyer et al., 2009). We focus specifically
on the additive noise model approach, the more general of these approaches, and
discuss its two major limitations: (i) the existence of certain distribution families,
e.g. linear Gaussians, for which this model cannot be used successfully for structure
learning; (ii) the computational costs associated with using this model with more than
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two variables. To address both of these limitations, we introduce a new framework
for learning directed structures, weakly additive noise models (Tillman et al., 2009),
which extends the additive noise model framework to the problematic distribution
families mentioned above. We then provide an algorithm for learning equivalence
classes for weakly additive noise models from data which combines a PC style search
using recent advances in kernel measures of conditional dependence with greedy local
searches for additive noise models. Combining these two approaches results in a more
computationally efficient search procedure for when nonlinear dependencies and/or
non-Gaussian noise may be present in data; the procedure learns equivalence classes
of structures which are often more specific than the equivalence classes learned by
traditional structure learning methods and is useful even with distribution families
which are problematic for the additive noise model approach. This addresses both the
two major limitations of traditional structure learning methods and the two major
limitations of the additive noise model.

Section 2 reviews background in graphical models and introduces some nota-
tion; section 3 discusses the traditional approaches to structure learning; section
4 introduces approaches to structure learning which exploit nonlinearity and non-
Gaussianity; section 5 introduces the Hilbert space embeddings of distributions frame-
work and the Hilbert Schmidt Independence Criterion (Gretton et al., 2008) non-
parametric statistical test of independence which is used in the additive noise model
approach and will be useful in later sections; section 6 introduces our weakly additive
noise models framework to overcome the limitations of the additive noise model; sec-
tion 7 introduces our algorithm for learning equivalence classes for weakly additive
noise models described above; section 8 provides a detailed description of the con-
ditional independence test that is used by this algorithm; section 9 discusses some
related research; section 10 presents experimental results; finally, section 11 offers
some conclusions.

2. Probabilistic graphical models

A directed graph G = 〈V , E〉 is a set of nodes V and a set of directed edges E connecting
distinct nodes in V . Two nodes in V are adjacent if they are connected by an edge
in E . A directed path in G is a sequence of nodes V1, . . . , Vn such that for 1 ≤ i < n,
there is a directed edge pointing from Vi to Vi+1. If there does not exist a directed
path V1, . . . , Vn in G such that V1 and Vn refer to the same node, then G is a directed
acyclic graph (DAG).

If Vi → Vj is a directed edge in G, then Vi is a parent of Vj and Vj is a child of
Vi. We use PaVi

G to refer to the set of parents of Vi in G and ChVi

G to refer to the
children of Vi in G. The degree of a node Vi in G is the number of edges that are
either directed into or out from Vi. A v-structure (collider) is a triple 〈Vi, Vj, Vk〉 ⊆ V

such that {Vi, Vk} ⊆ Pa
Vj

G . A v-structure is immoral, or an immorality (unshielded
collider), if there is no edge between Vi and Vk in G.
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A joint distribution P over variables corresponding to nodes in V is Markov with
respect to G if P can be factored according to the structure of G as follows:

PP(V) =
∏

Vi∈V

PP

(

Vi | PaVi

G

)

P is faithful to G if every conditional independence that is true in P is entailed by the
above Markov factorization. If the Markov factorizations of two distinct DAGs G and
H entail exactly the same conditional independencies, then G and H are said to be
Markov equivalent. All DAGs which are Markov equivalent have the same adjacencies,
but different directed edges (Spirtes et al., 2000).

A mixed graph is a graph which consists of both directed and undirected edges. A
partially directed acyclic graph (PDAG) H for G is a mixed graph which represents all
of the DAGs that are Markov equivalent to G (including G). If Vi → Vj is a directed
edge in H, then all DAGs Markov equivalent to G have this directed edge; if Vi − Vj

is an undirected edge in H, then some DAGs that are Markov equivalent to G have
the directed edge Vi → Vj, while others have the directed edge Vi ← Vj.

3. Traditional approaches for structure learning

The traditional algorithms for structure learning can be described as either constraint-
based or score-based. Given sample data from a distribution P , constraint-based
algorithms use results from a series of conditional independence tests using the sample
data to determine the equivalence class of structures that are Markov to P . Score-
based algorithms use model selection criteria, e.g. AIC, BIC, to “score” a structure
based on its Markov factorization. The goal is to search for a structure (or equivalence
class of structures) which maximizes this score.

3.1 Constraint-based methods

The earliest and most straightforward constraint-based structure learning algorithm
is the SGS (Spirtes et al., 2000) or IC (Pearl, 2000) algorithm, shown as algorithm
1. This algorithm relies on the fact that certain combinations of conditional indepen-
dencies and conditional dependencies entail the absence of edges and the existence of
immoralities. Once edges have been removed from the complete graph and immoral-
ities have been oriented using conditional independence information, the fourth step
uses a set of rules, shown as algorithm 2, often referred to as the “Meek rules” (Meek,
1995) to make any further orientations that can be made based on the fact that no
directed cycles are allowed and all immoralities have already been oriented.

While the SGS/IC algorithm can be shown to be correct and complete in the
large sample limit (Spirtes et al., 2000), it is neither computationally efficient, since
we must search through the entire powerset of V\{Vi, Vj} for all {Vi, Vj} ⊆ V in step 2,
nor statistically robust since the results of conditional independence tests with large
conditioning sets are generally unreliable. The PC algorithm (Spirtes et al., 2000)
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Input : Observed data for variables in V
Output: PDAG G over nodes V

G ← the complete undirected graph over the variables in V1

For {Vi, Vj} ⊆ V , if ∃S ⊆ V\{Vi, Vj}, such that Vi ⊥⊥ Vj | S, then remove2

the Vi − Vj edge from G
For {Vi, Vj, Vk} ⊆ V such that Vi − Vj and Vj − Vk are (possibly directed)3

edges in G, but there is no edge between Vi − Vk, if ∄S ⊆ V\{Vi, Vj, Vk},
such that Vi ⊥⊥ Vk | {S ∪ Vj}, then orient Vi → Vj ← Vk

