
Data Mining with MAPREDUCE:
Graph and Tensor Algorithms

with Applications
Charalampos E. Tsourakakis

March 2010

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Data Analysis Project

Copyright c© 2010 Charalampos E. Tsourakakis





For my parents, Eftichios and Aliki and my sister Maria
For my companion, Maria

To the memory of grandmother Maria and grandfather Lampis





Abstract
This thesis, which serves as the Data Analysis Project, has three

different aspects:

1. The Design of efficient algorithms.
2. A Solid Engineering Effort (implementation in the MAPRE-

DUCE framework).
3. Mine the Data.

In Chapters 1,2,3 we focus on the triangle counting problem. Tri-
angles play an important role is several data mining applications and
especially in social networks. We treat the problem both from a com-
binatorial (Doulion, Triangle Sparsifiers) and a spectral perspective
(Counting Triangles Using Projections). The former approach works
on any graph under mild conditions whereas the latter are based on
special spectral properties of the graph. Empirically, these special
properties seem to appear frequently in social networks (and other
skewed degree networks) but a deeper, theoretical understanding is
currently lacking.

In Chapters 4 and 5 we present two solid engineering efforts:
HADI and PEGASUS. Both contribute from an engineering and data
mining pespective. We use the elegant Flajolet-Martin algorithm to
estimate the diameter of a graph and its radius plot and we introduce
a set of programming primitives which -to our experience- make a
programmer’s life easier. We apply our algorithms on the largest pub-
licly available graph ever to be analyzed and extract several surprising
patterns.

In the last two chapters the objects of focus are tensors. In Chapter
6 we introduce the “Two Heads are Better than one” method which
models multidimensional timeseris as tensors and extracts correla-
tions and patterns using a combination of wavelets and Tucker De-
compositions. Finally, in Chapter 7 we introduce MACH1 a random-
ized algorithm for computing Tucker decompositions. The efficiency
of our method is verified on several monitoring systems.

1MACH stands Achlioptas-McSherry work to acknowledge the fact that our method extends
their algorithm to the multilinear setting.



Acknowledgements

First, I would like to thank my advisor during the academic years 2007-08,
2008-09 Christos Faloutsos and my current advisors Gary Miller and Russell
Schwartz for their support and guidance. Furthermore, I would like to thank
David Tolliver, Don Sheehy, Hanghang Tong, Jure Leskovec, U Kang, Christos
Boutsidis and all my other collaborators so far. Among them, I would like to es-
pecially thank Petros Drineas, Mihalis N. Kolountzakis, Yannis Koutis and Kostas
Tsianos for all the interesting discussions we have had so far which have had an
important impact on me.

I would like to thank my beloved friends here in Pittsburgh, Felipe Trevizan,
Jammie Flasnick and Yannis Mallios. Furthermore, I would like to thank my “peo-
ple” back in Greece, who I miss every day: my parents Eftichios and Aliki, my
sister Maria, cousin Babis, uncle Simeon and Michalis and all the other member of
my family, Andreas Varverakis, Dimitris Tsagkarakis, Dimitris Tsaparas, Giorgos
Orfanoudakis, Lefteris Pratikakis, Tasos Parasiris, Miros Apostolakis and many
others. Finally, words are not enough to express my feelings for Maria Tsiarli, my
companion here in Pittsburgh.



Contents

1 DOULION: Counting Triangles in Massive Graphs with a
Coin 9
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Background and Related Work . . . . . . . . . . . . . . . . . . . 10

1.2.1 Triangle Counting algorithms . . . . . . . . . . . . . . . 10
1.2.2 MAPREDUCE . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 Analysis of DOULION . . . . . . . . . . . . . . . . . . 15
1.3.3 Random Sampling . . . . . . . . . . . . . . . . . . . . . 18
1.3.4 A Pleasant Side-effect: Preserving the Epidemic Threshold 18
1.3.5 Can we parallelize DOULION? . . . . . . . . . . . . . 19

1.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 19
1.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . 20

1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Triangle Sparsifiers 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Existing work . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Concentration of Boolean Polynomials . . . . . . . . . . 31

2.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5



2.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 36
2.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . 36

2.5 Conclusions & Future Work . . . . . . . . . . . . . . . . . . . . 38

3 Counting Triangles in Real-World Networks using Projections 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Counting Triangles . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Singular Value Decomposition (SVD) . . . . . . . . . . . 43

3.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Theorems and proofs . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Proposed algorithms . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Why is EIGENTRIANGLE successful? . . . . . . . . . . . 47
3.3.4 Lanczos method and Real-World Networks . . . . . . . . 50

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.1 Experimental set up . . . . . . . . . . . . . . . . . . . . . 51
3.4.2 Total Triangle Counting . . . . . . . . . . . . . . . . . . 57
3.4.3 Local Triangle Counting . . . . . . . . . . . . . . . . . . 58

3.5 Theoretical Ramifications . . . . . . . . . . . . . . . . . . . . . . 59
3.5.1 Counting Triangles via Fast SVD . . . . . . . . . . . . . 59
3.5.2 Kronecker graphs . . . . . . . . . . . . . . . . . . . . . . 61
3.5.3 Erdős-Rényi graphs . . . . . . . . . . . . . . . . . . . . 62

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Fast Radius Plot and Diameter Computation for Terabyte Scale Graphs 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Preliminaries; Sequential Radii Calculation . . . . . . . . . . . . 66

4.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.2 Computing Radius and Diameter . . . . . . . . . . . . . . 67

4.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.1 HADI Overview . . . . . . . . . . . . . . . . . . . . . . 70
4.3.2 HADI-naive in MAPREDUCE . . . . . . . . . . . . . . . 71
4.3.3 HADI-plain in MAPREDUCE . . . . . . . . . . . . . . . 71
4.3.4 HADI-optimized in MAPREDUCE . . . . . . . . . . . . . 75

4.4 Analysis and Discussion . . . . . . . . . . . . . . . . . . . . . . 78
4.4.1 Time and Space Analysis . . . . . . . . . . . . . . . . . . 78
4.4.2 HADI in parallel DBMSs . . . . . . . . . . . . . . . . . . 79

4.5 Scalability of HADI . . . . . . . . . . . . . . . . . . . . . . . . . 79



4.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 79
4.5.2 Running Time and Scale-up . . . . . . . . . . . . . . . . 80
4.5.3 Effect of Optimizations . . . . . . . . . . . . . . . . . . . 81

4.6 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 PEGASUS: Mining Peta-Scale Graphs 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Background and Related Work . . . . . . . . . . . . . . . . . . . 86
5.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1 Main Idea . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.2 GIM-V and PageRank . . . . . . . . . . . . . . . . . . . 89
5.3.3 GIM-V and Random Walk with Restart . . . . . . . . . . 89
5.3.4 GIM-V and Diameter Estimation . . . . . . . . . . . . . . 90
5.3.5 GIM-V and Connected Components . . . . . . . . . . . . 91

5.4 Fast Algorithms for GIM-V . . . . . . . . . . . . . . . . . . . . . 92
5.4.1 GIM-VBASE: Naive Multiplication . . . . . . . . . . . . 92
5.4.2 GIM-VBL: Block Multiplication . . . . . . . . . . . . . . 92
5.4.3 GIM-VCL: Clustered Edges . . . . . . . . . . . . . . . . 94
5.4.4 GIM-VDI: Diagonal Block Iteration . . . . . . . . . . . . 95
5.4.5 GIM-VNR: Node Renumbering . . . . . . . . . . . . . . 97
5.4.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 Performance and Scalability . . . . . . . . . . . . . . . . . . . . 98
5.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 GIM-VAt Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6.1 Connected Components of Real Networks . . . . . . . . . 101
5.6.2 PageRank scores of Real Networks . . . . . . . . . . . . 103
5.6.3 Diameter of Real Network . . . . . . . . . . . . . . . . . 104

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Two heads better than one: Pattern Discovery in Time-evolving Multi-
Aspect Data 111
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4.1 Static 2-heads tensor mining . . . . . . . . . . . . . . . . 116
6.4.2 Dynamic 2-heads tensor mining . . . . . . . . . . . . . . 116



6.5 Multi-model Tensor Analysis . . . . . . . . . . . . . . . . . . . . 118
6.5.1 Static 2 Heads Tensor Mining . . . . . . . . . . . . . . . 118
6.5.2 Dynamic 2 Heads Tensor Mining . . . . . . . . . . . . . 119
6.5.3 Mining Guide . . . . . . . . . . . . . . . . . . . . . . . . 121

6.6 Experiment Evaluation . . . . . . . . . . . . . . . . . . . . . . . 122
6.6.1 Mining Case-studies . . . . . . . . . . . . . . . . . . . . 122
6.6.2 Quantitative evaluation . . . . . . . . . . . . . . . . . . . 124

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7 MACH: Fast Randomized Tensor Decompositions 129
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2.1 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.2.2 SVD and Fast Low Rank Approximation . . . . . . . . . 136

7.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.4.1 Monitoring computer networks . . . . . . . . . . . . . . . 141
7.4.2 Environmental Monitoring . . . . . . . . . . . . . . . . . 143
7.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



Chapter 1

DOULION: Counting Triangles in
Massive Graphs with a Coin

1.1 Introduction

Abundant data nowadays are modeled as graphs: the World Wide Web, social net-
works (e.g. LinkedIn, Facebook, Flickr) , P2P networks, co-authorship networks,
biological networks, computer networks and physical connections just to name
a few. Nowadays, due to the recent technology explosion, graphs reaching the
planetary scale are available to us for analysis [102]. Triangles play an important
role in complex network analysis. For example in social networks, triangles is a
well studied subgraph. In particular, two prominent theories according to which
triangles are generated in social networks are the homophily and the transitiv-
ity. According to the former, people tend to choose friends that are similar to
themselves, which is also known as “birds of a feather flock together” [108]. and
according to the latter, people who have common friends tend to become friends
themselves [164].

The significance of the existence of triangles in networks motivates the defini-
tion of metrics that quantify the triangle density in a graph. Two such metrics are
the clustering coefficient and the transitivity ratio [112].

Furthermore, it has been shown that triangles can play a significant role in
graph mining applications as well. Recently, in [18] it was shown that triangles
can be used to detect spamming activity. Eckman and Moses in [55] showed how
triangles can be used to uncover the hidden thematic structure of the web. More-
over, according to [17], triangle counting can benefit the query plan optimization

9



in databases. For the aforementioned reasons fast triangle counting algorithms are
of high practical value.

In this paper we propose a simple, practical, yet effective algorithm for count-
ing triangles in graphs. Our algorithm DOULION can be used in any graph. In our
experiments we focus on real-world networks that exhibit a skewed degree distri-
bution and in Erdős-Rényi graphs ([23]). DOULION is not a competitor of other
triangle-counting algorithms. It is rather a “friend” since it can be used as a first
step before applying any triangle counting algorithm, streaming or not. We ver-
ify the effectiveness of our method in a wide range of experiments on real-world
networks and provide a basic mathematical analysis of our algorithm and some
connections to the spectral analysis of matrices.

In figure 1.1 we see the results of running DOULION on one snapshot of the
Wikipedia Web graph. As we see, even when keeping 10% of the edges accu-
racy is almost the ideal 100%. For the range of the “edge-keeping” percentages
that we used, 10% to 90% with a step of 10% we received speedups 113.1, 28.9,
12.8, 7.1, 4.5, 3.1 2.2, 1.6, 1.3 correspondingly. The mean accuracy is 99.7% and
the standard deviation 0.0023. DOULION has the advantage of being “embarass-
ingly” parallel as well, therefore allowing us to easily implement it in any parallel
programming framework. For our purposes, we used HADOOP the open source
implementation of MAPREDUCE [45].

The outline of the chapter is as follows: Section 1.2 presents an overview of
the related work and Section 1.3 the proposed algorithm. Section 1.4 shows the
experimental results and we conclude in section 1.5.

1.2 Background and Related Work
In this section, we present the related work on the problem of counting triangles
in a graph and briefly give some information on the MAPREDUCE framework and
HADOOP.

1.2.1 Triangle Counting algorithms
Let G(V, E), n=|V |, m=|E| be an undirected, unweighted, simple graph. A trian-
gle is a three-node subgraph of G which is fully connected.

Exact Counting Algorithms One obvious way to count the number of triangles
in a graph is to enumerate all possible

(
n
3

)
combinations of vertices and count how



Figure 1.1: Speedup vs. Accuracy for the Wikipedia Graph snapshot on 2005
Nov. The graph has≈ 1,7M nodes and 20M edges. As we see, even when keeping
10% of the edges of the initial graph accuracy is 99.5%. For p’s ranging from 10%
to 90% the mean accuracy is 99.7%, the accuracy standard deviation 0.0023 and
the mean speedup 19.4.

many of them are fully connected. This results in the naive algorithm with O(n3)
time complexity.

A simple algorithm, known as NODEITERATOR, computes for each node its
neighborhood and then sees how many edges exist among its neighbors. This
algorithm runs asymptotically in

∑
v∈V (G)

(
d(v)
2

)
time which by taking a simple

union bound give an upper bound of O(d2
maxn), where dmax is the maximum de-

gree in G. Another simple algorithm that works in a similar way is the EDGEIT-
ERATOR. Rather than checking each node at the time, EDGEITERATOR checks
each edge (u, v) ∈ E and computes the common neighbors of the nodes u and v.
Asymptotically EDGEITERATOR runs in the the same time with the NODEITER-
ATOR. This algorithm can be improved through a simple hashing argument so that
it runs in O(m

3
2 ) [132]. This version of EDGEITERATOR is also called EDGEIT-

ERATOR-hashed. The forward algorithm is another refinement of the EDGEIT-
ERATOR. The key idea of this algorithm is that there is no need to compare the full
neighborhoods of two adjacent nodes. Finally the compact − forward iterator
([98]) further improves the forward algorithm. Itai and Rodeh in [77] gave an
algorithm that finds a triangle if it exists in O(m

3
2 ). Their algorithm can easily be

extended in a triangle counting algorithm with the same time complexity. Their
algorithm relies on computing spanning trees of the graph G and removing edges



while making sure that each triangle is listed exactly once. In [132] one can find
the analysis and an extensive description of these algorithms.

The fastest methods for triangle counting in terms of time complexity are
based on fast matrix multiplication. Alon et al. gave in [13] an algorithm of time
complexity O(m

2γ
γ+1 ) ⊂ O(m1.41) where at the time of this write-up γ is 2.37, the

exponent of the state-of-the-art algorithm for matrix multiplication ([38]). Exact
counting methods however may be slow, even not applicable when the size of the
graph fairly large due to high memory requirements. In those cases an approxi-
mating algorithm is preferred in the cost of losing the exact number of triangles.

Streaming Algorithms The goal of streaming algorithms is to perform one or at
most a constant number of passes over the graph stream (e.g. edges arriving one at
a time {e1, e2, .., em}) and make provably accurate estimates of the number of tri-
angles. Yossef et al. in their seminal paper [17] gave the first streaming algorithm
for counting triangles. They first define all possible different triples that can show
up and then reduce the problem of triangle counting to estimating moments for a
stream of node triples. Then they use the Alon-Matias-Szegedy algorithms (also
known as AMS algorithms) presented in the Gödel awarded work [11]. The space
complexity of their algorithms depend on the structure of the graph, and specifi-
cally on the cardinalities of the sets of the different types of triples. In [79] three
streaming algorithms were presented. Two of them use one pass over the graph
stream and the third one three passes. The one-pass algorithms use again the
AMS algorithms [11] and the later algorithm uses sampling to reduce the usage of
space. The biased sampling is done according to the degree of the vertex chosen.
In [26] two random sampling algorithms are proposed to estimate the number of
triangles one for the edge stream representation and one for the incidence stream
representation of the undirected graph of interest. The sampling procedures are
simple. E.g., for the case of the edge stream representation, they sample randomly
an edge and a node in the stream and check if they form a triangle.

Semi-Streaming Algorithms Bechetti et al. presented in [18] a semi-streaming
algorithm for computing triangles in a graph. Their model relaxes the strict con-
straint of constant number of passes to obtain an algorithm that performs log(n)
passes over the edge file. Their main idea relies on locality sensitivity hashing and
the observation that the local triangle counting reduces to estimating the size of
the intersection of two sets, namely the neighborhoods of two nodes connected by
an edge. In [148] a spectral counting algorithm was introduced. The idea of this



algorithm is to take advantage of the properties of the skewed spectra of power-
law networks and make a fast approximation of the number of triangles based on
a few, top eigenvalues. This algorithm can be viewed both as a semi-streaming al-
gorithm in the sense that it performs a number of passes at worst O(log(n)) ([68])
over the non-zero elements of the adjacency matrix (edges) or even as a streaming
algorithm by using a linear time algorithm for the SVD ([128]). The performance
of the algorithm depends strongly on the spectrum of the graph of interest. Empir-
ically the algorithm works well in many real-world graphs but has no guarantees,
mainly due to the limited knowledge on the spectra of real-world graphs. We
rather have theoretical knowledge on the few top eigenvalues ([109],[36]) or our
knowledge is just empirical ([148],[59]).

1.2.2 MAPREDUCE

MAPREDUCE is a parallel distributed programming framework introduced in [46],
which can process huge amounts of data in a massively parallel way using simple
commodity machines. It is inspired by the functional programmming concepts of
mapping and reducing. HADOOP - rougly speaking - is the open source implemen-
tation of MAPREDUCE. It is an emerging technology, which except its reportedly
spread-out commercial use, that has already become popular in academia as well.
HADOOP provides a powerful programming framework, since the programming
concepts are simple and the programmer is freed from all the tedious tasks that
one should take care of if he/she would write a distributed piece of code. More
details about MAPREDUCE and HADOOP can be found in [97].

1.3 Proposed Method
In this section we present the proposed method, we analyze it and provide the
reader with several interesting -at least in our opinion- observations.

1.3.1 Algorithm
Our algorithm DOULION is a “friend” rather than a competitor of the other tri-
angle counting algorithms. Furthermore, it is very useful and applicable in all
possible scenarios: a) the graph fits in the main memory, b) the size of the graph
exceeds slightly the available memory, c) the size of the graph exceeds the avail-
able memory significantly.



Algorithm 1 The DOULION counting framework
Require: Unweighted Graph G(V, E)
Require: Sparsification parameter p
Output: ∆′(G) global triangle estimation

for each edge ej do
Toss a biased coin with success probability p
if success then

w(ej)← 1
p

else
w(ej)← 0

end if
end for
∆′(G)← TRIANGLECOUNTINGALGORITHM(G)
return ∆′(G)

The general framework of the proposed method is shown in algorithm 1.
DOULION tosses a coin for each edge. It keeps the edge with probability p and
with probability 1 − p it deletes it. Then each triangle in the resulting graph G′

counts as 1
p3 triangles. An equivalent way of viewing this procedure is the follow-

ing:

• Reweight an edge if the edge “survives” with weight equal to 1
p

• Count each triangle as the product of the weights of the edges comprising
the triangle. Since the initial graph G is unweighted each triangle is counted
as (1

p
)3 = 1

p3 .

After the tossing-coin stage, any triangle counting algorithm can be applied
to the obtained graph G′. Algorithm 2 shows the instantiation of the DOULION

triangle counting framework using the NODEITERATOR as the triangle counting
black box, which was described in section 1.2. However, in case that even after
the sparsification the resulting graph cannot fit into the main memory, a streaming
or a semi-streaming algorithm should be preferred instead as the black box.

Observe that since we assume that the input graph G is unweighted all edges
in G′ will have the same weight. Therefore we can still store efficiently G′ just as
if it were unweighted plus the parameter p.



Algorithm 2 The DOULION-NODEITERATOR algorithm
Require: Unweighted Graph G(V, E)
Require: Sparsification parameter p
Output: ∆′(G) global triangle estimation

∆′(G)← 0
for each edge ej do

Toss a biased coin with success probability p
if success then

w(ej)← 1
p

else
w(ej)← 0

end if
end for
for v ∈ V (G) do

for all pairs of neighbors (u, w) of v do
if (u, w) ∈ E(G) then

if u < v < w then
∆′(G)← ∆′(G) + 1

end if
end if

end for
end for
∆′(G)← ∆′(G) ∗ 1

p3

return ∆′(G)

1.3.2 Analysis of DOULION

Mean and Variance

We first show that the expected number of triangles in G′ is the number of tri-
angles ∆ in the initial graph G. For each triangle in the initial graph, we attach
an indicator variable δi, i = 1..∆. Therefore δi = 1 if the i-th triangle1 exists in
G′, otherwise δi = 0. Let X be the random variable that denotes DOULION ’s
triangles’ estimate.

Theorem 1 (DOULION Expected Value) The expected number of triangles in G′

1There is no ordering of triangles. Just imaging that the term i-th refers to the i-th triangle of
any random ordering of the triangles in graph G.



is equal to the actual number of triangles in G: E[X]=∆

Proof 1 We have that the random variable X is the sum of the indicator variables
multiplied by 1

p3 . By simple properties of the expectation we get the following:

E[X]=E[
∑∆

i=1
1
p3 δi]=∑∆

i=1E[ 1
p3 δi]= 1

p3

∑∆
i=1E[δi]= 1

p3

∑∆
i=1 p3= ∆

Theorem 2 (DOULION Variance) Let ∆ be the total number of triangles in G.
The variance is equal to:

V ar(X) = ∆(p3−p6)+2k(p5−p6)
p6

where k is the number of pairs of triangles that are not edge disjoint.

Proof 2 We have that our estimate is a sum of identically distributed but not in-
dependently random indicator variables of whether a triangle in the initial graph
“survives”. The reason that the indicator variables are not independent is shown
in figure 1.3.2. The indicator variables δi and δj for the i-th and j-th triangle are
not independent because when the edge that they share does not “survive” then
both of them become 0. On the other hand the indicator variables δk and δp are
independent.

Now, by the definition of the variance of a random variable and its basic prop-
erties:

V ar(X) = V ar(
1

p3

∆∑
i=1

δi) =
1

p6

∆∑
i=1

∆∑
j=1

Cov(δi, δj) (1.1)

Now we break up the above summation. There are ∆2 terms in this sum. ∆ of
them are the variances of the indicator variables, therefore we get ∆(p3−p6). The
rest 2

(
∆
2

)
terms correspond to the pairs of indicator variables. Let k out of

(
∆
2

)
pairs of indicator variables correspond to triangles that share one edge. In that
case Cov(δi, δj) = p5−p6. For the rest

(
∆
2

)
−k, terms Cov(δp, δq) = p6−p6 = 0.

Therefore, we get:

V ar(X) =
1

p6

(
∆(p3 − p6) + 2k(p5 − p6)

)
(1.2)

Using the second moment method ([10]) we get the following theorem.

Theorem 3 Pr(|X −∆| ≥ ε∆) ≤ (p3−p6)
p6ε2∆

+ 2k (p5−p6)
p6ε2∆2



Figure 1.2: The cases should be considered when estimating the variance of
DOULION. These are determined by whether the triangles are edge-disjoint or
not.

Proof 3 By applying Chebyshev’s inequality, we get: Pr(|X − ∆| ≥ ε∆) ≤
V ar(X)

ε2∆2 and by substituting the formula for the variance from theorem 2 we get the
bound.

This theorem gives a first insight in the performance of DOULION. The prob-
ability that our estimate is away from the real number of triangles by some factor
ε depends on the number of triangles in the graph as well as the structure of the
graph and of course on the sparsification value p in the following way: the larger
the number of triangles in the graph, the probability to obtain a good estimate
increases. Also, the more edge-disjoint triangles exist in the graph, the better the
estimate is. Finally, as p→ 0 the quality of the estimate gets worse, as expected.

Speedup

Consider now a simple triangle listing algorithm, namely the node iterator which
was described in Section 1.2. If R is its running time after the removal of edges
then R =

∑k
v=1 D(v)2 where D(v) = degree of vertex v after coin-tossing, hence

E[R] ∼ p2

[∑
v

(deg v)2

]
. (1.3)

Hence the expected speedup is 1
p2 .



1.3.3 Random Sampling

Let’s consider the interesting case of a graph that is so large that exceeds the
available main memory significantly. A well-known technique to select k random
records sequentially from a file that resides in a hard disk is the rejection method
[159]. More sampling algorithms can be found in the same work [159] and in [88].
Observe that the number of disk pages fetched may in the worst case be equiva-
lent to performing a sequential scan over the file. However, if k is significantly
smaller than the size of the file then we expect to have significant savings with the
sampling approach. In our case, where we assume that the graph is represented
as a stream of edges or equivalently resides in an edge file, e.g. a file whose each
line is of the form (endpoint1, endpoint2), k ≈ mp.

1.3.4 A Pleasant Side-effect: Preserving the Epidemic Thresh-
old

As shown in [148] the number of triangles is equal to the sum of the cubes of
the eigenvalues divided by six. Given the spectra properties observed in many
real-world networks one can approximate the number of triangles in the graph
just by using few eigenvalues. Achlioptas and McSherry showed in [6] that one
can “throw ” away many of the elements of a matrix and still keep the top eigen-
values the same. This is an observation that lead in [149], an improvement of the
algorithm presented in [148].

Given the aforementioned observation, the top adjacency eigenvalue of G′ will
be very close to the top one of G. This is an interesting approach since the top
eigenvalue of the adjacency matrix representation of any graph is closely related
to the epidemic threshold [163]. Therefore, DOULION has the effect of not only
preserving in expectation the number of triangles but also approximately the epi-
demic threshold.

Just for the sake of illustration, figure 1.3.4 plots the real epidemic threshold
of graph G vs. the estimate, i.e. the epidemic threshold of graph G′ for 14 differ-
ent datasets (Flickr, Epinions, AS Newman, EAT RS, Lederberg, Patents (main),
Patents, Internet, HEP-th (new), Journals, AS Oregon, AS CAIDA (3 timestamps)
). As we see from the plot, the results are almost ideal, differing in the first or
second decimal digit.



Figure 1.3: Real Inverse Epidemic Threshold (λ1) vs. our estimate for 14 different
datasets . As we see, the estimates are almost ideal, in most cases differing in the
second decimal digit. Similar results hold for other graphs as well.

1.3.5 Can we parallelize DOULION?

We implemented in HADOOP a prototype for the DOULION-NODEITERATOR. As
one can easily observe, the sparsification step is trivially parallel. Each mapper
receives a subset of edges of the initial graph and tosses a coin for each edge. If the
edge survives, the mapper emits the corresponding edge. The JAVA and HADOOP

code of our implementations will be open-sourced. 2

1.4 Experiments

1.4.1 Experimental Setup

We implemented DOULION-NODEITERATOR in JAVA and in
HADOOP. The HADOOP code ran on Erdős-Rényi graphs and on the real-world
networks we ran the JAVA piece of code. The experiments ran on a 4GB RAM,
Intel(R) Core(TM)2 Duo CPU at 2.4GHz Windows Vista machine (JAVA code)
and in M45 (HADOOP code), one of the fifty most powerful supercomputers in the
world ( 480 hosts, each with 2 quad-core Intel Xeon 1.86 GHz, running RHEL5,
with 3Tb aggregate RAM, and over 1.5 PetaByte aggregate disk capacity.) after
allocating two commodity machines. The graphs we used in our experiments are
described in the table 1.1. The directed ones were made undirected by removing

2 http://www.cs.cmu.edu/ ctsourak/projects/triangles.htm.



(a) Wikipedia 2006, 25 Sep. (b) Wikipedia 2006, 4 Nov.

(c) Wikipedia 2007, Feb. 6 (d) Flickr

Figure 1.4: Ideal behavior of DOULIONin graphs with several million of edges.
We observe that for all p values ranging from 0.1 to 0.9 the estimate of DOULION

is strongly concentrated around its mean value, i.e. the real number of triangles in
the graph. The speedups are important, ranging from ≈ 80 to ≈ 130.

the arcs of the edges and the self-loops -if any- were removed. Most of the datasets
we used are publicly available3.

1.4.2 Experimental Results

We divide and present the experiments into four different categories: DOULION

on large-, medium- and small-sized real world graphs and on Erdős-Rényi. We
run DOULION-NODEITERATOR using nine different values for p, ranging from
0.1 to 0.9 with a step of 0.1. All the figures presented in the following refer to a
single, random run of DOULION on the graphs.

3 Can be found in the url: http://www.cise.ufl.edu/research/sparse/matrices/



(a) Oregon (b) Zewail (c) Journals

Figure 1.5: Results of DOULION on the smallest graphs (less than 40K edges)
for one random run of DOULION. Again, we observe an excellent performance of
DOULION. Compared to the results for the larger graphs, the variance is bigger for
the small values of p, though still small. Speedup can be even ≈ 100 (Journals).

Large-sized Graphs Figures 1.1 and 1.4 show the experimental results for the
largest real-world graphs we used: the four different snapshots of the Wikipedia
Web graph and Flickr. All these networks have size greater than 2M edges. The
behavior of DOULION in these graphs is the ideal. The accuracy is always greater
than 99% and speedups are significant, ranging from ≈ 80 to ≈ 130 times faster.
As expected, the maximum speedups are obtained for p = 0.1. Also observe how
more significant the speedups become when moving from p = 0.2 to p = 0.1, due
to the quadratic speedup. As already mentioned before, observe that the speedup
refers to the running time of a straight-forward exact triangle counting method
vs. itself using DOULION, i.e. NODEITERATOR vs. DOULION-NODEITERATOR.
This verifies the fact DOULION is a friend of triangle counting algorithms.

Medium-sized Graphs We conducted 158 experiments on medium-sized graphs,
whose sized ranged from ≈ 40K to ≈ 400K edges. Figure 1.6 shows the perfor-
mance of DOULION on these graphs. For the 150 omitted timestamps/graphs of
AS CAIDA, similar results hold as in figure 1.6(h).

Edinburgh Thesaurus and AS Newman graphs ( figures 1.6(c),(g) exhibit the
almost ideal behavior of the large graphs: accuracy always greater than 99% and
important speedups. Very close to this behavior, is also behavior of the Epin-
ions (who-trusts-whom), the Reuters’ graph and the HEP-TH graph, shown in fig-
ures 1.6(a), (b) and (e). Speedups are still important and accuracy is again high,
always more than 97%. In the rest of the graphs (figures 1.6(d),(f),(h)) results are
still satisfactory. However we observe that there is larger variance around the real



Nodes Edges Description
Real-world Networks

13,579 37,448 AS Oregon
23,389 47,448 CAIDA AS 2004 to 2008

(means over 151 timestamps)
22,963 48,436 AS NEWMAN

1,634,989 18,540,603 Wikipedia 2005-11-05
2,983,494 35,048,116 Wikipedia 2006-09-25
3,148,440 37,043,458 Wikipedia 2006-11-04
3,566,907 42,375,912 Wikipedia 2007-02-06

27,770 352,285 Hep-th-new
27,240 341,923 Hep-th
8,843 41,532 Lederberg

124 5,972 Journals
13,332 148,038 Reuters
23,219 304,937 Edinburgh Associative

Thesaurus (EAT RS)
75,877 405,740 Epinions network

404,733 2,110,078 Flickr
6752 54182 Zewail

Table 1.1: Summary of real-world networks used.

number of triangles in the graph. Still though, the accuracy is always greater than
96%. The maximum speedup in the case of medium sized graphs can reach 100
times, which corresponds

Small-sized Graphs We used three small graphs to experiment with, AS Ore-
gon, Journals and Zewail. Journals graph exhibits an ideal behavior, just like the
large graphs. DOULION gives more than 99% accuracy for all values of p we
tried and a speedup of almost 100 times. Oregon and Zewail exhibit larger vari-
ance than Journals graph over our single random run. Accuracy is almost always
greater than 95% , with the single exception of using p = 0.5 in the Oregon graph.
However, running DOULION three times, moves these “outlier”-like points closer
to 1, just like in all other plots. This was the worst case behavior of DOULION

that we saw during our experiments.



Nodes Speedup Accuracy
80M 13.1 99.7
100M 19.8 99.3

Table 1.2: Results of DOULION on Gn, 1
2

for sparsification value equal to 1
2
.

Observations To sum up, the following observations hold for all the experi-
ments we conducted on real graphs with size ranging from ≈ 6K edges (Journals
graph) to ≈ 42M (Wikipedia 2007):

• Keeping 10% of the edges yields in the most significant speedups. These
speedups ranged from ≈ 30 to ≈ 130 times.

• Notice that reducing the edges to 10% of the initial amount does not nec-
essarily imply 10x speedup, but much more. In general, the speedups also
depend on the structure of the initial and the sparsified graph.

• Running DOULION three times verifies the fact that the results we obtained
were not “random”: for most of the graphs the results are almost identical
(speedups and accuracies are more or less the same) whereas for few graphs
(Oregon and some AS CAIDA timestamps) we see slight larger changes,
still though small (e.g. Oregon for p=0.5 gives 93% accuracy).

DOULION on Erdős-Rényi Gn, 12
Using our HADOOP implementation

we run DOULION on large Erdős-Rényi Gn,p graphs. As expected in the case
large of random Erdős-Rényi the results are excellent in terms of accuracy for
the sparsification values we tested. The reason is the following: after applying
DOULION to a Gn,p graph with the sparsification parameter equal to 0.1 the result
is an Erdős-Rényi Gn,p′ with p′ = 0.1p. Therefore, as long as p′ is a constant
and does not cause any threshold phenomena in the number of cycles in the graph
(e.g. p′ = 1

n
, see [23] ) we have a concentrated estimate around the real number

of triangles. The results of running DOULION-NODEITERATOR with p = 0.1 on
two Erdős-Rényi graphs with 80M and 100M nodes are shown in Table 1.2. As
we see, the speedups are 13.1 and 19.8 respectively for the two graphs and the
accuracy in both cases is greater than 99%.



1.5 Conclusions
In this paper we presented DOULION, an algorithm which tosses a coin in order
to obtain a smaller, weighted graph in which the number of triangles is very close
to the true value. Our contributions can be summarized in the following points:

• DOULION is a “friend” rather than a competitor to other triangle counting
algorithms: any other triangle counting triangle algorithm, streaming or not,
use the idea of DOULION as a preprocessing step.

• DOULION is “embarrassingly” parallel, enjoying therefore optimal scale-up
in HADOOP.

• We provide a first, basic mathematical analysis which gives some insight in
the performance of DOULIONwith respect to the mean and the variance of
the estimator and the expected speedup for the instatiation we used.

• We show that an additional benefit of DOULION is that it maintains the
epidemic threshold of the graph.

• We conducted several experiments on real world graphs and for p ranging
from 0.1 to 0.9 the accuracy is almost 100% and the speedup can be even
≈130x of a simple exact counting algorithm vs. itself but using DOULION

as a first step.

Finally, as a topic of future research, we propose a tighter theoretical analysis
that will yield the optimal p, namely the smallest possible one which yields an
exponential concentration around the real number of triangles.