Orient any edges necessary to prevent additional immoralities or cycles4

using the Meek rules (Meek, 1995)

Algorithm 1: SGS/IC algorithm

Input : Mixed graph G over nodes V where only immoralities are
oriented

Output: PDAG G over nodes V

while G 6= G ′ do1

G ′ ← G2

For {Vi, Vj, Vk} ⊆ V such that in G, Vi → Vj is a directed edge, Vj − Vk3

is an undirected edge, and Vi and Vk are not adjacent, make Vj → Vk a
directed edge in G
For {Vi, Vj} ⊆ V such that there is a directed path in G from Vi to Vj,4

make Vi → Vj a directed edge in G
For {Vi, Vj, Vk, Vl} ⊆ V such that in G, Vi is adjacent to Vj, Vk, and Vl5

and 〈Vj, Vk, Vl〉 is a v-structure, make Vi → Vk a directed edge in G
end6

Algorithm 2: Meek rules
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is a greedy version of SGS/IC which avoids these problems. Instead of searching all
subsets of V\{Vi, Vj} for a set S such that Vi ⊥⊥ Vj | S in step 2, PC initially considers
only the set S = ∅ for all Vi and Vj pairs and then iteratively increases the cardinality
of such sets S that are considered. At each iteration, a set S is only considered if it
consists of nodes adjacent to either Vi or Vj. When ∄Vk ∈ V with degree in G greater
than the current value of |S|, step 2 is complete. The remaining steps of PC are the
same as SGS/IC. PC provably discovers the correct PDAG in the large sample limit
when the Markov, faithfulness, and causal sufficiency, i.e. there are no unmeasured
common causes of two or more measured variables, assumptions hold (Spirtes et al.,
2000). The partial correlation based Fisher Z-transformation test, which assumes
dependencies are linear with Gaussian noise, is used for conditional independence
testing when PC is used with continuous variables.

The PC algorithm is one of many constraint-based algorithms that are used for
structure learning. For instance, there are other constraint-based algorithms that
may be used if one wishes to drop the causal sufficiency assumption (Spirtes et al.,
2000; Hoyer et al., 2008b; Pellet and Elisseeff, 2009), if one is interested in learning
cyclic structures (Richardson, 1996; Lacerda et al., 2008), and for doing structure
learning in high dimensions (Tsamardinos et al., 2006; Kalisch and Bühlmann, 2007).

3.2 Score-based methods

Score-based algorithms treat structure learning as a hill-climbing problem where one
searches for a structure which maximizes some chosen score function. Typically, a
score functions is chosen which decomposes according to graphical structure. BIC,
shown below where m is the sample size, and d is the number of parameters in the
model, is such a score.

BIC(G|V, θ) = log P(V|G, θ)−
d

2
logm

= log
∏

Vi∈V

P
(

V|PaVi

G , θ
)

−
d

2
logm

=
∑

Vi∈V

log P
(

V|PaVi

G , θ
)

−
d

2
logm

Notice that the BIC score is simply the data loglikelihood penalized to select sparse
structures. If the penalty is removed, then this score becomes the so-called Bayesian
score, which is maximized by the complete graph.

The GES algorithm (Chickering, 2002) is a score-based structure learning algo-
rithm which learns the correct PDAG in the large sample limit under the Markov,
faithfulness, and causal sufficiency assumptions when used with a score function that
is locally consistent (Chickering, 2002), or has the following two properties:

1. Adding an edge that eliminates an independence constraint that is not entailed
by the Markov factorization of the correct structure increases the score
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2. Adding an edge that does not eliminate an independence constraint that is not
entailed by the Markov factorization of the correct structure decreases the score

The BIC score is locally consistent (Chickering, 2002). GES searches over the space
of PDAGs beginning with the empty graph. It consists of two stages where edges
are added or removed and certain edges may be reversed until the score function is
maximized.

4. Exploiting nonlinearity and non-Gaussianity for structure
learning

Two popular approaches have emerged recently which rely on nonlinear and non-
Gaussian characteristics of the observed data distribution to learn structure. The
LiNGAM family of algorithms require linear dependencies with non-Gaussian noise
and use Independent Components Analysis (ICA) (Hyvärinen and Oja, 2000) to
learn structure. The additive noise model approach requires either nonlinearity or
non-Gaussianity to learn structure using nonparametric regression and independence
methods. Both methods can be used to identify a unique DAG rather than only its
Markov equivalence class. We describe each below.

4.1 LiNGAM

In the LiNGAM (Shimizu et al., 2006) framework, each variable is assumed to linear
function of its parents in the correct DAG plus non-Gaussian noise. For instance, for
V1, . . . , Vn, if V2 and V3 are the only parents of V1, then V1 = a+ bV2 + cV3 + ǫ1 where
a and b and c are real valued and ǫ1 represents the non-Gaussian disturbance term
for V1. If the data is preprocessed by subtracting out the mean of each variable, we
get the following system of equations, where V = 〈V1, . . . , Vn〉, e = 〈ǫ1, . . . , ǫn〉, and
B is a matrix of coefficients (setting coefficients to zero for variables which are not
parents):

V = BV + e

Solving for V, we can obtain the following matrix A:

V = BV + e = (I−B)−1e = Ae

The standard ICA procedure can be used to estimate this A matrix, i.e. the mixing
matrix, subject to a reordering of the independent components, i.e. the noise terms,
provided at least n− 1 of the noise terms are non-Gaussian. The LiNGAM discovery
algorithm shows how the correct reordering may be obtained from the ICA estimate
of A, using the insight that since the correct structure is assumed to be a DAG,
A must be lower triangular after some permutation of its rows and columns. After
this reordering is obtained, additional statistical tests are applied to prune coefficients
close to zero. The correct DAG is then obtained by noticing that non-zero coefficients
correspond to parents of nodes.
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Figure 1: Forward and backward model regression estimates for nonlinear non-
Gaussian example

The original LiNGAM model has been extended to cases where latent variables
may be present (Hoyer et al., 2008a) and where directed cycles may be present (Lac-
erda et al., 2008).