(a) Epinions (b) Reuters

(c) Edinburgh Thesaurus (d) Lederberg

(e) HEP-TH (f) HEP-TH-NEW

(g) AS Newman (h) AS CAIDA

Figure 1.6: Behavior of DOULION in graphs with several medium sized networks
(≈ 40K to ≈ 400K edges). As in the case of large and small graphs, we observe
that for all p values ranging from 0.1 to 0.9 the estimate of DOULION is strongly
concentrated around real number of triangles in the graph. Speedups again are
important, ranging from ≈ 30 to ≈ 60.





Chapter 2

Triangle Sparsifiers

2.1 Introduction

Graphs are ubiquitous: the Internet, the World Wide Web (WWW), social net-
works, protein interaction networks and many other complicated structures are
modeled as graphs. The problem of counting subgraphs is one of the typical
graph mining tasks that has attracted a lot of attention, e.g., [167]. The most basic,
non-trivial subgraph, is the triangle. Given a simple, undirected graph G(V, E),
a triangle is a three node fully connected subgraph. Many social networks are
abundant in triangles, since typically friends of friends tend to become friends
themselves [164]. This phenomenon is observed in other types of networks as
well (biological, online networks etc.) and is one of the main reasons which gave
rise to the definitions of the transitivity ratio and the clustering coefficients of a
graph in complex network analysis [112]. Triangles are used in several applica-
tions such as uncovering the hidden thematic structure of the web [55], as a feature
to assist the classification of web activity [18] and for link recommendation in on-
line social networks [153]. Furthermore, triangles are used as a network statistic
in the exponential random graph model.

A sparsifier of a graph G(V, E, w) is a sparse graph G′(V, E ′, ŵ) which is sim-
ilar to G under a certain notion. For instance, [138] present algorithms for gen-
erating high-quality spectral sparsifiers and [21] introduces cut-preserving sparsi-
fiers. In this paper, we present a simple randomized algorithm which generates
high quality triangle-preserving sparsifiers for unweighted graphs under mild re-
strictions. We analyze our algorithm and show that we can achieve significant
speedups and an accurate estimate of the number of triangles at the same time.

27



For instance, if one uses a listing algorithm for a graph with n nodes and t tri-
angles, where t ≥ n3/2+ε one can set the sparsification parameter p = n−1/2

resulting in a linear O(n) expected speedup and a concentration of the estimate
T around the true number of triangles t. We verify the efficiency of our method
in large networks where our method results in three to four orders of magnitude
speedup and excellent accuracy.

The chapter is organized as follows: Section 2.2 presents briefly the exist-
ing work and the theoretical background, Section 2.3 presents our proposed opti-
mal sampling method and Section 2.4 presents the experimental results on several
large graphs. In Section 2.5 we conclude.

2.2 Preliminaries
In this section, we briefly present the existing work on the triangle counting prob-
lem and the necessary theoretical background for our analysis.

2.2.1 Existing work
There exist two general categories of triangle counting algorithms, the exact and
the approximate counting algorithms. It is worth noting that for the applications
described in Section 2.1 the exact number of triangles in not crucial. Thus, ap-
proximate counting algorithms which are faster and output a high quality estimate
are desirable.

Exact Counting The state of the art algorithm is due to Alon, Yuster and Zwick
[13] and runs in O(m

2ω
ω+1 ), where currently the fast matrix multiplication exponent

ω is 2.371 [38]. Thus, the Alon et al. algorithm currently runs in O(m1.41) time.
Algorithms based on matrix multiplication are not used in practice due to the high
memory requirements. Even for medium sized networks, matrix-multiplication
based algorithms are not applicable. In planar graphs, triangles can be found in
O(n) time [77, 119]. Furthermore, in [77] an algorithm which finds a triangle in
any graph in O(m

3
2 ) time is proposed. This algorithm can be extended to list the

triangles in the graph with the same time complexity. Even if listing algorithms
solve a more general problem than the counting one, they are preferred in practice
for large graphs, due to the smaller memory requirements compared to the matrix
multiplication based algorithms. Simple representative algorithms are the node-
and the edge-iterator algorithms. In the former, the algorithm counts for each



node the number of edges among its neighbors, whereas the latter counts for each
edge (i, j) the common neighbors of nodes’ i, j. Both have the same asymptotic
complexity O(mn), which in dense graphs results in O(n3) time, the complexity
of the naive counting algorithm. Practical improvements over this family of algo-
rithms have been achieved using various techniques, such as hashing and sorting
by the degree [133].

Approximate Counting Most of the approximate triangle counting algorithms
have been developed in the streaming setting. In this scenario, the graph is repre-
sented as a stream. Two main representations of a graph as a stream are the edge
stream and the incidence stream. In the former, edges are arriving one at a time.
In the latter scenario all edges incident to the same vertex appear successively in
the stream. The ordering of the vertices is assumed to be arbitrary. A stream-
ing algorithm produces a relative ε approximation of the number of triangles with
high probability, making a constant number of passes over the stream. However,
sampling algorithms developed in the streaming literature can be applied in the
setting where the graph fits in the memory as well.

Monte Carlo sampling techniques have been proposed to give a fast estimate
of the number of triangles. According to such an approach, a.k.a. naive sampling
[133], we choose three nodes at random repetitively and check if they form a
triangle or not. If one makes

r = log(
1

δ
)
1

ε2
(1 +

T0 + T1 + T2

T3

)

independent trials where Ti = #triples with i edges and outputs as the estimate
of triangles the random variable T ′

3 =
(

n
3

)Pr
i=1 Xi

r
then

(1− ε)T3 < T ′
3 < (1 + ε)T3

with probability at least 1 − δ. For graphs that have T3 = o(n2) triangles this
approach is not suitable. This is the typical case, when dealing with real-world
networks.

In [17] the authors reduce the problem of triangle counting efficiently to es-
timating moments for a stream of node triples. Then, they use the Alon-Matias-
Szegedy algorithms [11] (a.k.a. AMS algorithms) to proceed. The key is that
the triangle computation reduces in estimating the zero-th, first and second fre-
quency moments, which can be done efficiently. Again, as in the naive sampling,
the denser the graph the better the approximation. The AMS algorithms are also



used by [79], where simple sampling techniques are used, such as choosing an
edge from the stream at random and checking how many common neighbors its
two endpoints share considering the subsequent edges in the stream. Along the
same lines, [27] proposed two space-bounded sampling algorithms to estimate the
number of triangles. Again, the underlying sampling procedures are simple. E.g.,
for the case of the edge stream representation, they sample randomly an edge and
a node in the stream and check if they form a triangle. Their algorithms are the
state-of-the-art algorithms to the best of our knowledge. The three-pass algorithm
presented therein, counts in the first pass the number of edges, in the second pass
it samples uniformly at random an edge (i, j) and a node k ∈ V − {i, j} and in
the third pass it tests whether the edges (i, k), (k, j) are present in the stream. The
number of draws that have to be done in order to get concentration (these draws
are done in parallel), is of the order

r = log(
1

δ
)
2

ε2
(3 +

T1 + 2T2

T3

)

Even if the term T0 is missing compared to the naive sampling, the graph has
still to be fairly dense with respect to the number of triangles in order to get an ε
approximation with high probability.

In the case of “power-law” networks it was shown in [?] that the spectral
counting of triangles can be efficient due to their special spectral properties and
[151] extended this idea using the randomized algorithm by [51] by proposing
a simple biased node sampling. This algorithm can be viewed as a special case
of a streaming algorithm, since there exist algorithms, e.g., [129], that perform a
constant number of passes over the non-zero elements of the matrix to produce
a good low rank matrix approximation. In [18] the semi-streaming model for
counting triangles is introduced, which allows log n passes over the edges. The
key observation is that since counting triangles reduces to computing the intersec-
tion of two sets, namely the induced neighborhoods of two adjacent nodes, ideas
from locality sensitivity hashing are applicable to the problem.

In [154] an algorithm which tosses a coin independently for each edge with
probability p to keep the edge and probability q = 1 − p to throw it away is
proposed. Then, one counts the number of triangles t′ in G′. The estimate of
the algorithm is the random variable T = t′

p3 . It was shown in [154] that the
estimator T is unbiased, i.e., E [T ] = t. The authors however did not answer a
critical question: how small can p be? In [154] only constant factor speedups were
achieved.



2.2.2 Concentration of Boolean Polynomials
A common task in combinatorics is to show that if Y is a polynomial of indepen-
dent boolean random variables then Y is concentrated around its expected value.
In the following we state the necessary definitions and the main concentration
result we use in our analysis.

Let Y = Y (t1, . . . , tm) be a polynomial of m real variables. The following
definitions are from [145]. Y is totally positive if all of its coefficients are non-
negative variables, regular if all of its coefficients are between zero and one, sim-
plified if all of its monomials are square free and homogeneous if all of its mono-
mials have the same degree. Given any multi-index α = (α1, . . . , αm) ∈ Zm

+ ,
define the partial derivative ∂αY = ( ∂

∂t1
)α1 . . . ( ∂

∂tm
)αmY (t1, . . . , tm) and denote

by |α| = α1 + · · ·αm the order of α. For any order d ≥ 0, define Ed(Y ) =
maxα:|α|=d E(∂αY ) and E≥d(Y ) = maxd′≥d Ed′(Y ).

Typically, when Y is smooth, it is also strongly concentrated. By smoothness
one means that Y has a small Lipschitz constant,i.e., when one changes the value
of one variable tj , the value Y changes no more than a constant. However, as
stated in [160] this is restrictive in many cases. Thus one can demand “average
smoothness” as defined in [160]. For the purposes of this work, consider a random
variable Y = Y (t1, . . . , tm) which is a positive polynomial of m boolean variables
[ti]i=1..m which are independent. Observe that a boolean polynomial is always
regular and simplified.

Now, we refer to the main theorem of Kim and Vu of [86, §1.2] as phrased in
Theorem 1.1 of [160] or as Theorem 1.36 of [145].

Theorem 4 There is a constant ck depending on k such that the following holds.
Let Y (t1, . . . , tm) be a totally positive polynomial of degree k, where ti can have
arbitrary distribution on the interval [0, 1]. Assume that:

E [Y ] ≥ E≥1(Y ) (2.1)

Then for any λ ≥ 1:

P|Y − E [Y ]| ≥ ckλ
k(E [Y ] E≥1(Y ))1/2 ≤ e−λ+(k−1) log m. (2.2)

2.3 Proposed Method

2.3.1 Algorithm



Algorithm 3 Triangle Sparsifier

Require: Set of edges E ⊆
(
[n]
2

)
{Unweighted graph G([n], E)}

Require: Sparsification parameter p
Pick a random subset E ′ of edges such that the events ∈ E′, for all e ∈ E are
independent and the probability of each is equal to p.
t′ ← count triangles on the graph G′([n], E ′)
return T ← t′

p3

Our proposed algorithm Triangle Sparsifier is shown in Algorithm 1 (see also
[154]). The algorithm takes an unweighted, simple graph G(V, E), where without
loss of generality we assume that the nodes are numbered from 1, . . . , n, i.e.,
V = [n] and a sparsification parameter p ∈ (0, 1) as input. The algorithm first
chooses a random subset E ′ of the set E of edges. The random subset is such that
the events

{e ∈ E ′}, for all e ∈ E,

are independent and the probability of each is equal to p.
Then, any triangle counting algorithm can be used to count triangles on the

sparsified graph with edge set E ′. Clearly, the expected size of E ′ is pm where
m = |E|. The output of our algorithm is the number of triangles in the sparsified
graph multiplied by 1

p3 , or equivalently we are counting the number of weighted
triangles in G′ where each edge has weight 1

p
.

How to choose the random set in sublinear expected time We do not “toss
a p-coin” m times in order to construct E ′. This would be very wasteful if p
is small. Instead we construct the random set E ′ with the following procedure
which produces the right distribution. Observe that the number X of unsuccess-
ful events, i.e., edges which are not selected in our sample, until a successful one
follows a geometric distribution. Specifically, PX = x = (1 − p)x−1p. To sam-
ple from this distribution it suffices to generate a uniformly distributed variable
U in [0, 1] and set X ←

⌈
lnU
1−p

⌉
. Clearly the probability that X = x is equal

to P(1− p)x−1 > U ≥ (1− p)x = (1 − p)x−1 − (1 − p)x = (1 − p)x−1p as re-
quired. This provides a practical and efficient way to pick the subset E ′ of edges
in subliner expected time O(pm). For more details see [88].



2.3.2 Analysis
Our main result is the following theorem.

Theorem 5 Suppose G is an undirected graph with n vertices, m edges and t
triangles. Let also ∆ denote the size of the largest collection of triangles with a
common edge. Let G′ be the random graph that arises from G if we keep every
edge with probability p and write T for the number of triangles of G′. Suppose
that γ > 0 is a constant and

pt

∆
≥ log6+γ n, if p2∆ ≥ 1, (2.3)

and
p3t ≥ log6+γ n, if p2∆ < 1. (2.4)

for n ≥ n0 sufficiently large. Then

P|T − E [T ]| ≥ εE [T ] ≤ n−K

for any constants K, ε > 0 and all large enough n (depending on K, ε and n0).

Proof 4 Write Xe = 1 or 0 depending on whether the edge e of graph G survives
in G′. Then T =

∑
∆(e,f,g) XeXfXg where ∆(e, f, g) = 1 (edges e, f, g form a triangle).

Clearly E [T ] = p3t.
Refer to Theorem 4. We use T in place of Y , k = 3.
We have

E
[

∂T

∂Xe

]
=

∑
∆(e,f,g)

E [XfXg] = p2|∆(e)|,

where ∆(e) = to how many triangles edge e participates. We first estimate the
quantities Ej(T ), j = 0, 1, 2, 3, defined before Theorem 4. We get

E1(T ) = p2∆ (2.5)

where ∆ = maxe |∆(e)|.
We also have

E
[

∂2T

∂Xe∂Xf

]
= p1 (∃g : ∆(e, f, g)) ,

hence
E2(T ) ≤ p. (2.6)



Obviously E3(T ) ≤ 1.
Hence

E≥3(T ) ≤ 1, E≥2(T ) ≤ 1,

and
E≥1(T ) ≤ max , , E≥0(T ) ≤ max , , .

• CASE 1 (p2∆ < 1):
We get E≥1(T ) ≤ 1, and, from (2.4), E≥0(T ) = p3t.

• CASE 2 (p2∆ ≥ 1):
We get E≥1(T ) ≤ p2∆, and, from (2.3), E≥0(T ) = p3t.

We get, for some constant c3 > 0, from Theorem 4:

P|T − E [T ]| ≥ c3λ
3(E [T ] E≥1(T ))1/2 ≤ e−λ+2 log n. (2.7)

Notice that in both cases we have E [T ] ≥ E≥1(T ).
We now select λ so that the lower bound inside the probability on the left-hand

side of (2.7) becomes εE [T ]. In Case 1 we pick

λ =
ε1/3

c
1/3
3

(p3t)1/6

while in Case 2

λ =
ε1/3

c
1/3
3

(
pt

∆

)1/6

to get
P|T − E [T ]| ≥ εE [T ] ≤ exp(−λ + 2 log n) (2.8)

Since λ ≥ (K + 2) log n follows from our assumptions (2.3) and (2.4) if n is
sufficiently large, we get P|T − E [T ]| ≥ εE [T ] ≤ n−K , in both cases.

Complexity Analysis The expected running time of edge sampling is sublinear,
i.e., O(pm). The complexity of the counting step depends on which algorithm
we use to count triangles. For instance, if we use [13] as our triangle counting
algorithm, the expected running time of Triangle Sparsifier is O(pm + (pm)

2ω
ω+1 ),

where ω currently is 2.371 [38]. If we use the node-iterator (or any other standard
listing triangle algorithm) the expected running time is O(pm + p2

∑
i d

2
i ). The

expected speedups with respect to the triangle counting task are therefore p−
2ω

ω+1 ,
i.e., currently p−1.41, and p−2 respectively.



2.3.3 Discussion

This theorem states the important result that the estimator of the number of trian-
gles is concentrated around its expected value, which is equal to the actual number
of triangles t in the graph [154] under mild conditions on the triangle density of
the graph. The mildness comes from condition (2.3): picking p = 1, given that
our graph is not triangle-free, i.e., ∆ ≥ 1, gives that the number of triangles t
in the graph has to satisfy t ≥ ∆ log6+γ n. This is a mild condition on t since
∆ ≤ n and thus it suffices that t ≥ n log6+γ n (after all, we can always add two
dummy connected nodes that connect to every other node, as in Figure 1(a), even
if practically -experimentally speaking- ∆ is smaller than n). The critical quantity
besides the number of triangles t, is ∆. Intuitively, if the sparsification procedure
throws away the common edge of many triangles, the triangles in the resulting
graph may differ significantly from the original.

A significant problem is the choice of p for the sparsification. Conditions
(2.3) and (2.4) tell us how small we can afford to choose p, but the quantities
involved, namely t and ∆, are unknown. One way around this obstacle would
be to first estimate the order of magnitude of t and ∆ and then choose p a little
suboptimally. It may be possible to do this by running the algorithm a small
number of times and deduce concentration if the results are close to each other. If
they differ significantly then we sparsify less, say we double p, and so on, until
we observe stability in our results. This would increase the running time by a
small logarithmic factor at most. As we will describe in Section 2.4, in practice
the doubling p idea, works well.

From the theoretical point of view, this ambiguity of how to choose p to be
certain of concentration in our sparsification preprocessing does not however ren-
der our result useless. Under very general assumptions on the nature of the graph
one should be able to get a decent value of p. For instance, if we know t ≥ n3/2+ε

and ∆ ∼ n , we get p = n−1/2. This will result in a linear O(n) expected speedup,
as already mentioned in section 2.2.

2.4 Experiments

In order to show the efficiency of our method, we perform a set of experiments
on several large networks. In this section we describe first the experimental setup,
and then we present the experimental results.



2.4.1 Experimental Setup
Table 2.1 provides a description of the networks we used in our experiments after
the preprocessing (all graphs were first made undirected and all self-loops were
removed). We implemented the node iterator algorithm which was described in
Section 2.2. The code is written in JAVA and in Hadoop, the open source version
of MapReduce. We used two machines to run our experiments. The experiments
for the three smallest graphs (Wikipedia 2005/9, Flickr, Youtube) were executed
in a 2GB RAM, Intel(R) Core(TM)2 Duo CPU at 2.4GHz Ubuntu Linux machine.
For the three larger graphs (WB-EDU, Wikipedia 2006, Wikipedia 2005), we used
the M45 supercomputer, one of the fifty most powerful supercomputers in the
world.

Name Nodes Edges Description
WB-EDU 9,845,725 46,236,105 Web Graph

(page to page)
Wikipedia 3,566,907 42,375,912 Web Graph
2007/2 (page to page)
Wikipedia 2,983,494 35,048,116 Web Graph
2006/6 (page to page)
Wikipedia 1,634,989 18,540,603 Web Graph
2005/9 (page to page)
Flickr 404,733 2,110,078 Person

to Person
Youtube[110] 1,157,822 4,945,382 Person

to Person

Table 2.1: Description of datasets

2.4.2 Experimental Results
Given that the order of magnitute of the number of nodes n in the majority of
our graphs is 6 we begin with a sparsification value p = 0.005 which is of the
order 1/

√
n. We keep doubling the sparsification parameter until we deduce con-

centration and stop. Table 2.2 summarizes the results. In more detail, each row
corresponds to the p∗ value, that we first deduced concentration using the dou-
bling procedure for each of the datasets we used (column 1). Ideally we would



(a) (b)

Figure 2.1: (a) Linear number of triangles. (b) Weighted graphs.

like to find p∗I , the minimum p value for which we observe concentration, but we
settle with a p∗ value which is at most 2 times more than p∗I . The third column of
table 2.2 describes the quality of the estimator. Particularly, it contains values of
the ratio T

t
averaged over six experiments. The next column contains the running

time of the sparsification code, i.e., how much time it takes to make one pass over
the edge file1 and generate a second edge file containing the edges of the sparsi-
fied graph. The fourth column ×faster 1 contains the speedup of the node iterator
vs. itself when applied to the original graph and to the sparsified graph, i.e., the
sample. The last column, ×faster 2, contains the speedup of the whole procedure
we suggest, i.e., the doubling procedure, counting and repeat until concentration
deduction, vs. running node iterator on the original graph.

Few observations concerning the experimental results are the following: a)
The concentration we obtain is strong for small values of p, which implies directly
large speedups. b) The speedups typically are close to the expected ones, i.e., 1

p2

for the experiments that we conducted in whole in the Ubuntu machine. For the
three experiments that were conducted in M45, the speedups were larger than the
expected ones due to the parallel overhead (network communication, time for the
JVM (Java Virtual Machine) to load in M45 etc.) c) Even if the “doubling-and-
checking for concentration” procedure may have to be repeated several times the
sparsification algorithm is still of significant practical value, something witnessed
by the last column of the table. d) The overall speedups shown in the last column
can easily be increased if one is willing to deduce concentration with less experi-
ments. e) Finally, when concentration is deducted, the average of the concentrated
estimates is a reasonable estimator of high accuracy.

1A file containing the edges of the graph. Each line is of the form (i,j) representing a single
edge.



Mean Sparsify ×faster ×faster
G p∗ acc. (secs) 1 2
WB-EDU 0.005 95.8 8 70090 370.4
Wiki-2007 0.01 97.7 17 21000 332
Wiki-2006 0.02 94.9 14 4000 190.47
Wiki-2005 0.02 96.8 8.6 2812 172.1
Flickr 0.01 94.7 1.2 12799 45
Youtube 0.02 95.7 2.3 2769 56

Table 2.2: Experimental results. Observe how small can p be (second column),
resulting in huge savings during the triangle counting time. The “doubling-and-
checking” procedure to deduce concentration that one would employ in practice
gives important speedups (fifth column) and high accuracy (third column) at the
same time (last column). The drop-off in the total speedup is dominated by the
sparsification time rather than the triangle counting time.

2.5 Conclusions & Future Work
In this paper we present a randomized algorithm which generates for graphs with
sufficiently many triangles a high-quality triangle sparsifier graph. The theoretical
speedups are significant, e.g., O(n) for graphs with t ≥ n

3
2
+ε, a fact which is also

validated on several large networks.
One may ask how the algorithm performs in graphs where the number of tri-

angles is linear, i.e., O(n). Consider the graph of Figure 1(a). If the coin decides
that edge (1, 2) should be removed then our estimator is 0, making the sparsifi-
cation procedure unsuitable for such graphs. Consider now the case of weighted
graphs, where our algorithm can naturally be extended by changing the weight
w of a “survivor”-edge to w/p. Figure 1(b) shows a weighted graph, where for
w large enough, the removal of one of the weighted edges will introduce a large
error in our estimate. Both cases require a sophisticated sampling procedure (e.g.,
[138, 21]), and are topics of future work.



Chapter 3

Counting Triangles in Real-World
Networks using Projections

3.1 Introduction

Finding patterns in large scale graphs, with millions and billions of edges is at-
tracting increasing interest with numerous applications in computer network se-
curity (e.g., intrusion detection, spamming), in web applications (e.g., community
detection, blog analysis), in social networks such as Facebook and LinkedIn (e.g.,
for link prediction) and many more. One of the operations of interest in such a
setting is the estimation of the clustering coefficients and the transitivity ratio of
the graph, which effectively translates in computing the number of triangles that
each node participates in or the total number of triangles in the graph respectively.
Furthermore, triangles are a frequently used network statistic in the exponential
random graph model and naturally appear in models of real-world network evo-
lution [101]. Furthermore, triangles have been used in several applications such
as spam detection [18], uncovering the hidden thematic structure of the web [55]
and for link recommendation in online social networks [153]. It is worth noting
that in social networks triangles have a natural interpretation: friends of friends
are frequently friends themselves [164].

However, triangle counting is computationally expensive. In this chapter, we
propose the EIGENTRIANGLE and EIGENTRIANGLELOCAL algorithms to com-
pute the total number of triangles and the number of triangles that each node
participates in respectively, in an undirected graph. Our algorithms work for any
type of graph but they are effective when the graph possesses certain spectral

39



properties. Real-world networks empirically exhibit such properties, making our
algorithms a viable option for counting triangles therein. We verify this claim
experimentally, by performing 160 experiments on different types of real-world
networks (Web Graphs, social, co-authorship, information and Internet networks).
We observe significant speedups, i.e., between 34× to 1075× faster performance,
for accuracy at least 95% compared to a straight-forward counting algorithm.

We use Lanczos method to compute the low rank eigendecomposition, and we
explain how the spectral properties of real-world networks allow Lanczos to con-
verge fast. Viewing the adjacency representation of the graph as a set of n points
in the n-dimensional Euclidean space Rn and observing that EIGENTRIANGLE

performs an optimal (in the least squares sense) projection on a k-dimensional
hyperplane, we show that at the cost of some accuracy fast SVD algorithms can
be used instead to estimate the number of triangles. Finally we give two new laws
related to triangles and a theorem providing a closed formula for the number of
triangles in Kronecker graphs [101], a model for generating graphs which mimic
properties of real-world networks.

The rest of the chapter is organized as follows: Section 3.2, presents briefly
existing triangle-counting methods and the Singular value Decomposition. In
Section 3.3 we present the EIGENTRIANGLE and EIGENTRIANGLELOCAL al-
gorithms, for global and local triangle counting respectively and we explain why
they are efficient. Section 3.4 presents the experimental results on several real
data sets. In Section 3.5 we present a simple sampling algorithm which allows us
to improve further the underlying idea of the EIGENTRIANGLE and several other
theoretical ramifications. We conclude in Section 3.6.

3.2 Related work
In this section we briefly present previous work related to the triangle counting
problem and basic background knowledge on the Singular Value Decomposition.

3.2.1 Counting Triangles
Let G(V, E), n=|V |, m=|E| be an undirected, unweighted, simple graph. A trian-
gle is a set of three fully connected nodes. In this section we briefly review the
state-of-the-art work related to the problems of global and local triangle count-
ing. By global we refer to the problem of counting the total number of triangles
in G and by local to the problem of counting the number of triangles per each



node. Two other problems related to triangles are (i) deciding whether G contains
a triangle or not and (ii) for each triangle in G, list the participating nodes.

Exact Counting: The brute force approach enumerates all possible triples of
nodes resulting in a naive algorithm of O(n3) time complexity. Using this naive
algorithm we can list exactly the triangles in G. Other listing methods include
the Node Iterator and the Edge Iterator. The Node Iterator considers each one of
the n nodes and examines which pairs of its neighbors are connected. The Edge
Iterator algorithm computes for each edge the number of triangles that contain
it. Asymptotically, both methods have the same time complexity O(

∑
v∈V d2

v)
[147], which in the case of a dense graph are eventually O(n3). For sparse graphs,
these methods are significant improvements over the naive algorithm. In [147]
the forward algorithm is proposed, which is an improvement of the Edge Itera-
tor algorithm, with running time Θ(m

3
2 ). In [98], a further improvement of the

forward algorithm is proposed, called the compact-forward algorithm.
The algorithms with the lowest time complexity for counting triangles rely on

fast matrix multiplication. The asymptotically fastest matrix multiplication algo-
rithm to date is O(n2.376) [38]. In [13] an algorithm of O(m

2ω
ω+1 ) ⊂ O(m1.41) time

complexity and of Θ(n2) space complexity is proposed to find and count triangles
in a graph. In practice, listing methods [147] are preferred against matrix-based
methods because of the prohibitive memory requirements of the latter.

Approximate Counting: In many applications such as the ones mentioned in
Section 3.1 the exact number of triangles is not crucial. Thus approximating algo-
rithms which are faster and output a high quality estimate are desirable. Most of
the approximate triangle counting algorithms have been developed in the stream-
ing setting. In this scenario, the graph is represented as a stream. Two main rep-
resentations of a graph as a stream are the edge stream and the incidence stream.
In the former, edges are arriving one at a time. In the latter scenario all edges
incident to the same vertex appear successively in the stream. The ordering of
the vertices is assumed to be arbitrary. A streaming algorithm produces a relative
ε-approximation of the number of triangles with high probability, making a con-
stant number of passes over the stream. However, sampling algorithms developed
in the streaming literature can be applied in the setting where the graph fits in the
memory as well.

Monte Carlo sampling techniques have been proposed to give a fast estimate
of the number of triangles. According to such an approach, a.k.a. naive sampling,



we choose three nodes at random repetitively and check if they form a triangle or
not. If one makes

r = log(
1

δ
)
1

ε2
(1 +

T0 + T1 + T2

T3

)

independent trials where Ti = #triples with i edges and outputs as the estimate
of triangles the random variable T ′

3 =
(

n
3

)Pr
i=1 Xi

r
then

(1− ε)T3 < T ′
3 < (1 + ε)T3

with probability at least 1 − δ. For graphs that have T3 = o(n2) triangles this
approach is not suitable. This is the typical case, when dealing with real-world
networks. This sampling approach is presented in [133].

In the seminal paper [17] the authors reduce the problem of triangle count-
ing efficiently to estimating moments for a stream of node triples. Then they use
the Alon-Matias-Szegedy algorithms [11] (a.k.a. AMS algorithms) to proceed.
Along the same lines, Buriol et al. in [27] proposed two space-bounded sampling
algorithms to estimate the number of triangles. Again, the underlying sampling
procedures are simple. E.g., for the case of the edge stream representation, they
sample randomly an edge and a node in the stream and check if they form a trian-
gle. Their algorithms are the state-of-the-art algorithms to our knowledge. In their
three-pass algorithm, in the first pass they count the number of edges, in the second
pass they sample uniformly at random an edge (i, j) and a node k ∈ V − {i, j}
and in the third pass they test whether the edges (i, k), (k, j) are present in the
stream. The number of draws that have to be done in order to get concentration
(of course these draws are done in parallel), is of the order

r = log(
1

δ
)
2

ε2
(3 +

T1 + 2T2

T3

)

Even if the term T0 is missing compared to the naive sampling, the graph still has
to be fairly dense with respect to the number of triangles in order to get an ε ap-
proximation with high probability. In [18] the semi-streaming model for counting
triangles is introduced. The authors observed that since counting triangles reduces
to computing the intersection of two sets, namely the induced neighborhoods of
two adjacent nodes, ideas from the locality sensitivity hashing [62] are applica-
ble to the problem of counting triangles. They relax the constraint of a constant
number of passes over the edges, by allowing log n passes.

Doulion [154] proposed a new sampling procedure which is used in the Peta-
Scale graph mining project. The approach of Doulion is the combinatorial per-
spective of the sparsification procedure proposed by [7] and by [150] in the mul-
tilinear setting, which has been used to speed up spectral counting approach of



[148] in [152]. The algorithm tosses a coin independently for each edge with
probability p to keep the edge and probability q = 1 − p to throw it away. In
case the edge “survives”, it gets reweighed with weight equal to 1

p
. Then, any

triangle counting algorithm, such as the node- or edge- iterator, is used to count
the number of triangles t′ in G′. The estimate of the algorithm is the random vari-
able T = t′

p3 . The following facts -among others- were shown in [154]:a) The
estimator T is unbiased, i.e., E[T ] = t and the expected speedup when a simple
exact counting algorithm as the node iterator is used, is 1/p2. The authors how-
ever did not answer the critical question, of how small can p be? Therefore [154]
provides constant factor speedups leaving the question as a research topic. The
answer concerning p was given recently in [155].

3.2.2 Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD) [139] is a powerful matrix decompo-
sition frequently used for dimensionality reduction. SVD is widely used in prob-
lems involving least squares problems, linear systems and finding a low rank rep-
resentation of a matrix. Furthermore, a wide range of applications uses SVD as its
main algorithmic tool. Notable applications of the SVD are the HITS algorithm
[87], Latent Semantic Indexing [118], and image compression [78].

The SVD theorem states that any matrix A ∈ Rm×n can be written as a sum
of rank one matrices, i.e., A =

∑r
i=1 σiuiv

T
i , where ui, i = 1 . . . r (left singular

vectors) and vi, i = 1 . . . r (right singular vectors) are orthonormal and the singu-
lar values are ordered in decreasing order σ1 ≥ . . . ≥ σr > 0. Here r is the rank
of A. We denote with Ak the k-rank approximation of A, i.e., Ak =

∑k
i=1 σiuiv

T
i .

Among all matrices C ∈ Rm×n of rank at most k, Ak is the one that minimizes
||A− C||F .

An exhaustive listing of the work related to the SVD is impossible. We report
here briefly the main result of [51], since it is related to our work. Therein, a
fast randomized algorithm is presented to approximate the SVD of a given matrix
A. Specifically, the authors approximate the left singular vectors and the sin-
gular values of the SVD using an appropriately sampled set of columns of the
matrix. Similarly, the right singular vectors can be approximated via a row sam-
pling procedure. The probability of choosing a specific column A(i) is equal to
pi = ||A(i)||2

||A||2F
. They prove that their k-rank approximation Âk satisfies the follow-

ing form of inequality with probability at least 1-δ when the sampling procedure
picks c columns of A: ||A − Âk||2F ≤ ||A − Ak||2F + f(δ, k, c)||A||2F , where f(·)



Sym. Definition
G Undirected graph (no self-edges)
dmax maximum node degree
∆ total number of triangles
∆′ EIGENTRIANGLE’s estimation of ∆
∆(G) = [∆i]i=1..n ∆i number of triangles

node i participates
∆′(G) = [∆′

i]i=1..n ∆′
i EIGENTRIANGLELOCAL’s

estimation of ∆i

m, n Number of edges and nodes.
[n] = (1..n) Node ids
A Adjacency matrix
A(i) i-th column of A
λi top-i-th eigenvalue (absolute value)
ui top-i-th eigenvector corresponding

to eigenvalue λi

Λk = [λi]i=1..k vector containing k top eigenvalues
Uk = [u1| . . . |uk] matrix containing the k top

eigenvectors as its columns
ui,j the i-th entry of the j-th eigenvector

Table 3.1: Definitions of symbols used.

is a function of the three parameters k, c, δ as described in [51].

3.3 Proposed Method
In this section we present the proposed algorithms for the triangle counting prob-
lem and explain why they are efficient when applied to a real-world network.
Table 3.1 gives a list of symbols and their definitions.

3.3.1 Theorems and proofs
The following theorem connects the number of triangles in which node i partici-
pates with the eigenvalues and eigenvectors of the adjacency matrix.



Theorem 6 Let G be an undirected, simple graph and A is adjacency matrix
representation. The number of triangles ∆i that node i participates in satisfies the
following equation:

∆i =

∑
j λ3

ju
2
i,j

2
(3.1)

where ui,j is the i-th entry of the j-th eigenvector and λj is the j-th eigenvalue of
the adjacency matrix.

Proof 5 Since G is undirected, A is a real, symmetric matrix. Thus, by the spec-
tral theorem we can diagonalize A using its eigenvalues and eigenvectors. There-
fore A = UΛUT , where Λ is a diagonal matrix containing the eigenvalues of
A and U = [u1| . . . |un] is the orthonormal matrix containing in its i-th column
the eigenvector ui corresponding to the i-th eigenvalue λi, i = 1, . . . , n. By the
orthonormality of U , it follows that A3 = UΛ3UT (�).