4.2 Additive noise model

In the additive noise model approach to structure learning (Hoyer et al., 2009), we
assume each variable Vi can be written as a (possibly nonlinear) smooth function f(·)
of its parents in the correct DAG G plus an additive noise term ǫi with an arbitrary
distribution:

Vi = f
(

PaVi

G

)

+ ǫi

We also assume that the additive noise components are mutually independent:

P(ǫ1, . . . , ǫn) =
n

∏

i=1

P(ǫi)

Hoyer et al. (2009) proposed this approach originally for the two variables. Assume
X → Y is the correct structure G and we have the following functional forms:

X = ǫX ǫX ∼ Unif (−1, 1)

Y = sin(πX) + ǫY ǫY ∼ Unif (−1, 1)

We will refer to Y = f(X) + ǫY as the forward model and X = g(Y ) + ǫX as the
backward model. We can estimate the forward and backward models by nonpara-
metrically regressing Y on X and X on Y , respectively. Figure 1 shows the resulting
regressions for the above nonlinear non-Gaussian example. If we use the resulting
regressions to estimate the residuals, we find that ǫ̂Y ⊥⊥ X, but ǫ̂X /⊥⊥ Y , which is
clear from figure 1. This provides a means for distinguishing when X → Y is the
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Figure 2: Forward and backward model regression estimates for linear Gaussian ex-
ample

correct structure from when Y → X is the correct structure using observational data:
we simply do the nonparametric regressions for both directions and then if we find
independence for one direction and dependence for the other direction, we accept the
direction where we find independence. However, consider the following case where
f(·) is linear and the noise components are both Gaussian:

X = ǫX ǫX ∼ N (0, 1)

Y = 2.4X + ǫY ǫY ∼ N (0, 1)

Figure 2 shows the regression estimates for the forward and backward models for the
above linear Gaussian example. In this case, we find ǫ̂Y ⊥⊥ X and ǫ̂X ⊥⊥ Y so we
have no means for distinguishing whether X → Y or Y → X is the correct structure.
When this happens, we say that the additive noise model is invertible. Hoyer et al.
(2009); Zhang and Hyvärinen (2009a) show, however, that in the two variable case,
the additive noise model is not invertible whenever f(·) is nonlinear or f(·) is linear
and the noise components’ densities are non-Gaussian (plus a few special cases [see
Zhang and Hyvärinen (2009a) for details]).

Another identifiability limitation of this approach is that it is not closed under
marginalization of intermediary variables when f(·) is nonlinear. For example, assume
X → Y → Z is the correct structure, but we observe only X and Z. Then we should
expect to learn X → Z. Consider the following case:

X = ǫX ǫX ∼ Unif(−1, 1)

Y = X3 + ǫY ǫY ∼ Unif(−1, 1)

Z = Y 3 + ǫZ ǫZ ∼ Unif(0, 1)

Figure 3 shows the regression estimates for the forward and backward models with
X and Z for the above example. In this case, we observe ǫ̂X /⊥⊥ Z and ǫ̂Z /⊥⊥ X so we
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Figure 3: Forward and backward model regression estimates for linear Gaussian ex-
ample

cannot distinguish X → Z from Z → X.
Zhang and Hyvärinen (2009a) shows the additive noise model approach can be

generalized to more than two variables. To test whether a DAG is compatible with the
data, we regress each variable on its parents and test whether the resulting residuals
are mutually independent. Using this method naively to identify the correct DAG
is impractical, however, even for a few variables, since we must check all possible
DAGs, and the set of all possible DAGs grows superexponentially with the number
of variables, e.g. there are ≈ 4.2× 1018 DAGs with 10 nodes.

Since we do not assume linear dependencies nor Gaussian noise in this framework,
a sufficiently powerful nonparametric independence test must be used to test inde-
pendence of the residuals. Typically, the Hilbert Schmidt Independence Criterion
(Gretton et al., 2008) is used, which we describe in the next section.

5. Hilbert Schmidt Independence Criterion

The Hilbert Schmidt Independence Criterion (HSIC) (Gretton et al., 2008) is a power-
ful and computationally efficient kernel-based nonparametric test for independence of
two random variablesX and Y that is used with the additive noise model approach for
structure learning. Before describing this test, we review reproducing kernel Hilbert
spaces.

Let k(·, ·) be a kernel mapping A × A → R and let HA be a Hilbert space of
functions from A to R. HA is a reproducing kernel Hilbert space (RKHS) for which
k(·, ·) is the reproducing kernel if the following holds for all f(·) ∈ HA and a ∈ A,
where 〈·, ·〉HA

denotes the inner product in HA:

〈f(·), k(a, ·)〉HA
= f(a)
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We may treat k(a, ·) as a mapping of a to the feature space HA. Then, for a, a′ ∈ A,
we can computer inner products 〈k(a, ·), k(a′, ·)〉HA

efficiently in this high dimensional
space by simply evaluating k(a, a′). This property of RKHSs is often referred to as
the reproducing property. Now assume we choose a kernel that is symmetric positive
definite, e.g. for a1, . . . an ∈ A and r1, . . . , rn ∈ R, the following holds:

n
∑

i=1

n
∑

j=1

rirjk(ai, aj) ≥ 0

Most popular kernels are in fact symmetric positive definite, e.g. Gaussian, poly-
nomial. The Moore-Aronszajn theorem shows that all such kernels are reproducing
kernels that uniquely define corresponding RKHSs (Aronszajn, 1950). Thus, in order
to take advantage of the reproducing property, we need only ensure that we choose a
symmetric positive definite kernel.