Consider now αii the i-th diagonal element of A3. αii is equal to twice (each
triangle ijk is counted twice as i→ j→ k→ i and i→ k→ j→ i ) the number
of closed walks of length three, i.e., the number of triangles in which node i par-
ticipates. From equation (�) follows that αii =

∑
j λ3

ju
2
i,j . Combining these two

facts we obtain for equation 3.1.

The following lemma holds, see [67, 148]:

Lemma 1 The total number of triangles ∆(G) in the graph is given by the sum
of the cubes of the eigenvalues of the adjacency matrix divided by six, i.e.,:

∆(G) =
1

6

n∑
i=1

λ3
i (3.2)

3.3.2 Proposed algorithms
We propose algorithms 1 and 2, the EIGENTRIANGLE and EIGENTRIANGLE-

LOCAL algorithms respectively. The former is based on Lemma 3.2, whereas the
latter on Theorem 3.1. Both take as input the n × n adjacency matrix A and a
tolerance parameter tol. EIGENTRIANGLE keeps computing eigenvalues until the
contribution of the cube of the current eigenvalue is considered to be significantly
smaller than the sum of the cubes of the previously computed eigenvalues. The
tolerance parameter determines when the algorithm will stop looping, i.e., when
we consider that the currently computed eigenvalue contributes little to the to-
tal number of triangles. The idea behind them is that due to the special spectral



Algorithm 4 The EIGENTRIANGLE algorithm
Require: Adjacency matrix A (n× n)
Require: Tolerance tol
Output: ∆′(G) global triangle estimation

λ1← LanczosMethod(A, 1)
Λ← [λ1]
i← 1 {initialize i, Λ}
repeat

i← i + 1
λi← LanczosMethod(A, i)
Λ← [Λ λi]

until 0 ≤ |λ3
i |Pi

j=1 λ3
j

≤ tol

∆′(G)← 1
6

∑i
j=1 λ3

j

return ∆′(G)

properties of real-world networks few iterations suffice to output a good approxi-
mation.

Specifically, EIGENTRIANGLE starts by computing the first eigenvalue λ1.
It then computes the second eigenvalue λ2, and checks using the condition in
the repeat loop if λ2 contributes significantly or not to the current estimate of
triangles, i.e.,

∑2
j=1 λ3

j . In the former case, the algorithm keeps iterating and
computing eigenvalues until the stopping criterion is satisfied. Then, it outputs
the estimate of the total number of triangles ∆′(G) using the computed eigen-
values and equation 3.2. EIGENTRIANGLELOCAL additionally stores the eigen-
vectors corresponding to the top eigenvalues in order to make an estimate of ∆i

using equation 3.1. The repeat loop as in EIGENTRIANGLE computes eigenvalue-
eigenvector pairs until the stopping criterion is met and the for loop computes the
estimates ∆′

i of ∆i, i = 1, . . . , n.
Both algorithms use the subroutine LanczosMethod [78] as a black box1

to compute a low-rank eigendecomposition of the adjacency matrix. Lanczos
method is a well studied projection based method for solving the symmetric eigen-
value problem using Krylov subspaces. It is based on simple matrix-vector mul-
tiplications. Furthermore, high quality software implementing Lanczos method
is publicly available (ARPACK, Parallel ARPACK, MATLAB etc.). It is worth

1For simplifying the presentation, depending on the number of output arguments, Lanczos
returns either λi only or ui too. The required time is (almost) the same in both cases.



Algorithm 5 The EIGENTRIANGLELOCAL algorithm
Require: Adjacency matrix A (n× n)
Require: Tolerance tol
Output: ∆′(G) per node triangle estimation
〈λ1, u1〉 ← LanczosMethod(A, 1)
Λ← [λ1]
U← [u1]
i← 1
{initialize i, Λ,U}
repeat

i← i + 1
〈λi, ui〉 ← LanczosMethod(A, i)
Λ← [Λ λi]
U← [U ui]

until 0 ≤ |λ3
i |Pi

j=1 λ3
j

≤ tol

for j = 1 to n do
∆′

j =
Pi

k=1 u2
jkλ3

k

2

end for
∆′(G)← [∆′

1, .., ∆
′
n]

return ∆′(G)

noting how easy it is to implement our algorithm in a programming language that
offers routines for eigenvalue computation. For example, assuming that a k-rank
approximation of the adjacency matrix gives good results, the piece of MATLAB
code described in algorithm 3 will output an accurate estimate of the number of
triangles. This function takes two input arguments, A and k which are the ad-
jacency matrix representation of the graph and the desired rank of the low rank
approximation respectively.

3.3.3 Why is EIGENTRIANGLE successful?

Real-world networks have several special properties, such as small-worldness,
scale-freeness and self-similarity characteristics. For our work, the special spec-
tral properties are crucial. Figure 1(a) and Figure 1(b) show the spectra of two
real-world networks. Both are representative of the typical spectrum of a real-
world network. These figures plot the value of the eigenvalue vs. its rank. The



Algorithm 6 MATLAB implementation, k-rank approximation
function ∆′ = EigenTriangleLocal(A,k) {A is the adjacency matrix, k is the
required rank approximation}
n = size(A,1);
∆′ = zeros(n,1); {Preallocate space for ∆′}
opts.isreal=1; opts.issym=1; {Specify that the matrix is real and symmetric}
[u l] = eigs(A,k,’LM’,opts); {Compute top k eigenvalues and eigenvectors of
A}
l = diag(l)’;
for j=1:n do

∆′(j) = sum( l.ˆ3.*u(j,:).ˆ2)/2
end for

spectrum of Figure 1(a) corresponds to the Political Blogs network [?], a small
network with approximately 1,2K nodes and 17K edges. The spectrum of Figure
1(b) corresponds to an anonymous social network with approximately 404K nodes
and 2,1M edges. Notice that in the latter network, only the 800 top eigenvalues
out of the approximately 404K eigenvalues are plotted.

The following two facts which are apparent in the two figures, play a crucial
role in the effectiveness of our proposed algorithms:

1. The absolute values of the few top eigenvalues are skewed, typically fol-
lowing a power law [58]2,[109],[36].

2. Moreover, the signs of the eigenvalues tend to alternate [59] and thus their
cubes roughly cancel out.

In other words, the contribution of the bulk of the eigenvalues is negligible
compared to the contribution of the few top eigenvalues to the total number of
triangles. This fact allows us to discard the largest part of the spectrum. There-
fore we can keep just a handful of eigenvalues and approximate fast and well the
number of triangles. Experimentally 1 to 25 eigenvalues, see Figure2(a), lead to
a satisfactory approximation. The time complexity of our proposed algorithms is
O(cnnz) where nnz is the number of non zeros in the adjacency matrix, i.e., twice
the number of edges, and c is the total number of matrix vector multiplications

2Even if the least squares fitting used in [58] has been questioned as a methodology of fitting
power laws and better methodologies have been developed [37], the key property is the skewness
observed in the values of the top eigenvalues rather than the exact distribution that they follow.



(a) Political Blogs

(b) Anonymous Social Network

Figure 3.1: Spectra of two real-world networks, representative of the typical
spectrum of networks with skewed degree distributions. Both figures (a) and (b)
plot the value λi versus the rank i. Political blogs is a small network with ≈17K
edges and ≈1,2K nodes. The Anonymous Social Network has ≈404K nodes and
≈2,1M edges. Figure (b) plots only the 800 top eigenvalues. Notice that (1) the
first few eigenvalues are significantly larger than the rest, (2) which are almost
symmetric around zero and (3) cubing amplifies these effects.



Lanczos method performs. As we explain in the next subsection, the computation
of a handful of the top eigenvalues results in a small number of iterations c and
therefore the performance of our methods is fast.

3.3.4 Lanczos method and Real-World Networks

First we give a brief description of Lanczos method for computing the eigenvalues
of a symmetric matrix and then we explain why it converges fast in the case of
real-world networks.

Short Description of Lanczos Method: Consider a symmetric n × n matrix
A whose eigenvalues and eigenvectors are sought and let u ∈ Rn be a given
unit vector. Lanczos method is based on the subspace spanned by the vectors
u, Au, . . . , Ak−1u, also known as the Krylov subspace. Let K be the n× k matrix
K = [u|Au| . . . |Ak−1u]. For k ≤ m ≤ n, where m is the order of the minimal
polynomial of u with respect to A, matrix K has full column rank. However, since
the successive multiplications of matrix A lead the terms Aju for large j to being
almost equal to the first eigenvector, it is necessary to get a numerically better base
for this subspace. Using the Gram-Schmidt orthogonalization procedure we pro-
duce an orthonormal sequence of vectors u = q1, . . . , qk such that the following
three term recurrence equation holds:

Aqj = bj−1qj−1 + ajqj + bjqj+1 (3.3)

The coefficients aj, bj can be found by using the orthogonality properties of
the qj vectors. Let Q be the matrix Q = [q1| . . . |qk]. The matrix QT AQ is a
small k × k, tridiagonal matrix (containing the coefficients a1, . . . , ak in its main
diagonal, and the coefficients b1, . . . , bk−1 in the first diagonal above and below
the main one) whose eigenvalues typically approximate well the top k eigenvalues
of A. It is also worth noting that Lanczos method performs only matrix-vector
multiplications making it a good option for a low rank approximation of a sparse
matrix A. For more details see [78].

Convergence of Lanczos method: As we know, the eigenvalues of matrix A
are the roots of its characteristic polynomial. The latter is also known as the
secular function. When the roots of the secular function are very close, Lanczos
needs several iterations to find them. Even if there exist sophisticated methods



for finding the roots of the secular function, they run into similar problems with
Newton’s method when the two roots we are trying to find are very close.

Since real-world networks tend to have skewed degree distributions which im-
ply a skewed eigenvalue distribution too, Lanczos converges fast to the top eigen-
values because they correspond to roots of the secular function which are well
separated. Therefore, assuming that the top eigenvalues provide us a satisfactory
approximation to the total number of triangles implies that we can find fast a good
estimate of the total number of triangles.

3.4 Experimental Results

We conduct numerous experiments in order to answer the following question:
for at least 95% accuracy what are the speedups we can achieve for the triangle
counting problem using EIGENTRIANGLE? First, we describe the experimental
setup, and then we provide the experimental results.

3.4.1 Experimental set up

Each directed graph was converted into an undirected graph by ignoring the di-
rection of the edges. Multiple edges and self-loops were removed. The number
of nodes and edges of the networks used after the preprocessing are summarized
in table 3.2. 3 As the competitor for our method we chose the Node Iterator (see
section 3.2), a basic, non-trivial exact listing algorithm which allows us to directly
evaluate the quality of EIGENTRIANGLE and EIGENTRIANGLELOCALby com-
paring the outputs. We ran the experiments in a machine with a quad-processor
Intel Xeon 3GHz with 16GB of RAM. We express the experimental results as
the ratio of the clock-work times of the Node Iterator to the EIGENTRIANGLE

(speedup). All algorithms were implemented in MATLAB. For the eigenvalue
computation, we used the command eigs to which we passed a struct opts, speci-
fying that our matrices are symmetric and real, as shown in Algorithm 3.

3 Most of the datasets we used are publicly available. Indicative sources are : http:
//arxiv.org, http://www.cise.ufl.edu/research/sparse/mat/, http://
www-personal.umich.edu/˜mejn/netdata/

http://arxiv.org
http://arxiv.org
http://www.cise.ufl.edu/research/sparse/mat/
http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/


Nodes Edges Description
Social Networks

75,877 405,740 Epinions network
404,733 2,110,078 Anonymous So-

cial Network (ASN)
Co-authorship networks

27,240 341,923 Arxiv Hep-Th
Information networks

1,222 16,714 Political blogs
13,332 148,038 Reuters news,

Sept 9-11,2001.
Web graphs
2,983,494 35,048,116 Wikipedia 2006-Sep-25
3,148,440 37,043,458 Wikipedia 2006-Nov-04
Internet networks

13,579 37,448 AS Oregon
23,389 47,448 CAIDA AS 2004 to 2008

(means over 151 timestamps)

Table 3.2: Summary of real-world networks used.



(a) #Eigenvalues vs. Speedup

(b) Edges vs. Speedup

Figure 3.2: Scatterplots of the results for 158 graphs. (a) Speedup vs. Eigenval-
ues: The mean required approximation rank for≥ 95% accuracy is 6.2. Speedups
are between 33.7x and 1159x, with mean 250.(b) Speedup vs. Edges: Notice the
trend of increasing speedup as the network size grows (#edges).



Figure 3.3: Zooming in the point enclosed by a rectange of figure 3.2(a). This
figure plots the accuracy obtained versus the speed-up ratio for the Wikipedia web
graph (≈ 3, 1M nodes, ≈ 37M edges ). Proposed method achieves 1021x faster
time, for 97.4% accuracy, compared to a typical competitor, the Node Iterator
method.



Figure 3.4: Scatterplot of ∆′
i (estimated #triangles of node i) vs. ∆i (actual

number) for Polblogs using a rank 10 approximation. Relative reconstruction error
is 7 ∗ 10−4 and the Pearson’s correlation coefficient is 99.97%.



Figure 3.5: Local triangle reconstruction for three real-world networks using rank
1 to 10 approximation of the diagonal of A3. Pearson’s correlation coefficient ρ
vs. approximation rank.Notice that after rank 2 ρ is greater than 99.9% for all
three networks.



3.4.2 Total Triangle Counting
Figures 3.2(a), 3.2(b) summarize the results of the EIGENTRIANGLE algorithm
when applied to 158 real world networks. Specifically, Figure 3.2(a) plots the
achieved speedup versus the number of eigenvalues required to get at least 95%
accuracy. Figure 3.2(b) plots the speedup versus the number of edges in the graph.
The following facts are worth noting:

1. The mean number of eigenvalues required to achieve more than 95% is 6.2
with standard deviation equal to 3.2. The mean speedup is 250× with the
standard deviation equal to 123. The maximum speedup is 1159× whereas
the minimum speedup is 33.7×.

2. The speedup appears to increase as the size of the network grows. A pos-
sible explanation for this, assuming that our degree distribution follows ap-
proximately a power law, could be that as the network grows, the maximum
degrees are getting more detached from the rest. According to [109], the
top eigenvalues exhibit the same behavior, i.e., get more detached from the
bulk. Therefore, with a handful of eigenvalues, we get high accuracy, since
their cubes dominate the total sum of the cubes of the eigenvalues. Further-
more, due to the fast convergence of Lanczos method, EIGENTRIANGLE

ouputs fast its estimate.

An exception to the observation above is the performance of our method
on the Epinions graph. EIGENTRIANGLE needs to compute more than 20
eigenvalues to ouput a high quality estimate, due to the specific spectrum of
this graph. This fact has as a consequence the smallest speedup observed
(33.7×) which is still significant.

3. An important issue in EIGENTRIANGLE and EIGENTRIANGLELOCAL is
the choice of the tolerance parameter tol. Clearly, if the parameter is set
to ε → 0, both algorithms will have to compute many eigenvalues slowing
down significantly their performance. An extremely small value for the
parameter tol is likely to turn the proposed algorithms into slower than other
exact counting algorithms, since computing the whole spectrum of a square
n × n matrix has time complexity O(n3) with potential convergence and
numerical problems. On the other hand, if the tolerance parameter is set to
a high value, then the accuracy of the estimate can be unsatisfactory. It is
not clear how to decide the tol parameter a priori. However, this does not
render EIGENTRIANGLE useless. A useful “rule of thumb” for practitioners



based on Figure 3.2(a) is to compute 5-15 eigenvalues and see how well
does the sum Si of the cubes of the eigenvalues from 1 to i compare to
Si+1. This is essentially the same criterion with the stopping criterion of the
algorithms we propose. However, using this “rule of thumb” is a practical
way of running the algorithms without depending on the parameter tol.If
one wants to run the algorithm as is, a choice of tol that was satisfactory in
many experiments was 0.05.

4. Figure 3.3 is zooming in the point enclosed with a rectangle of Figure 3.2(a).
This point corresponds to the Wikipedia Web graph (4 Nov. 2006 with
approximately 3,1M nodes, and 37M edges). We observe that with a single
eigenvalue we get 92.8% accuracy and 1329× speedup. When the algorithm
terminates, the accuracy is 97.4%, the speedup 1021× and the rank of the
required approximation equal to 7.

3.4.3 Local Triangle Counting

To measure the performance of the EIGENTRIANGLELOCAL algorithm, we use
Pearson’s correlation coefficient ρ and the relative reconstruction error, as in [18].

RRE =
1

n

n∑
i=1

|∆i −∆′
i|

∆i

(3.4)

In figure 3.4 we see how well ∆′(G), i.e., the vector which contains in its i-th
coordinate our estimate of the number of triangles in which node i participates in,
approximates ∆(G) using the top 10 eigenvalues and eigenvectors for the Political
blogs dataset. The RRE we obtain is 7 ∗ 10−4 and ρ is equal to 0.9997, close to
the ideal value 1. Figure 3.5 explains why our proposed methods work well in
practice. It plots ρ versus the rank of the approximation. We observe that after the
two rank approximation, for all three networks the approximation is excellent: ρ is
greater than 99.9% whereas the RRE has always order of magnitude between 10−7

and 10−4. Similar results hold for the rest of the datasets we experimented with.
Finally, it is worth noting that figure 3.5 suggests that the rank-10 approximation
of the adjacency matrix used to produce Figure 3.4 is significantly larger than the
minimum one needed to obtain satisfactory results.



3.5 Theoretical Ramifications

In this section we extend our theoretical results in the following three ways. First,
we show a simple sampling procedure allows us to apply the core idea of EIGEN-
TRIANGLE on large graphs which do not fit into the main memory. The resulting
algorithm is the FastSVD and is based on the seminal work of [51]. Secondly,
using the spectral counting idea, we prove a theorem which provides a closed for-
mula for the number of triangles in Kronecker graphs. Finally, we discuss about
cases where the EIGENTRIANGLE algorithm still works, even if the graph is not
a “real-world” network.

3.5.1 Counting Triangles via Fast SVD

We consider the following simple randomized procedure to speedup further the
performance of our proposed algorithms: Given our n × n adjacency matrix A,
integers c, k such that c ≤ n, k ≤ c, we sample c integers from 1 to n, with the
probability of choosing integer i equal to Pr(i) = pi = di

2m
, where di is the de-

gree of node i and m is the total number of edges in the graph. Let {i1, . . . , ic}
be the indices sampled. We create a n × c matrix A′ = [ A(i1)

√
cpi1
| A(i2)
√

cpi2
| . . . | A(ic)

√
cpic

].
We use A′ to approximate the k top eigenvalues and eigenvectors of A, where k
is assumed to be the required rank of the approximation of the adjacency matrix
which gives us a good estimate of the number of triangles in the graph. The top
k left singular vectors û

(i)
i=1...k of A′ define a subspace which is close to the opti-

mal k dimensional subspace spanned by the top k left singular vectors u
(i)
i=1...k of

A. In order to approximate the right singular vectors as suggested by [51] one
should sample rows of A. Instead, we choose to approximate the right singular
vectors using the equation V̂ T = Σ̂−1ÛT A assuming that Σ̂−1ÛT A ≈ ΣUT A.
The signs of the eigenvalue λi can be recovered by multiplying the corresponding
left and right singular vectors. For example if we had the exact SVD of A we
could determine the i-th eigenvalue by λi = σi(v

(i))T u(i). We approximate λi by
λ̂i where λ̂i ← σ̂isgn((v̂(i))T û(i)). The reason that the sign function appears4 is
that the ideal situation where the inner product (v(i))T u(i) should equal either +1
or -1 does not occur in practice. This procedure results in algorithm 4. The reason
that this procedure is theoretically sound is the seminal work of [51]. Specifically,
since our matrix is a square, symmetric matrix containing only zeros and ones, the

4The sign function sgn(·) returns the sign of its argument.



Algorithm 7 The FastSVD Triangle Counting algorithm
Require: Adjacency matrix A (nxn)
Require: c, c ≤ n
Require: k, k ≤ c
Output: ∆′(G) global triangle estimation

for j = 1 to c do
Pick an integer from {1, . . . , n}, where pi = di

2m

Include A(i)
√

cpi
as a column of A′

end for
Compute the top k left singular vectors û(1), . . . , û(k) and the top k singular
values σ̂1 > . . . > σ̂k > 0 of A′

Û ← [û(1)| . . . |û(k)]
Σ̂← diag(σ̂1, . . . , σ̂k)
V̂ T ← Σ̂−1ÛT A
for j = 1 to k do

λ̂j ← σ̂jsgn((v̂(j))T û(j))
end for
∆′(G)← 1

6

∑k
i=1 λ̂3

i

return ∆′(G)

probabilities pi = ||A(i)||2
||A||2F

defined in [51] are simplified to the expression di

2m
. In-

tuitively, by favoring nodes of high degree we can recover the number of triangles
approximately.

We apply Algorithm 4 on the anonymous social network, for which with 6
eigenvalues we obtain a 95.6% accuracy using Lanczos method. The obtained
accuracy using Algorithm 4 is 95.46% using k equal to 6 and c equal to 100. With
both algorithms we are able to compute with high accuracy an estimate of the
38036823 total triangles which exist in the graph. The speedup is not apparent
due to the overhead of the sampling procedure and the necessary multiplications
we make to find the signs of the singular values. Combined with the overall small
amount of time needed to compute the top six eigenvalues (less than 4 seconds) the
performance of EIGENTRIANGLE and Algorithm 4 are comparable. Nonetheless,
algorithm 4 is useful, allowing us to apply the core idea of EIGENTRIANGLE on
graphs which do not fit into the main memory.



3.5.2 Kronecker graphs
Kronecker graphs [101] have attracted recent interest, because they can be made
to mimic real graphs well. In the following we give a closed formula that estimates
the number of triangles for a Kronecker graph. Some definitions first:

Let A be the n × n adjacency matrix of an n-node graph GA with ∆(GA)
triangles, and let B = A[k] be the k-th Kronecker power of it, that is, an nk × nk

adjacency matrix (see [101] for the exact definition of the deterministic Kronecker
graph). Let GB denote the corresponding graph. Let λ = (λ1, .., λn) be the
eigenvalues of matrix A. The following theorem holds:

Theorem 7 (KRONECKERTRC) The number of triangles ∆(GB) of GB can be
computed from the n eigenvalues of A:

∆(GB) = 6k∆(GA)k+1 k ≥ 0. (3.5)

Proof 6 We use induction on the depth of the recursion k. For k = 0, KRONECK-
ERTRC trivially holds. So the base case is true. Let KRONECKERTRC hold for
some r ≥ 1. For notation simplicity, let C = A[r] with eigenvalues [µi]i=1..s and
D = A[r+1]. According to the induction assumption:

∆(GC) = 6r∆(GA)r+1

The eigenvalues of D are given by the Kronecker product λ ⊗ µ. Using these
two facts, we will now show that KRONECKERTRC holds for r + 1. By Lemma
3.2, we get that the number of triangles in GD is given by the following equation:
∆(GD) =

Ps
i=1

Pn
j=1 µ3

i λ3
j

6
=

Ps
i=1 µ3

i

Pn
j=1 λ3

j

6
=

Ps
i=1 µ3

i 6∆(GA)

6
= 6∆(GA)

Ps
i=1 µ3

i

6
=

6∆(GA)6r∆(GA)r+1 = 6r+1∆(GA)r+2

Therefore KRONECKERTRC holds for all k ≥ 0.

Timing results, and stochastic Kronecker graphs The above theorem results
in tremendous time savings and perfect accuracy for deterministic Kronecker
graphs. For example, experimenting on a small deterministic Kronecker graph
with 6,561 nodes and 839,808 edges coming from the 3-clique initiator with depth
of recursion equal to 7, we get 106 faster performance. As the size of the Kro-
necker graph increases, we obtain arbitrarily large speedups.

It is interesting that the KRONECKERTRC theorem also leads to a fast esti-
mation of triangles, even for stochastic Kronecker graphs [101]. Stochastic Kro-
necker graphs have been shown to mimic real graphs very well. Intuitively, a



Figure 3.6: Eigenvalue vs. rank plot of a random Erdős-Rényi graph Gn,p, with
n =500 and p = 1

2
.

stochastic Kronecker graph is like a deterministic one, with a few random edge
deletions and additions. Our experiments with a stochastic Kronecker graph show
that these random edge manipulations have little effect on the accuracy. Specif-
ically, our experiments with n=6,561 and m=2,202,8085, show that we obtain
1.5 ∗ 106× faster execution, while maintaining 99.34% accuracy. Similar results
hold for other experiments we conducted as well. Proving bounds for the accuracy
for stochastic Kronecker graphs is an interesting research direction.

3.5.3 Erdős-Rényi graphs

It is interesting to notice that our algorithm is guaranteed to give high accuracy
and speedup performance for random Erdős-Rényi graphs [23]. This is due to
Wigner’s semi-circle law for all but the first eigenvalue [64]. In figure 3.6 we see
the eigenvalue-rank plot for an Erdős-Rényi graph with n =500 and p = 1

2
, i.e., p

constant.
For example, for a graph with n = 20, 000 and p = 0.6, using EIGENTRIAN-

GLELOCAL with 0.05 tolerance parameter, we get 1600 faster performance com-
pared to the Node Iterator with relative error 5 ∗ 10−5 and Pearson’s correlation

5Seed matrix (using MATLAB notation): [.99 .9 .9;.9 .99 .1;.9 .1 .99], depth of recursion: 7



coefficient almost equal to 16.

3.6 Conclusions
In this work, we propose the EIGENTRIANGLE and EIGENTRIANGLELOCAL al-
gorithms [148] to estimate the total number of triangles and the number of tri-
angles per node respectively in an undirected, unweighted graph. The special
spectral properties which real-world networks frequently possess make both al-
gorithms efficient for the triangle counting problem. We showed experimentally
that our method outperforms a straight-forward, exact triangle counting algorithm
using different types of real-world networks. To our knowledge, the knowledge
for the bulk of the spectrum is limited in contrast to the few, top eigenvalues
[109, 36]. An interesting theoretical problem is to find the distribution of the
bulk of the eigenvalues of a random graph generated by a model which mimics
real-world networks. As the underlying eigendecomposition algorithm we use
Lanczos method, which converges fast as we explain in Section 3.3. In practice,
EIGENTRIANGLE using in average a rank six approximation of the adjacency
matrix results in at least 95% accuracy, for speedups ranging from 30× to 1000×
compared to the Node Iterator algorithm. However, this behavior is empirical and
requires further theoretical justification and understanding. More experiments is
another future direction, in order to establish to what extent real-world networks
share similar spectral properties.

We also provide a simple randomized algorithm which allows us to use the
core idea of EIGENTRIANGLE on graphs which do not fit in the main memory.
The key idea behind this lies in the seminal work of [51] and the fact that we can
find the eigendecomposition of the adjacency matrix through its Singular Value
Decomposition. Furthermore, we give a closed formula for the number of trian-
gles in deterministic Kronecker graphs and show that the same formula can be
used to approximate satisfactorily the number of triangles in a stochastic Kro-
necker graph as well.

It is worth noting that since [148] other combinatorial triangle counting algo-
rithms have been developed [154] with strong theoretical guarantees [155]. These
algorithms are independent of any special spectral properties. Giving guaran-
tees for the performance EIGENTRIANGLE algorithm under some random graph

6It makes no sense to apply EIGENTRIANGLE on Erdős-Rényi since we can approximate well

the total number of triangles, i.e., (
n
3 )p3.



model, e.g., [36] is another research direction as already mentioned. Nonethe-
less, EIGENTRIANGLE is a viable option for computing triangles in real-world
networks which also shows that restricting our input graphs to possess special
properties like those possessed empirically by real-world networks can lead us
in developing efficient algorithms. Investigating further properties of real-world
networks and developing such algorithms is another broad research direction.



Chapter 4

Fast Radius Plot and Diameter
Computation for Terabyte Scale
Graphs

4.1 Introduction
How does a real, Terabyte-scale graph look like? How do we compute the diam-
eter and node radii in graphs of such size? Graphs appear in numerous settings,
such as social networks (Facebook, LinkedIn), computer network intrusion logs,
who-calls-whom phone networks, search engine clickstreams (term-URL bipartite
graphs), and many more. The contributions of this chapter are the following:

1. Design: We propose HADI, a scalable algorithm to compute the radii and
diameter of network. As shown in Figure 4.1, our method is 7.6× faster
than the naive version.

2. Optimization and Experimentation: We carefully fine-tune our algorithm,
and we test it on one of the largest public web graph ever analyzed, with
several billions of nodes and edges, spanning 1/8 of a Terabyte.

3. Observations: Thanks to HADI, we find interesting patterns and observa-
tions, like the “Multi-modal and Bi-modal” pattern, and the surprisingly
small effective diameter of the Web. For example, see the Multi-modal pat-
tern in the radius plot of Figure 4.1, which also shows the effective diameter
and the center node of the Web(‘google.com’).

The rest of the chapter is organized as follows: Section 4.2 defines related
terms and a sequential algorithm for the Radius Plot. Section 4.3 describes large

65



Figure 4.1: (Left) Radius Plot(Count versus Radius) of the YahooWeb graph.
Notice the effective diameter is surprisingly small. Also notice the peak(marked
‘S’) at radius 2, due to star-structured disconnected components.
(Middle) Radius Plot of GCC(Giant Connected Component) of YahooWeb graph.
The only node with radius 5 (marked ‘C’) is google.com.
(Right) Running time of HADI with/without optimizations for Kronecker and
Erdős-Rényi graphs with billions edges. Run on the M45 HADOOP cluster, using
90 machines for 3 iterations. HADI-OPT is up to 7.6× faster than HADI-plain.

scale algorithms for the Radius Plot, and Section 4.4 analyzes the complexity of
the algorithms and provides a possible extension. In Section 4.5 we present timing
results. After describing background knowledge in Section 4.6, we conclude in
Section 4.7.

4.2 Preliminaries; Sequential Radii Calculation

4.2.1 Definitions
In this section, we define several terms related to the radius and the diameter.
Recall that, for a node v in a graph G, the radius r(v) of v is the distance between
v and a reachable node farthest away from v. The diameter d(G) of a graph G is
the maximum radius of nodes v ∈ G. That is, d(G) = maxv r(v).

Since the radius and the diameter are susceptible to outliers (e.g., long chains),
we follow the literature and define the effective radius and diameter as follows.

Definition 1 (Effective Radius) For a node v in a graph G, the effective radius
reff (v) of v is the 90th-percentile of all the distances from v.

Definition 2 (Effective Diameter) The effective diameter deff (G) of a graph G



Symbol Definition
G a graph
n number of nodes in a graph
m number of edges in a graph
d diameter of a graph
h number of hops

N(h) number of node-pairs reachable in ≤ h hops (neighborhood function)
N(h, i) number of neighbors of node i reachable in ≤ h hops
b(h, i) Flajolet-Martin bitstring for node i at h hops.
b̂(h, i) Partial Flajolet-Martin bitstring for node i at h hops

Table 4.1: Table of symbols

is the minimum number of hops in which 90% of all connected pairs of nodes can
reach each other.

We will use the following three Radius-based Plots:

1. Static Radius Plot (or just “Radius Plot”) of graph G shows the distribu-
tion (count) of the effective radius of nodes at a specific time, as shown in
Figure 4.1.

2. Temporal Radius Plot shows the distributions of effective radius of nodes
at several times.

3. Radius-Degree Plot shows the scatter-plot of the effective radius reff (v)
versus the degree dv for each node v.

Table 4.1 lists the symbols used in this paper.

4.2.2 Computing Radius and Diameter
To generate the Radius Plot, we need to calculate the effective radius of every
node. In addition, the effective diameter is useful for tracking the evolution of
networks. Therefore, we describe our algorithm for computing the effective ra-
dius and the effective diameter of a graph. As described in Section 4.6, existing
algorithms do not scale well. To handle graphs with billions of nodes and edges,
we use the following two main ideas:

1. We use an approximation rather than an exact algorithm.



2. We design a parallel algorithm for HADOOP /MAPREDUCE (the algorithm
can also run in a parallel RDBMS).

To approximate the effective radius and the effective diameter, we use the
Flajolet-Martin algorithm [61][115] for counting the number of distinct elements
in a multiset. While many other applicable algorithms exist (e.g., [22], [31], [65]),
we choose the Flajolet-Martin algorithm because it gives an unbiased estimate, as
well as a tight O(logn) bound for the space complexity [12].

The main idea is that we maintain K Flajolet-Martin (FM) bitstrings b(h, i) for
each node i and current hop number h. b(h, i) encodes the number of nodes reach-
able from node i within h hops, and can be used to estimate radii and diameter as
shown below. The bitstrings b(h, i) are iteratively updated until the bitstrings of
all nodes stabilize. At the h-th iteration, each node receives the bitstrings of its
neighboring nodes, and updates its own bitstrings b(h−1, i) handed over from the
previous iteration:

b(h, i) = b(h− 1, i) BIT-OR {b(h− 1, j)|(i, j) ∈ E} (4.1)

where “BIT-OR” denotes bitwise OR. After h iterations, a node i has K bit-
strings that encode the neighborhood function N(h, i), that is, the number of
nodes within h hops from the node i. N(h, i) is estimated from the K bitstrings
by

N(h, i) =
1

0.77351
2

1
K

PK
l=1 bl(i) (4.2)

where bl(i) is the position of leftmost ’0’ bit of the lth bitstring of node i. The
iterations continue until the bitstrings of all nodes stabilize, which is a necessary
condition that the current iteration number h exceeds the diameter d(G). After the
iterations finish at hmax, we can calculate the effective radius for every node and
the diameter of the graph, as follows:

• reff (i) is the smallest h such that N(h, i) ≥ 0.9 ·N(hmax, i).
• deff (G) is the smallest h such that N(h) =

∑
i N(h, i) ≥ 0.9 ·N(hmax).

Algorithm 4.2.2 shows the summary of the algorithm described above.
The parameter K is typically set to 32[61], and MaxIter is set to 256 since

real graphs have relatively small effective diameter. The NewFMBitstring() func-
tion in line 2 generates K FM bitstrings [61]. The effective radius reff (i) is de-
termined at line 21, and the effective diameter deff (G) is determined at line 23.





Algorithm 4.2.2 runs in O(dm) time, since the algorithm iterates at most d
times with each iteration running in O(m) time. By using approximation, Algo-
rithm 4.2.2 runs faster than previous approaches (see Section 4.6 for discussion).
However, it is a sequential algorithm and requires O(n log n) space and thus can
not handle extremely large graphs (more than billions of nodes and edges) which
can not fit into a single machine. In the next sections we present efficient parallel
algorithms.