Let the random variables X and Y have domains, specifically, separable metric
spaces, X and Y , respectively. Let k(·, ·) be a symmetric positive definite kernel
mapping X×X → R and l(·, ·) a symmetric positive definite kernel mapping Y×Y →
R. Then k(·, ·) and l(·, ·) are the reproducing kernels for RHKSs HX and HY . We
define the mean map µX for X and its empirical estimator, an embedding which maps
distributions (as opposed to points) to elements in RHKSs, as follows:

µX = EX [k(x, ·)] µ̂X =
1

m

m
∑

i=1

k(xi, ·)

Similarly, we have µY and µ̂Y for Y . If k(·, ·) is characteristic, e.g. Gaussian and
Laplace kernels, then the mean map is injective (Gretton et al., 2007; Fukumizu
et al., 2008; Sriperumbudur et al., 2008) so distinct probability distributions are
mapped to distinct elements in HX and HY . We also define a second mapping, the
cross covariance CXY for X and Y as follows, using ⊗ to denote the tensor product:

CXY = ([k(x, ·)− µX ]⊗ [l(y, ·)− µY ])

The HSIC measure of the dependence of X and Y is simply the squared Hilbert-
Schmidt norm of this operator:

HXY = ‖CXY ‖
2
HS

Gretton et al. (2008) shows that HXY = 0 if and only if X ⊥⊥ Y when k(·, ·) and l(·, ·)
are characteristic kernels. For m paired i.i.d. samples for X and Y , we estimate HXY

by first constructing m×m Gram matrices K and L for X and Y , respectively, i.e.
for 1 ≤ i ≤ m and 1 ≤ j ≤ m, kij = k(xi, xj) and lij = l(yi, yj). We then form the
centered Gram matrices K̃ and L̃ as follows, where Im is the m×m identity matrix,
and 1m is a column vector of m ones:

H = Im −
1

m
1m1⊤

m K̃ = HKH L̃ = HLH

11
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The estimator for HXY is computed simply by finding the trace, denoted tr(·), of the
product of centered Gram matrices (Gretton et al., 2008):

ĤXY =
1

m2
tr

(

K̃L̃
)

We have two approaches for determining the significance threshold for a level-α sta-
tistical test using HSIC. The first is the permutation approach, shown as algorithm
3, where we compute ĤXY for multiple random assignments (p) of the Y samples to
X and use the 1 − α quantile of the resulting empirical distribution over ĤXY . The
second approach is to estimate the threshold using a Gamma distribution. Gretton
et al. (2008) shows that mĤXY ∼ Gamma(α, β), where α and β are computed using
the first two moments of the estimator ĤXY under the null distribution (for details
see Gretton et al. (2008)).

Input : Paired i.i.d. samples (x1, y1), . . . , (xm, ym), K̃, α
Output: Significance threshold t

for i = 1, . . . , p do1

Let y′1, . . . , y
′
m be a random permutation of y1, . . . , ym2

Construct the centered Gram matrix L̃′ for y′1, . . . , y
′
m3

Ĥ(i)
XY ←

1

m2
tr

(

K̃L̃′
)

4

end5

t← 1− α quantile of the empirical distribution of Ĥ(1)
XY , . . . Ĥ

(p)
XY6

Algorithm 3: Permutation approach for determining significance thresh-
old

6. Weakly additive noise models

In this section, we extend the additive noise model framework to account for cases
where additive noise models are invertible as well as most cases where noise is not
additive. This will allow us to develop a new search algorithm (section 7) which
addresses the two major limitations of traditional constraint-based and score-based
structure learning methods as well as the two major limitations of the additive noise
model discussed in section 4.2.

First we define a new class of models, weakly additive noise models.

Definition 1 Let P be a probability distribution over V that is Markov to a DAG
G = 〈V , E〉. Then, ψ =

〈

Vi,PaVi

G

〉

is a local additive noise model for P contained in

G if the functional form of Vi can be expressed as Vi = f
(

PaVi

G

)

+ ǫ, where

1. f(·) is an arbitrary (possibly nonlinear) smooth function
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2. ǫ has an arbitrary density

3. ǫ ⊥⊥ PaVi

G

Definition 2 Let P be a probability distribution over V, G = 〈V , E〉 a DAG, and Ψ
a set of local additive noise models. Then, M = 〈G,Ψ〉 is a weakly additive noise
model for P if

1. P is Markov to G

2. ψ ∈ Ψ if and only if ψ is a local additive noise model for P contained in G

3. ∀
〈

Vi,PaVi

G

〉

∈ Ψ, there does not exist a Vj ∈ PaVi

G and an arbitrary directed

graph G ′ (not necessarily related to P) such that Vi ∈ Pa
Vj

G′ and
〈

Vj,Pa
Vj

G′

〉

is a

local additive noise model for P contained in G ′

When we assume a data generating process has a weakly additive noise model rep-
resentation, we assume only that there are no cases where X → Y is contained in
the true structure and there exists a functional form for X and Y such that we can
express X = f(Y ) + ǫX with ǫX ⊥⊥ Y , but no such form such that we can express
Y = f(X) + ǫY with ǫY ⊥⊥ X. In other words, the data cannot appear as though
it admits an additive noise model representation, but only in the incorrect direction.
This representation is still appropriate when additive noise models are invertible, and
when noise is not additive: such cases only lead to weakly additive noise models which
express greater underdetermination of the true data generating process. Even in such
cases, however, this representation will be at least as rich as the PDAG representa-
tion, since we can always infer Markov properties regardless of the function forms of
the variables in the true data generating process. Furthermore, the combination of
Markov properties and certain local additive noise models may entail further charac-
teristics of the data generating process so for many cases this representation may be
as rich as the additive noise model representation is in ideal cases even if only a few
local additive noise models are identifiable.

We now define the notion of distribution-equivalence for weakly additive noise
models.

Definition 3 A weakly additive noise model M = 〈G,Ψ〉 is distribution-equivalent
to N = 〈G ′,Ψ′〉 if and only if

1. G and G ′ are Markov equivalent

2. ψ ∈ Ψ if and only if ψ ∈ Ψ′

Distribution-equivalence for weakly additive noise models defines what can be discov-
ered about the true data generating mechanism using observational data. We now
define a new structure to partition the structural representations of data generating
processes which instantiate distribution-equivalent weakly additive noise models.
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Definition 4 A weakly additive noise partially directed acyclic graph (WAN-PDAG)
for M = 〈G,Ψ〉 is a mixed graph H = 〈V , E〉 such that for {Vi, Vj} ⊆ V,

1. Vi → Vj is a directed edge in H if and only if Vi → Vj is a directed edge in G
and in all G ′ such that N = 〈G ′,Ψ′〉 is distribution-equivalent to M

2. Vi− Vj is an undirected edge in H if and only if Vi → Vj is a directed edge in G
and there exists a G ′ and N = 〈G ′,Ψ′〉 distribution-equivalent to M such that
Vi ← Vj is a directed edge in G ′

We now get the following results.

Lemma 5 Let M = 〈G,Ψ〉 and N = 〈G ′,Ψ′〉 be weakly additive noise models. If M
and N are distribution equivalent, then ∀

〈

Vi,PaVi

G

〉

∈ Ψ, PaVi

G = PaVi

G′ and ChVi

G =

ChVi

G′.

Proof Since M and N are distribution-equivalent, PaVi

G = PaVi

G′ since
〈

Vi,PaVi

G

〉

is
a local additive noise model for M and N . Now since G and G ′ Markov equivalent,
G and G ′ have the same adjacencies. Thus, ∀Vj ∈ ChVi

G , since Vj is adjacent to Vi in

G ′ and Vj /∈ PaVi

G′ , it must be the case that Vj ∈ ChVi

G′ .

Before stating the next theorem, we must discuss the extended Meek rules. Meek
(1995) gives an additional rule to use with the Meek rules whenever “background
knowledge” about the true structure is available, i.e. any information other than
adjacencies and immoralities:

• For {Vi, Vj, Vk, Vl} ⊆ V such that in G, Vi → Vj and Vj → Vk are directed edges,
Vk and Vl are adjacent, Vl and Vi are adjacent, and Vj and Vl are adjacent, make
Vl → Vj a directed edge in G

We will use the extended Meek rules to refer to the Meek rules with this additional
rule. Meek (1995) proves that the extended Meek rules are correct and complete
subject to any additional background knowledge.

Theorem 6 The WAN-PDAG for M = 〈G,Ψ〉 is constructed by

1. adding all directed and undirected edges in the PDAG instantiated by M

2. ∀
〈

Vi,Pa
Vi

G

〉

∈ Ψ, directing all Vj ∈ Pa
Vi

G as Vj → Vi and all Vk ∈ Ch
Vi

G as
Vi → Vk

3. applying the extended Meek rules, treating orientations made using Ψ as back-
ground knowledge

14
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Proof 1 is correct since all structures that are Markov equivalent to G will have the
same adjacencies and directed edges as G. 2 is correct by lemma 5. 3 is correct by
the correctness and completeness results given in Meek (1995).

WAN-PDAGs can used to identify the same information about the data generating
mechanism as additive noise models, when additive noise models are identifiable, but
provide a more powerful representation of uncertainty and can be used to discover
more information when additive noise models are unidentifiable. In the next section,
we describe an efficient algorithm for learning WAN-PDAGs from data.

7. The Kernel PC (kPC) algorithm

We now describe the Kernel PC (kPC) algorithm1 for learning WAN-PDAGs from
data. kPC consists of two stages. The first stage simply involves using the PC
algorithm with a nonparametric conditional independence, rather than the Fisher Z-
transformation test (since we do not want to assume linear dependences or Gaussian
noise), to learn a PDAG. We use HSIC whenever unconditional independence needs
to be tested and an extension of HSIC to the conditional case, discusses in section
8, whenever conditional independence needs to be tested. The remainder of this
section discusses the second stage, which is a “PC-style” search for noninvertible
local additive noise models using the PDAG resulting from the first stage.

The motivation for searching for noninvertible local additive noise models in the
PDAG rather attempting to fit an additive noise model for the entire structure (other
than consistency with the framework in section 6) comes from noticing that (i) it
may be more efficient to do so and require fewer tests since orientations implied by
a noninvertible local additive noise model may imply further orientations and (ii) we
may find more total orientations by considering local additive noise models, e.g. if
all relations are linear and only one variable has a non-Gaussian noise term. The
basic strategy used to search for noninvertible local additive noise models is a “PC-
style” greedy search where we look for undirected edges in the current mixed graph
(starting with the PDAG) that are adjacent to the fewest other undirected edges.
If these edges can be oriented by discovering a noninvertible local additive noise
model, then we make these orientations, apply the extended Meek rules using these
orientations as background knowledge, and continue iterating until no more edges can
be oriented. Algorithm 4 provides pseudocode for this second stage. Let G = 〈V , E〉
be the resulting PDAG and ∀Vi ∈ V, let UVi

G denote the nodes connected to Vi in G
by an undirected edge at the current iteration of the algorithm. We get the following
results.

Lemma 7 If an edge is oriented in the second stage of kPC, it is implied by a non-
invertible local additive noise model.