4.3 Proposed Method
In the next two sections we describe HADI, a parallel radius and diameter esti-
mation algorithm. As mentioned in Section 4.2, HADI can run on the top of both
a MAPREDUCE system and a parallel SQL DBMS. In the following, we first de-
scribe the general idea behind HADI and show the algorithm for MAPREDUCE.
The algorithm for parallel SQL DBMS is sketched in Section 4.4.

4.3.1 HADI Overview
HADI follows the flow of Algorithm 4.2.2; that is, it uses the FM bitstrings and
iteratively updates them using the bitstrings of its neighbors. The most expensive
operation in Algorithm 4.2.2 is line 8 where bitstrings of each node are updated.
Therefore, HADI focuses on the efficient implementation of the operation using
MAPREDUCE framework.

It is important to notice that HADI is a disk-based algorithm; indeed, memory-
based algorithm is not possible for Tera- and Peta-byte scale data. HADI saves
two kinds of information to a distributed file system (such as HDFS (Hadoop
Distributed File System) in the case of HADOOP):

• Edge has a format of (srcid, dstid).
• Bitstrings has a format of (nodeid, bitstring1, ..., bitstringK).

Combining the bitstrings of each node with those of its neighbors is very ex-
pensive operation which needs several optimization to scale up near-linearly. In
the following sections we will describe three HADI algorithms in a progressive
way. That is we first describe HADI-naive, to give the big picture and explain why
it such a naive implementation should not be used in practice, then the HADI-
plain, and finally HADI-optimized, the proposed method that should be used in
practice. We use HADOOP to describe the MAPREDUCE version of HADI.



4.3.2 HADI-naive in MAPREDUCE

HADI-naive is inefficient, but we present for illustration purposes.
Data The edge file is saved as a sparse adjacency matrix in HDFS. Each line

of the file contains a nonzero element of the adjacency matrix of the graph, in
the format of (srcid, dstid). Also, the bitstrings of each node are saved in a file
in the format of (nodeid, flag, bitstring1, ..., bitstringK). The flag records
information about the status of the nodes(e.g., ‘Changed’ flag to check whether
one of the bitstrings changed or not). Notice that we don’t know the physical
distribution of the data in HDFS.

Main Program Flow The main idea of HADI-naive is to use the bitstrings file
as a logical “cache” to machines which contain edge files. The bitstring update
operation in Equation (4.1) requires that the machine which updates the bitstrings
of node i should have access to (a) all edges adjacent from i, and (b) all bitstrings
of the adjacent nodes. To meet the requirement (a), it is needed to reorganize
the edge file such that edges with a same source id are grouped together. That
can be done by using an Identity mapper which outputs the given input edges in
(srcid, dstid) format. The most simple yet naive way to meet the requirement
(b) is sending the bitstrings to every machine which receives the reorganized edge
file.

Thus, HADI-naive iterates over two-stages of MAPREDUCE. The first stage
updates the bitstrings of each node and sets the ‘Changed’ flag if at least one
of the bitstrings of the node is different from the previous bitstring. The second
stage counts the number of changed nodes and stops iterations when the bitstrings
stabilized, as illustrated in the swim-lane diagram of Figure 4.2.

Although conceptually simple and clear, HADI-naive is unnecessarily expen-
sive, because it ships all the bitstrings to all reducers. Thus, we propose HADI-
plain and additional optimizations, which we explain next.

4.3.3 HADI-plain in MAPREDUCE

HADI-plain improves HADI-naive by copying only the necessary bitstrings to
each reducer. The details follow:

Data As in HADI-naive, the edges are saved in the format of (srcid, dstid),
and bitstrings are saved in the format of (nodeid, flag, bitstring1, ..., bitstringK)
in files over HDFS. The initial bitstrings generation, which corresponds to line 1-
3 of Algorithm 4.2.2, can be performed in completely parallel way. The flag of
each node records the following information:



Figure 4.2: One iteration of HADI-naive. First stage: Bitstrings of all nodes are
sent to every reducer. Second stage: sums up the count of changed nodes. The
multiple arrows at the beginning of Stage 2 mean that there may be many machines
containing bitstrings.



• Effective Radii and Hop Numbers to calculate the effective radius.
• Changed flag to indicate whether at least a bitstring has been changed or

not.

Main Program Flow As mentioned in the beginning, HADI-plain copies only
the necessary bitstrings to each reducer. The main idea is to replicate bitstrings of
node j exactly x times where x is the in-degree of node j. The replicated bitstrings
of node j is called the partial bitstring and represented by b̂(h, j). The replicated
b̂(h, j)’s are used to update b(h, i), the bitstring of node i where (i, j) is an edge
in the graph. HADI-plain iteratively runs three-stage MAPREDUCE jobs until all
bitstrings of all nodes stop changing. Algorithm 4.3.3, 4.3.3, 4.3.3 shows HADI-
plain. We use h for the current iteration number, starting from h=1. Output(a,b)
means to output a pair of data with the key a and the value b.

Stage 1 We generate (key, value) pairs, where the key is a node id i and the
value is the partial bitstrings b̂(h, j)’s where j ranges over all the neighbors ad-
jacent from node i. To generate such pairs, the bitstrings of node j are grouped
together with edges whose dstid is j. Notice that at the very first iteration, bit-
strings of nodes do not exist; they have to be generated on the fly, and we use the
Bitstring Creation Command for that. Notice also that line 22 of Algorithm 4.3.3
is used to propagate the bitstrings of one’s own node. These bitstrings are com-
pared to the newly updated bitstrings at Stage 2 to check convergence.

Stage 2 Bitstrings of node i are updated by combining partial bitstrings of it-
self and nodes adjacent from i. For the purpose, the mapper is the Identity mapper
(output the input without any modification). The reducer combines them, gener-
ates new bitstrings, and sets flag by recording (a) whether at least a bitstring
changed or not, and (b) the current iteration number h and the neighborhood
value N(h, i) (line 11). This h and N(h, i) are used to calculate the effective
radius of nodes after all bitstrings converge, i.e., don’t change. Notice that only
the last neighborhood N(hlast, i) and other neighborhoods N(h′, i) that satisfy
N(h′, i) ≥ 0.9 ·N(hlast, i) need to be saved to calculate the effective radius. The
output of Stage 2 is fed into the input of Stage 1 at the next iteration.

Stage 3 We calculate the number of changed nodes and sum up the neighbor-
hood value of all nodes to calculate N(h). We use only two unique keys(key for changed
and key for neighborhood), which correspond to the two calculated values. The
analysis of line 3 can be done by checking the flag field and using Equation (4.2)
in Section 4.2. The variable changed is set to 1 or 0, based on whether the bitmask
of node k changed or not.

When all bitstrings of all nodes converged, a MAPREDUCE job to finalize the





effective radius and diameter is performed and the program finishes. Compared
to HADI-naive, the advantage of HADI-plain is clear: bitstrings and edges are
evenly distributed over machines so that the algorithm can handle as much data as
possible, given sufficiently many machines.

4.3.4 HADI-optimized in MAPREDUCE

HADI-optimized further improves HADI-plain. It uses two orthogonal ideas:
“block operation” and “bit shuffle encoding”. Both try to address some subtle
performance issues. Specifically, HADOOP has the following two major bottle-
necks:

• Materialization: at the end of each map/reduce stage, the output is written
to the disk, and it is also read at the beginning of next reduce/map stage.
• Sorting: at the Shuffle stage, data is sent to each reducer and sorted before

they are handed over to the Reduce stage.

HADI-optimized addresses these two issues.
Block Operation Our first optimization is the block encoding of the edges and

the bitstrings. The main idea is to group w by w sub-matrix into a super-element





in the adjacency matrix E, and group w bitstrings into a super-bitstring. Now,
HADI-plain is performed on these super-elements and super-bitstrings, instead of
the original edges and bitstrings. Of course, appropriate decoding and encoding is
necessary at each stage. Figure 4.3 shows an example of converting data to block.

Figure 4.3: Converting the original edge and bitstring to blocks. The 4-by-4 edge
and length-4 bitstring are converted to 2-by-2 super-elements and length-2 super-
bitstrings. Notice the lower-left super-element of the edge is not produced since
there is no nonzero element inside it.

By this block operation, the performance of HADI-plain changes as follows:

• Input size decreases in general, since we can use fewer bits to index ele-
ments inside a block.
• Sorting time decreases, since the number of elements to sort decreases.
• Network traffic decreases since the result of matching a super-element and

a super-bitstring is a bitstring which can be at maximum block width times
smaller than that of HADI-plain.
• Map and Reduce functions takes more time, since the block must be de-

coded to be processed, and be encoded back to block format.

For reasonable-size blocks, the performance gains (smaller input size, faster
sorting time, less network traffic) outweigh the delays (more time to perform the
map and reduce function). Also notice that the number of edge blocks depends on
the community structure of the graph: if the adjacency matrix is nicely clustered,
we will have fewer blocks. See Section 4.5, where we show results from block-
structured graphs (‘Kronecker graphs’ [100]) and from random graphs (‘Erdős-
Rényi graphs’ [56]).

Bit Shuffle Encoding In our effort to decrease the input size, we propose an
encoding scheme that can compress the bitstrings. Recall that in HADI-plain,



we use K (e.g., 32, 64) bitstrings for each node, to increase the accuracy of our
estimator. Since HADI requires K · ((n + m) log n) space, the amount of data
increases when K is large. For example, the YahooWeb graph in Section ?? spans
120 GBytes (with 1.4 billion nodes, 6.6 billion edges). However the required disk
space for just the bitstrings is 32 · (1.4B +6.6B) · 8 byte = 2 Tera bytes (assuming
8 byte for each bitstring), which is more than 16 times larger than the input graph.

The main idea of Bit Shuffle Encoding is to carefully reorder the bits of the
bitstrings of each node, and then use run length encoding. By construction, the
leftmost part of each bitstring is almost full of one’s, and the rest is almost full of
zeros. Specifically, we make the reordered bit strings to contain long sequences
of 1’s and 0’s: we get all the first bits from all K bitstrings, then get the second
bits, and so on. As a result we get a single bit-sequence of length K ∗ |bitstring|,
where most of the first bits are ‘1’s, and most of the last bits are ‘0’s. Then we
encode only the length of each bit sequence, achieving good space savings (and,
eventually, time savings, through fewer I/Os).

4.4 Analysis and Discussion
In this section, we analyze the time/space complexity of HADI and its possible
implementation at RDBMS.

4.4.1 Time and Space Analysis
We analyze the algorithm complexity of HADI with M machines for a graph
G with n nodes and m edges with diameter d. We are interested in the time
complexity, as well as the space complexity.

Lemma 2 (Time Complexity of HADI) HADI takes O(d(n+m)
M

logn+m
M

) time.

Proof 7 (Sketch) The Shuffle steps after Stage1 takes O(n+m
M

logn+m
M

) time which
dominates the time complexity.

Notice that the time complexity of HADI is less than previous approaches in
Section 4.6(O(n2 + nm), at best). Similarly, for space we have:

Lemma 3 (Space Complexity of HADI) HADI requires O((n+m) log n) space.



Proof 8 (Sketch) The maximum space k · ((n + m) log n) is required at the out-
put of Stage1-Reduce. Since k is a constant, the space complexity is O((n +
m) log n).

4.4.2 HADI in parallel DBMSs
Using relational database management systems (RDBMS) for graph mining is a
promising research direction, especially given the findings of [123]. We mention
that HADI can be implemented on top of an Object-Relational DBMS (parallel
or serial): it needs repeated joins of the edge file with the appropriate file of bit-
strings, and a user-defined function for bit-OR-ing. See [81] for details.

4.5 Scalability of HADI
In this section, we perform experiments to answer the following questions:

• Q1: How fast is HADI?
• Q2: How does it scale up with the graph size and the number of machines?
• Q3: How do the optimizations help performance?

4.5.1 Experimental Setup
We use both real and synthetic graphs in Table 4.2 for our experiments.

• YahooWeb: web pages and their hypertext links indexed by Yahoo! Al-
tavista search engine in 2002.
• Patents: U.S. patents, citing each other (from 1975 to 1999).
• LinkedIn: people connected to other people (from 2003 to 2006).
• Kronecker: Synthetic Kronecker graphs [100] using a chain of length two

as the seed graph.

For the performance experiments, we use synthetic Kronecker and Erdős-
Rényi graphs. The reason of this choice is that we can generate any size of these
two types of graphs, and Kronecker graph mirror several real-world graph charac-
teristics, including small and constant diameters, power-law degree distributions,
etc. The number of nodes and edges of Erdős-Rényi graphs have been set to
the same values of the corresponding Kronecker graphs. The main difference
of Kronecker compared to Erdős-Rényi graphs is the emergence of a block-wise



Graph Nodes Edges File Description
YahooWeb 1.4 B 6.6 B 116G page-page

LinkedIn 7.5 M 58 M 1G person-person
Patents 6 M 16 M 264M patent-patent

Kronecker 177 K 1,977 M 25G synthetic
120 K 1,145M 13.9G
59 K 282 M 3.3G

Erdős-Rényi 177 K 1,977 M 25G random Gn,p

120 K 1,145 M 13.9G
59 K 282 M 3.3G

Table 4.2: Datasets. B: Billion, M: Million, K: Thousand, G: Gigabytes

structure of the adjacency matrix, from its construction [100]. We will see how
this characteristic affects in the running time of our block-optimization in the next
sections.

HADI runs on M45, one of the fifty most powerful supercomputers in the
world. M45 has 480 hosts (each with 2 quad-core Intel Xeon 1.86 GHz, running
RHEL5), with 3Tb aggregate RAM, and over 1.5 Peta-byte disk size.

Finally, we use the following notations to indicate different optimizations of
HADI:

• HADI-BSE: HADI-plain with bit shuffle encoding.
• HADI-BL: HADI-plain with block operation.
• HADI-OPT: HADI-plain with bit shuffle encoding and block operation.

4.5.2 Running Time and Scale-up

Figure 4.4 gives the wall-clock time of HADI-OPT versus the number of edges in
the graph. Each curve corresponds to a different number of machines used (from
10 to 90). HADI has excellent scalability, with its running time being linear on
the number of edges. The rest of the HADI versions (HADI-plain, HADI-BL, and
HADI-BSE), were slower, but had a similar, linear trend, and they are omitted to
avoid clutter.

Figure 4.5 gives the throughput 1/TM of HADI-OPT. We also tried HADI
with one machine; however it didn’t complete, since the machine would take so
long that it would often fail in the meanwhile. For this reason, we do not report



 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

R
un

 ti
m

e 
in

 h
ou

rs

Number of edges in billions

HADI: 10 machines
HADI: 30 machines
HADI: 50 machines
HADI: 70 machines
HADI: 90 machines

Figure 4.4: Running time versus number of edges with HADI-OPT on Kronecker
graphs for three iterations. Notice the excellent scalability: linear on the graph
size (number of edges).

the typical scale-up score s = T1/TM (ratio of time with 1 machine, over time
with M machine), and instead we report just the inverse of TM . HADI scales up
near-linearly with the number of machines M , close to the ideal scale-up.

4.5.3 Effect of Optimizations

Among the optimizations that we mentioned earlier, which one helps the most,
and by how much? Figure 4.1 plots the running time of different graphs versus
different HADI optimizations. For the Kronecker graphs, we see that block oper-
ation is more efficient than bit shuffle encoding. Here, HADI-OPT achieves 7.6×
better performance than HADI-plain. For the Erdős-Rényi graphs, however, we
see that block operations do not help more than bit shuffle encoding, because the
adjacency matrix has no block structure, as Kronecker graphs do. Also notice
that HADI-BLK and HADI-OPT run faster on Kronecker graphs than on Erdős-
Rényi graphs of the same size. Again, the reason is that Kronecker graphs have
fewer nonzero blocks (i.e., “communities”) by their construction, and the “block”
operation yields more savings.



 1

 2

 3

 4

 5

 6

 0  10  20  30  40  50  60  70  80  90  100

’’S
ca

le
 u

p’
’: 

1/
T

M

Number of machines

Graph on 2 billion edges
Ideal scale up

Figure 4.5: “Scale-up” (throughput 1/TM ) versus number of machines M , for
the Kronecker graph (2B edges). Notice the near-linear growth in the beginning,
close to the ideal(dotted line).

4.6 Background

We briefly present related works on algorithms for radius and diameter computa-
tion, as well as on large graph mining.

Computing Radius and Diameter The typical algorithms to compute the ra-
dius and the diameter of a graph include Breadth First Search (BFS) and Floyd’s
algorithm ([39]). Both approaches are prohibitively slow for large graphs, requir-
ing O(n2 + nm) and O(n3) time, where n and m are the number of nodes and
edges, respectively. For the same reason, related BFS or all-pair shortest-path
based algorithms like [60], [16], [104], [136] can not handle large graphs.

A sampling approach starts BFS from a subset of nodes, typically chosen at
random as in [25]. Despite its practicality, this approach has no obvious solution
for choosing the representative sample for BFS.

Large Graph Mining There are numerous papers on large graph mining and
indexing, mining subgraphs([83], [168], ADI[161], gSpan[166]), graph clustering([130],
Graclus [49], METIS [82]), partitioning([40], [30], [50]), tensors([150]), triangle
counting([19], [154] ), minimum cut([8]), to name a few. However, none of the
above computes the diameter of the graph or radii of the nodes.

Large scale data processing using scalable and parallel algorithms has at-
tracted increasing attention due to the needs to process web-scale data. Due to the



volume of the data, platforms for this type of processing choose “shared-nothing”
architecture. Two promising platforms for such large scale data analysis are (a)
MAPREDUCE and (b) parallel RDBMS.