1. MATLAB code may be obtained from http://www.andrew.cmu.edu/∼rtillman/kpc
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Input : PDAG G = 〈V , E〉
Output: WAN-PDAG G = 〈V , E〉

s← 11

while max
Vi∈V

∣

∣U
Vi

G

∣

∣ ≥ s do
2

foreach Vi ∈ V such that
∣

∣U
Vi

G

∣

∣ = s or
∣

∣U
Vi

G

∣

∣ < s and U
Vi

G was updated3

do
s′ ← s4

while s′ > 0 do5

foreach S ⊆ U
Vi

G such that |S| = s′ and ∀Sk ∈ S, orienting6

Sk → Vi, does not create an immorality do

Nonparametrically regress Vi on PaVi

G ∪ S and compute the7

residual ǫ̂iS
if ǫ̂iS ⊥⊥ S and ∄Vj ∈ S and S

′ ⊆ U
Vj

G such that. regressing8

Vj on Pa
G
Vj
∪ S

′ ∪ Vi results in the residual

ǫ̂jS′∪{Vi} ⊥⊥ S
′ ∪ {Vi} then

∀Sk ∈ S, orient Sk → Vi, and ∀Ul ∈ UVi

G \S orient9

Vi → Ul

Apply the extended Meek rules10

∀Vm ∈ V, update UVm

G , set s′ = 1, and break11

end12

end13

s′ ← s′ − 1;14

end15

end16

s← s+ 117

end18

Algorithm 4: Second Stage of kPC
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Proof If the condition at line 8 of kPC is true then
〈

Vi,PaVi

G ∪ S
〉

is a noninvertible

local additive noise model. All Ul ∈ UVi

G \S must be children of Vi by lemma 5 and
the extended Meek rules are correct by Meek (1995). Thus, all orientations made at
lines 9-10 are correct..

Lemma 8 Suppose ψ = 〈Vi,W〉 is a noninvertible local additive noise model. Then
kPC will make all orientations implied by ψ.

Proof Let S̃ = W\PaG
Vi

for PaG
Vi

at the current iteration. kPC must terminate

with s > |S̃| since |S̃| ≤ |UVi

G | so S = S̃ at some iteration. Since
〈

Vi,PaVi

G ∪ S̃
〉

is a

noninvertible local additive noise model, line 8 is satisfied so all edges connected to
Vi are oriented.

Theorem 9 Assume data is generated according to some weakly additive noise model
M = 〈G,Ψ〉. Then kPC will return the WAN-PDAG instantiated by M assuming
perfect conditional independence information, Markov, faithfulness, and causal suffi-
ciency.

Proof The PC algorithm is correct and complete with respect to the PDAG learned
(Spirtes et al., 2000). Orientations made due to the discovery of noninvertible local
additive noise models are correct by lemma 7 and all such orientations that can be
made are made by lemma 8. Since the Meek rules, which are correct and complete by
Meek (1995), are invoked after each orientation made due to the discovery of some
noninvertible local additive noise model, they are invoked after all such orientations
are made.

8. Kernel-based conditional independence

We now define a kernel-based conditional dependence measure similar to HSIC (Fuku-
mizu et al., 2008) (see also (Sun et al., 2007, Section 2.2) for a related quantity with
a different normalization) that we use in the first stage of kPC for conditional inde-
pendence testing.

Let X,Y,X ,Y , k(·, ·), l(·, ·),HX ,HY , K̃, and L̃ be defined as in section 5. Let Z be
a conditioning variable with domain Z, m(·, ·) be a reproducing kernel which defines
RKHS HZ , and M̃ be the corresponding centered Gram matrix for an i.i.d. sample
z1, . . . , zm (paired with (x1, y1), . . . , (xm, ym)). Let Ẍ = (X,Z) and Ÿ = (Y, Z) be the
extended random variables for X and Y . The conditional cross covariance (Fukumizu
et al., 2008) CXY |Z of X and Y given Z is defined as follows:

CXY |Z = CẌZC
−1
ZZCZŸ
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Just as HSIC measures the dependence of X and Y by taking the squared Hilbert
Schmidt norm of CXY , we measure the conditional dependence of X and Y given Z
by taking the squared Hilbert Schmidt norm of CXY |Z :

HXY |Z = ‖CXY |Z‖
2
HS

It follows from (Fukumizu et al., 2008, Theorem 3) that if k(·, ·), l(·, ·), and m(·, ·)
are characteristic kernels, then HXY |Z = 0 if and only if X ⊥⊥ Y |Z. Fukumizu et al.
(2008) provides the empirical estimator, where ǫ is a regularizer:

ĤXY |Z =
1

m2
tr(K̃L̃−2K̃M̃(M̃+ǫIm)−2M̃L̃+K̃M̃(M̃+ǫIm)−2M̃L̃M̃(M̃+ǫIm)−2M̃)

This estimator is quite costly to compute, i.e. O (m3) naively, especially if we need to
compute it many times to determine a significance threshold as in the permutation
approach. Fortunately, we see from (Bach and Jordan, 2002, Appendix C) that the
eigenspectra of Gram matrices for Gaussian kernels decay very rapidly, so low rank
approximations of these matrices can be obtained even when using a very conservative
threshold. We can use the incomplete Cholesky factorization (Fine and Scheinberg,
2001) procedure to obtain such an approximation. For an m×m Gram matrix Q, this
factorization results in an m×p matrix G, where p≪ m, and an m×m permutation
matrix P such that Q ≈ PGG⊤P⊤. If we simply replace the centered Gram matrices
in ĤXY |Z with their incomplete Cholesky factorizations and use the following equiv-
alence to invert G⊤G + ǫIp for each m × p matrix G in the resulting factorizations
instead of GG⊤ + ǫIm, we can obtain a O (mp3) procedure if implemented carefully.

(

GG⊤ + ǫIm
)−1

=
1

ǫ
Im −

1

ǫ
G

(

ǫIm +G⊤G
)−1

G⊤

Unfortunately, the above procedure is not numerically stable unless a relatively large
regularizer ǫ is chosen or only a small number of columns are used in the incomplete
Cholesky factorizations.

A more stable (and faster) approach is to obtain incomplete Cholesky factoriza-
tions GX , GY , and GZ with permutation matrices PX , PY , and PZ , and then obtain
the thin SVDs for HPXGX , HPYGY , and HPZGZ . The thin SVD for a matrix A
consists of matrices U , S, and V , such that U is m× p, S is a p× p diagonal matrix
of singular values, V is p × p, and A = USV . For K̃, L̃, and M̃ , let UXSXV X ,
UY SY V Y , and UZSZV Z be the corresponding thin SVDs, respectively. Now define
matrices S̄X , S̄Y , and S̄Z and ḠX , ḠY , and ḠZ as follows:

s̄X
ii =

(

sX
ii

)2
s̄Y

ii =
(

sY
ii

)2
s̄Z

ii =

(

sZ
ii

)2

(sZ
ii)

2
+ ǫ

ḠX = UX S̄XUX⊤
ḠY = UY S̄YUY ⊤

ḠZ = UZS̄ZUZ⊤
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Figure 4: Runtime and Empirical Type I Error Rate. Results are over the generation
of 20 3-node DAGs for which X ⊥⊥ Y |Z and the generating distribution
was linear Gaussian.

Noticing that for a matrix A with thin SVD USV , A2 = US2U⊤, we can compute
ĤXY |Z as follows:

ĤXY |Z =
1

m2
tr

(

ḠXḠY − 2ḠXḠZḠY + ḠXḠZḠY ḠZ
)

This can be computed stably and efficiently in O (mp3) by simply choosing an appro-
priate associative ordering of matrix multiplications. Figure 4 shows that this method
leads to a significant increase in speed when used with the modified permutation ap-
proach described below for conditional independence testing without significantly
affecting the empirically observed type I error rate for a level-.05 test.

Computing significance thresholds for level-α statistical tests is complicated by the
fact that the null distribution of ĤXY |Z is unknown and difficult to derive, and the
permutation approach given in algorithm 3 is not appropriate since permuting Y while
leave Z fixed changes the marginal distribution of Y given Z. One approach described
in Sun (2008) is a modified permutation procedure where we (making analogy to the
discrete case) first cluster Z and then only permute elements which fall within the
same cluster. This approach is outlined in algorithm 5. A second possibility is to
directly calculate the first and second moments of ĤXY |Z and use these with the
Gamma distribution approach for finding the threshold for a level-α test using HSIC
described in Gretton et al. (2008). This approach is complicated by the matrix
inversions which appear in ĤXY |Z . One possibility is to rewrite these terms as follows
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and then use the Taylor series expansion:

(

M̃ + ǫIm

)−1

≈

(

1

δ
M̃ + Im

)−1

= Im +
∞

∑

i=1

(−1)i 1

δi
M̃ i

This approach can be used to derive estimates for the first and second moments of
ĤXY |Z , but the computational costs involved in computing these estimators makes
them not useful in practice.

Input : Paired i.i.d. samples (x1, y1, z1), . . . , (xm, ym, zm), K̃,
α

Output: Significance threshold t

Cluster z1, . . . , zm into z(1), . . . , z(k)1

for i = 1, . . . , p do2

Let y(1), . . . ,y(k) each be random permutations of the3

elements in y1, . . . , yn matching the indices of the elements
in each of z(1), . . . , z(k)

Let y′1, . . . , y
′
m be y1, . . . , ym after replacing each yi for4

1 ≤ i ≤ m with the element in y(1), . . . ,y(k) corresponding
to the element in z(1), . . . , z(k) matched to the index of zi

Construct the centered Gram matrix L̃′ for y′1, . . . , y
′
m5

Compute Ĥ(i)
XY |Z using K̃, L̃′, and M̃6

end7

t← 1− α quantile of the empirical distribution of8

Ĥ(1)
XY |Z , . . . Ĥ

(p)
XY |Z

Algorithm 5: Modified permutation approach for conditional
independence threshold

9. Related research

kPC is similar in spirit to the PC-LiNGAM structure learning algorithm (Hoyer et al.,
2008a), which assumes dependencies are linear with either Gaussian or non-Gaussian
noise. PC-LiNGAM combines the PC algorithm with LiNGAM to learn structures
referred to as ngDAGs. KCL (Sun et al., 2007) is a heuristic search for a mixed graph
that uses a kernel-based dependence measure similar to kPC (while not determining
significance thresholds via a hypothesis test), but does not take advantage of additive
noise models. Mooij et al. (2009) provides a more efficient algorithm for learning
additive noise models, by first finding a causal ordering after doing a series of high
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X1

X2

X3 X5

X4 X7

X6

Figure 5: Toy example DAG

dimensional regressions and HSIC independence tests and then pruning the resulting
DAG implied by this ordering. Finally, Zhang and Hyvärinen (2009b) proposes a
two-stage procedure for learning additive noise models from data that is similar to
kPC, but requires the additive noise model assumptions in the first stage where the
Markov equivalence class is identified.

10. Experimental results

10.1 Toy data

To evaluate the performance of kPC, we first considered a toy example. We generated
1000 data points by forward sampling from the 7 node DAG in Figure 5. Samples
were generated using the following recursive equations and noise distributions:

X1 = ǫ1 ǫ1 ∼ Unif(−1, 1)

X2 = 6 cos(X1) + ǫ2 ǫ2 ∼ N (−1, 1)

X3 = 2 sin(πX1) +X2 + ǫ3 ǫ3 ∼ N (0, 1)

X4 = 3 cos(X3) + ǫ4 ǫ4 ∼ N (0, 1)

X5 = .05(X2 +X6)
3 + ǫ5 ǫ5 ∼ N (0, 1)

X6 = ǫ6 ǫ6 ∼ Unif(−1, 1)

X7 = 6 cos(.2[X3 + log(6 +X5) + 2]) + ǫ7 ǫ7 ∼ Unif(−1, 1)

We used kPC, PC, GES with the BIC score, and LiNGAM to learn structures from
this data with nonlinear dependencies and both Gaussian and non-Gaussian noise.
Figure 6 reports the results. We see that kPC learns the correct structure, PC leaves
out two edges and reverses one edge, GES leaves out two edges and adds two edges,
and LiNGAM leaves out two edges, adds two edges, and reverses two edges.
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Figure 6: Structures learned by kPC, PC, GES, and LiNGAM using toy data

10.2 Simulation data

Next, to evaluate the performance of kPC across a range of possible structures, we gen-
erated 20 random 7-nodes DAGs using the MCMC algorithm in Melançon et al. (2000)
and forward sampled 1000 data points from each DAG under three conditions: lin-
ear dependencies with Gaussian noise, linear dependencies with non-Gaussian noise,
and nonlinear dependencies with non-Gaussian noise. We generated non-Gaussian
noise using the same procedure as Shimizu et al. (2006) and used polynomial and
trigonometric functions for nonlinear dependencies.

We again compared kPC to PC, GES, and LiNGAM. We applied two metrics in
measuring performance vs. sample size: precision, i.e. proportion of directed edges in
the resulting graph that are in the true DAG, and recall, i.e. proportion of directed
edges in the true DAG that are in the resulting graph.

Figure 7 reports the results for the linear Gaussian case. In the linear Gaussian
case, we see PC shows slightly better performance than kPC in precision though the
difference becomes smaller as the sample size increases, while GES and LiNGAM
perform worse than kPC. Recall is about the same for kPC and PC. These results are
mostly unsurprising; since PC assumes linear Gaussian distributions whereas kPC
uses a more complicated nonparametric conditional independence test, we expect PC
to show greater performance for smaller sample sizes when the data are actually linear
Gaussian.

Figure 8 shows results for the linear non-Gaussian case. Precision for PC and
kPC is about the same, while LiNGAM shows slightly better performance and GES
shows worse performance. However, LiNGAM shows significantly better recall than
all of the other algorithms, which have about the same recall. These results are also
unsurprising since LiNGAM assumes linear relations with non-Gaussian noise and
previous simulation results have shown that nonlinearity, but not non-Gaussianity
significantly affects the performance of PC (Voortman and Druzdzel, 2008).
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Figure 7: Simulations with linear Gaussian data
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Figure 8: Simulations with linear non-Gaussian data
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Figure 9: Simulations with nonlinear non-Gaussian data

In the nonlinear non-Gaussian case, kPC performs slightly better than PC and
GES (which show almost exactly the same performance) in precision, while LiNGAM
performs worse. All algorithms perform about the same in terms of recall. We note,
however, that in some of these cases the performance of kPC was significantly better
than the other algorithms so these simulations may not provide the best comparison
of kPC to the other algorithms in cases where dependencies are nonlinear. When
simulating nonlinear data, we must be careful to ensure that variances do not blow up
and result in data for which no finite sample method can show adequate performance.
This has the unfortunate side effect that the nonlinear data generated may be well
approximated using linear methods. Future research will consider more sophisticated
methods for simulating data that is more appropriate when comparing kPC to linear
methods.

10.3 Climate teleconnection data

Climate scientists use a number of indices, measuring atmospheric pressures, ocean
surface temperatures, etc., in prediction models for future climate patterns. As-
sociations between these indices (teleconnections) are well documented and various
physical mechanisms have been proposed to explain these associations. Since many
of these associations have been shown to be nonlinear (Chu and Glymour, 2008), we
used data consisting of measurements of six of these indices recorded monthly be-
tween 1953 and 2000 (576 total measurements) to evaluate the performance of kPC
on real data. We used the following indices:
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Figure 10: Structure learned by kPC

QBO Quasi-Biennial Oscillation - wind oscillation (easterly to westerly) in
equatorial stratosphere

SOI Southern Oscillation Index - air pressure between Tahiti and
Darwin

WP West Pacific - wave structure at surface of Pacific Ocean
PDO Pacific Decadal Oscillation - warm or cool surface temperatures in

the Pacific Ocean
AO Arctic Oscillation - atmospheric pressure in Arctic region
NAO North Atlantic Oscillation - atmospheric pressure in North

Atlantic region

The most support has been given to a physical mechanism between NAO and
AO. NAO is thought to be an early regional predictor of future AO indices. A second
teleconnection is believed to exist between QBO and PDO, where QBO winter indices
are thought to predict spring PDO indices. Figure 10 shows the structure learned
by kPC. We note that both of these teleconnections are consistent with the learned
structure. We do not know at this time whether there are other physical mechanisms
which may explain the remainder of the relationships indicated by kPC.

10.4 fMRI data

We also ran kPC on data from an fMRI experiment that is analyzed in Ramsey
et al. (2009) where nonlinear dependencies can be observed. In the experiment,
subjects were repeatedly asked to decide whether pairs of words rhymed over the
course of a few minutes while fMRI images were obtained. Figure 11 shows the
structure that kPC learned, where each of the nodes corresponds to a particular
brain region where strong neuronal activity was observed during the experiment (data
points represent level of activation among clusters of voxels in these areas). This
structure is the same as the one learned by the score-based IMaGES algorithm, which
uses additional penalties to effectively deal with observed nonlinearities, that was
used in Ramsey et al. (2009) except for the absence of one edge. However, IMaGES
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Figure 11: Structures learned by kPC and iMAGES

required background knowledge to direct the edges (IMaGES learns an undirected
graph without background knowledge). kPC successfully found the same directed
edges without using any background knowledge. Theses edges are consistent with
neuroscience domain knowledge.

11. Conclusion

We considered the current approaches to learning directed graphical models from
continuous data which relax the assumptions that (i) dependencies are linear and (ii)
noise is Gaussian, while highlighting their limitations. We then introduced the weakly
additive noise model framework, which extends the additive noise model framework
to cases such as the linear Gaussian, where the additive noise model is invertible and
thus unidentifiable, as well as cases where noise may not be additive. The weakly
additive noise model framework allows us to identify a unique DAG when the addi-
tive noise model assumptions hold, and a structure that is at least as specific as a
PDAG (possibly still a unique DAG) when some additive noise model assumptions
fail. We defined equivalence classes for such models and introduced the kPC algo-
rithm for learning these equivalence classes from data. We also considered efficient
methods for conditional independence testing which do not assume dependencies are
linear with Gaussian noise. Finally, we found that the kPC algorithm showed good
performance on both synthetic and real data. Areas for future research include ex-
tending the weakly additive noise model framework to cases where latent confounding
variables and directed cycles may be present as well as speeding up the conditional
independence test described in section 8, which is currently the bottleneck for kPC.
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