The MAPREDUCE programming framework processes huge amounts of data
in a massively parallel way, using thousands or millions commodity machines. It
has advantages of (a) fault-tolerance, (b) familiar concepts from functional pro-
gramming, and (c) low cost of building the cluster. HADOOP, the open source ver-
sion of MAPREDUCE, is a very promising tool for massive parallel graph mining
applications, (e.g., cross-associations [121], connected components [81]). Other
advanced MAPREDUCE-like systems include [71], [29], and [124].

Parallel RDBMS systems, including Vertica and Aster Data, are based on tra-
ditional database systems and provide high performance using distributed process-
ing and query optimization. They have strength in processing structured data. For
detailed comparison of these two systems, see [123]. Again, none of the above
articles shows how to use such platforms to efficiently compute the diameter of a
graph.

4.7 Conclusions

Our main goal is to develop an open-source package to mine Giga-byte, Tera-byte
and eventually Peta-byte networks. We designed HADI, an algorithm for comput-
ing radii and diameter of Tera-byte scale graphs, and analyzed large networks to
observe important patterns. The contributions of this paper are the following:

• Design: We developed HADI, a scalable MAPREDUCE algorithm for diam-
eter and radius estimation, on massive graphs.
• Optimization: Careful fine-tunings on HADI, leading to up to 7.6× faster

computation, linear scalability on the size of the graph (number of edges)
and near-linear speed-up on the number of machines. The experiments ran
on the M45 HADOOP cluster of Yahoo, one of the 50 largest supercomputers
in the world.
• Observations: Thanks to HADI, we could study the diameter and radii

distribution of one of the largest public web graphs ever analyzed (over
6 billion edges); we also observed the “Small Web” phenomenon, multi-
modal/bi-modal radius distributions, and palindrome motions of radius dis-
tributions over time in real networks.



Future work includes algorithms for additional graph mining tasks like com-
puting eigenvalues, and outlier detection, for graphs that span Tera- and Peta-
bytes.



Chapter 5

PEGASUS: Mining Peta-Scale
Graphs

5.1 Introduction

Graphs are ubiquitous: computer networks, social networks, mobile call networks,
the World Wide Web [25], protein regulation networks to name a few.

The large volume of available data, the low cost of storage and the stunning
success of online social networks and web2.0 applications all lead to graphs of
unprecedented size. Typical graph mining algorithms silently assume that the
graph fits in the memory of a typical workstation, or at least on a single disk;
the above graphs violate these assumptions, spanning multiple Giga-bytes, and
heading to Tera- and Peta-bytes of data.

A promising tool is parallelism, and specifically MAPREDUCE [46] and its
open source version, HADOOP. Based on HADOOP, here we describe PEGASUS,
a graph mining package for handling graphs with billions of nodes and edges. The
PEGASUS code and several dataset are at http://www.cs.cmu.edu/∼pegasus.
The contributions are the following:

1. Unification of seemingly different graph mining tasks, via a generalization
of matrix-vector multiplication (GIM-V).

2. The careful implementation of GIM-V, with several optimizations, and sev-
eral graph mining operations (PageRank, Random Walk with Restart(RWR),
diameter estimation, and connected components). Moreover, the method is

85



linear on the number of edges, and scales up well with the number of avail-
able machines.

3. Performance analysis, pinpointing the most successful combination of opti-
mizations, which lead to up to 5 times better speed than naive implementa-
tion.

4. Analysis of large, real graphs, including one of the largest publicly available
graph that was ever analyzed, Yahoo’s web graph.

The rest of the chapter is organized as follows. Section 5.2 presents the related
work. Section 5.3 describes our framework and explains several graph mining
algorithms. Section 5.4 discusses optimizations that allow us to achieve signifi-
cantly faster performance in practice. In Section 5.5 we present timing results and
Section 5.6 our findings in real world, large scale graphs. We conclude in Section
5.7.

5.2 Background and Related Work
The related work forms two groups, graph mining, and HADOOP.

Large-Scale Graph Mining. There are a huge number of graph mining algo-
rithms, computing communities (eg., [33], DENGRAPH [57], METIS [82]),
subgraph discovery(e.g., GraphSig [127], [83], [73], [34], gPrune [169], gAp-
prox [32], gSpan [166], Subdue [84], HSIGRAM/VSIGRAM [96], ADI [161],
CSV [162]), finding important nodes (e.g., PageRank [24] and HITS [87]), com-
puting the number of triangles [154, 155], topic detection [126], attack detec-
tion [135], with too-many-to-list alternatives for each of the above tasks. Most
of the previous algorithms do not scale, at least directly, to several millions and
billions of nodes and edges.

For connected components, there are several algorithms, using Breadth-First
Search, Depth-First-Search, “propagation” ([134], [14], [74]), or “contraction”
[70] . These works rely on a shared memory model which limits their ability to
handle large, disk-resident graphs.

MapReduce and Hadoop. MAPREDUCE is a programming framework [46] [9]
for processing huge amounts of unstructured data in a massively parallel way.



MAPREDUCE has two major advantages: (a) the programmer is oblivious of the
details of the data distribution, replication, load balancing etc. and furthermore (b)
the programming concept is familiar, i.e., the concept of functional programming.
Briefly, the programmer needs to provide only two functions, a map and a reduce.
The typical framework is as follows [97]: (a) the map stage sequentially passes
over the input file and outputs (key, value) pairs; (b) the shuffling stage groups of
all values by key, (c) the reduce stage processes the values with the same key and
outputs the final result.

HADOOP is the open source implementation of MAPREDUCE. HADOOP pro-
vides the Distributed File System (HDFS) [1] and PIG, a high level language
for data analysis [114]. Due to its power, simplicity and the fact that building a
small cluster is relatively cheap, HADOOP is a very promising tool for large scale
graph mining applications, something already reflected in academia, see [121]. In
addition to PIG, there are several high-level language and environments for ad-
vanced MAPREDUCE-like systems, including SCOPE [29], Sawzall [124], and
Sphere [71].

5.3 Proposed Method
How can we quickly find connected components, diameter, PageRank, node prox-
imities of very large graphs? We show that, even if they seem unrelated, eventually
we can unify them using the GIM-V primitive, standing for Generalized Iterative
Matrix-Vector multiplication, which we describe in the next.

5.3.1 Main Idea
GIM-V, or ‘Generalized Iterative Matrix-Vector multiplication’ is a generalization
of normal matrix-vector multiplication. Suppose we have a n by n matrix M and
a vector v of size n. Let mi,j denote the (i, j)-th element of M . Then the usual
matrix-vector multiplication is

M × v = v′ where v′i =
∑n

j=1 mi,jvj .

There are three operations in the previous formula, which, if customized sep-
arately, will give a surprising number of useful graph mining algorithms:

1. combine2: multiply mi,j and vj .

2. combineAll: sum n multiplication results for node i.



3. assign: overwrite previous value of vi with new result to make v′i.

In GIM-V, let’s define the operator ×G, where the three operations can be
defined arbitrarily. Formally, we have:

v′ = M ×G v
where v′i = assign(vi,combineAlli({xj | j = 1..n, and xj =combine2(mi,j, vj)})).

The functions combine2(), combineAll(), and assign() have the fol-
lowing signatures (generalizing the product, sum and assignment, respectively,
that the traditional matrix-vector multiplication requires):

1. combine2(mi,j, vj) : combine mi,j and vj .

2. combineAlli(x1, ..., xn) : combine all the results from combine2() for
node i.

3. assign(vi, vnew) : decide how to update vi with vnew.

The ‘Iterative’ in the name of GIM-V denotes that we apply the ×G operation
until an algorithm-specific convergence criterion is met. As we will see in a mo-
ment, by customizing these operations, we can obtain different, useful algorithms
including PageRank, Random Walk with Restart, connected components, and di-
ameter estimation. But first we want to highlight the strong connection of GIM-V
with SQL: When combineAlli() and assign() can be implemented by user
defined functions, the operator ×G can be expressed concisely in terms of SQL.
This viewpoint is important when we implement GIM-V in large scale parallel
processing platforms, including HADOOP, if they can be customized to support
several SQL primitives including JOIN and GROUP BY. Suppose we have an
edge table E(sid, did, val) and a vector table V(id, val), corre-
sponding to a matrix and a vector, respectively. Then, ×G corresponds to the
following SQL statement - we assume that we have (built-in or user-defined) func-
tions combineAlli() and combine2()) and we also assume that the resulting
table/vector will be fed into the assign() function (omitted, for clarity):

In the following sections we show how we can customize GIM-V, to han-
dle important graph mining operations including PageRank, Random Walk with
Restart, diameter estimation, and connected components.



SELECT E.sid, combineAllE.sid(combine2(E.val,V.val))
FROM E, V
WHERE E.did=V.id
GROUP BY E.sid

5.3.2 GIM-V and PageRank
Our first application of GIM-V is PageRank, a famous algorithm that was used by
Google to calculate relative importance of web pages [24]. The PageRank vector
p of n web pages satisfies the following eigenvector equation:

p = (cET + (1− c)U)p

where c is a damping factor (usually set to 0.85), E is the row-normalized
adjacency matrix (source, destination), and U is a matrix with all elements set to
1/n.

To calculate the eigenvector p we can use the power method, which multiplies
an initial vector with the matrix, several times. We initialize the current PageRank
vector pcur and set all its elements to 1/n. Then the next PageRank pnext is calcu-
lated by pnext = (cET +(1− c)U)pcur. We continue to do the multiplication until
p converges.

PageRank is a direct application of GIM-V. In this view, we first construct a
matrix M by column-normalize ET such that every column of M sum to 1. Then
the next PageRank is calculated by pnext = M ×G pcur where the three operations
are defined as follows:

1. combine2(mi,j, vj) = c×mi,j × vj

2. combineAlli(x1, ..., xn) = (1−c)
n

+
∑n

j=1 xj

3. assign(vi, vnew) = vnew

5.3.3 GIM-V and Random Walk with Restart
Random Walk with Restart(RWR) is an algorithm to measure the proximity of
nodes in graph [116]. In RWR, the proximity vector rk from node k satisfies the
equation:

rk = cMrk + (1− c)ek



where ek is a n-vector whose kth element is 1, and every other elements are
0. c is a restart probability parameter which is typically set to 0.85 [116]. M is
a column-normalized and transposed adjacency matrix, as in Section 5.3.2. In
GIM-V, RWR is formulated by rnext

k = M ×G rcur
k where the three operations are

defined as follows ( δik is the Kronecker delta, equal to 1 if i = k and 0 otherwise):

1. combine2(mi,j, vj) = c×mi,j × vj

2. combineAlli(x1, ..., xn) = (1− c)δik +
∑n

j=1 xj

3. assign(vi, vnew) = vnew

5.3.4 GIM-V and Diameter Estimation
HADI [80] is an algorithm to estimate the diameter and radius of large graphs.
The diameter of a graph is the maximum of the length of the shortest path between
every pair of nodes. The radius of a node vi is the number of hops that we need to
reach the farthest-away node from vi. The main idea of HADI is as follows. For
each node vi in the graph, we maintain the number of neighbors reachable from vi

within h hops. As h increases, the number of neighbors increases until h reaches
it maximum value. The diameter is h where the number of neighbors within h+1
does not increase for every node. For further details and optimizations, see [80].

The main operation of HADI is updating the number of neighbors as h in-
creases. Specifically, the number of neighbors within hop h reachable from node
vi is encoded in a probabilistic bitstring bh

i which is updated as follows:

bh+1
i = bh

i BITWISE-OR {bh
k | (i, k) ∈ E}

In GIM-V, the bitstring update of HADI is represented by

bh+1 = M ×G bh

where M is an adjacency matrix, bh+1 is a vector of length n which is updated
by
bh+1
i =assign(bh

i ,combineAlli({xj | j = 1..n, and xj =combine2(mi,j, b
h
j )})),

and the three operations are defined as follows:

1. combine2(mi,j, vj) = mi,j × vj .

2. combineAlli(x1, ..., xn) = BITWISE-OR{xj | j = 1..n}



3. assign(vi, vnew) = BITWISE-OR(vi, vnew).

The ×G operation is run iteratively until the bitstring for all the nodes do not
change.

5.3.5 GIM-V and Connected Components
We propose HCC, a new algorithm for finding connected components in large
graphs. Like HADI, HCC is an application of GIM-V with custom functions. The
main idea is as follows. For every node vi in the graph, we maintain a component
id ch

i which is the minimum node id within h hops from vi. Initially, ch
i of vi is set

to its own node id: that is, c0
i = i. For each iteration, each node sends its current

ch
i to its neighbors. Then ch+1

i , component id of vi at the next step, is set to the
minimum value among its current component id and the received component ids
from its neighbors. The crucial observation is that this communication between
neighbors can be formulated in GIM-V as follows:

ch+1 = M ×G ch

where M is an adjacency matrix, ch+1 is a vector of length n which is updated
by
ch+1
i =assign(ch

i ,combineAlli({xj | j = 1..n, and xj =combine2(mi,j, c
h
j )})),

and the three operations are defined as follows:

1. combine2(mi,j, vj) = mi,j × vj .

2. combineAlli(x1, ..., xn) = MIN{xj | j = 1..n}

3. assign(vi, vnew) = MIN(vi, vnew).

By repeating this process, component ids of nodes in a component are set to
the minimum node id of the component. We iteratively do the multiplication until
component ids converge. The upper bound of the number of iterations in HCC are
determined by the following theorem.

Theorem 8 (Upper bound of iterations in HCC) HCC requires maximum d it-
erations where d is the diameter of the graph.

Proof 9 The minimum node id is propagated to its neighbors at most d times.

Since the diameter of real graphs are relatively small, HCC completes after a
small number of iterations.



5.4 Fast Algorithms for GIM-V
How can we parallelize the algorithm presented in the previous section? In this
section, we first describe naive HADOOP algorithms for GIM-V. After that we
propose several faster methods for GIM-V.

5.4.1 GIM-V BASE: Naive Multiplication
GIM-V BASE is a two-stage algorithm whose pseudo code is in Algorithm 5.4.1
and 5.4.1. The inputs are an edge file and a vector file. Each line of the edge
file contains one (idsrc, iddst, mval) which corresponds to a non-zero cell in the
adjacency matrix M . Similarly, each line of the vector file contains one (id, vval)
which corresponds to an element in the vector V . Stage1 performs combine2
operation by combining columns of matrix(iddst of M ) with rows of vector(id
of V ). The output of Stage1 are (key, value) pairs where key is the source
node id of the matrix(idsrc of M ) and the value is the partially combined re-
sult(combine2(mval, vval)). This output of Stage1 becomes the input of
Stage2. Stage2 combines all partial results from Stage1 and assigns the
new vector to the old vector. The combineAlli() and assign() operations are
done in line 16 of Stage2, where the “self” and “others” tags in line 16 and line
22 of Stage1 are used to make vi and vnew of GIM-V, respectively.

This two-stage algorithm is run iteratively until application-specific conver-
gence criterion is met. In Algorithm 5.4.1 and 5.4.1, Output(k, v) means to
output data with the key k and the value v.

5.4.2 GIM-V BL: Block Multiplication
GIM-V BL is a fast algorithm for GIM-V which is based on block multiplication.
The main idea is to group elements of the input matrix into blocks or submatrices
of size b by b. Also we group elements of input vectors into blocks of length b.
Here the grouping means we put all the elements in a group into one line of input
file. Each block contains only non-zero elements of the matrix or vector. The for-
mat of a matrix block with k nonzero elements is (rowblock, colblock, rowelem1 , colelem1 , mvalelem1 , ...,
rowelemk

, colelemk
, mvalelemk

). Similarly, the format of a vector block with k
nonzero elements is (idblock, idelem1 , vvalelem1 , ..., idelemk

, vvalelemk
). Only blocks

with at least one nonzero elements are saved to disk. This block encoding forces
nearby edges in the adjacency matrix to be closely located; it is different from
HADOOP’s default behavior which do not guarantee co-locating them. After





grouping, GIM-V is performed on blocks, not on individual elements. GIM-V
BL is illustrated in Figure 5.1.

Figure 5.1: GIM-V BL using 2 x 2 blocks. Bi,j represents a matrix block, and
vi represents a vector block. The matrix and vector are joined block-wise, not
element-wise.

In our experiment at Section 5.5, GIM-V BL is more than 5 times faster than
GIM-V BASE. There are two main reasons for this speed-up.

• Sorting Time Block encoding decrease the number of items to sort in the
shuffling stage of HADOOP. We observed that one of the main bottleneck of
programs in HADOOP is its shuffling stage where network transfer, sorting,
and disk I/O happens. By encoding to blocks of width b, the number of
lines in the matrix and the vector file decreases to 1/b2 and 1/b times of
their original size, respectively for full matrices and vectors.

• Compression The size of the data decreases significantly by converting
edges and vectors to block format. The reason is that in GIM-V BASE
we need 4× 2 bytes to save each (srcid, dstid) pair since we need 4 bytes to
save a node id using Integer. However in GIM-V BL we can specify each
block using a block row id and a block column id with two 4-byte Integers,
and refer to elements inside the block using 2 × logb bits. This is possible
because we can use logb bits to refer to a row or column inside a block. By
this block method we decreased the edge file size(e.g., more than 50% for
YahooWeb graph in Section 5.5).

5.4.3 GIM-V CL: Clustered Edges
When we use block multiplication, another advantage is that we can benefit from
clustered edges. As can be seen from Figure 5.2, we can use smaller number of
blocks if input edge files are clustered. Clustered edges can be built if we can



use heuristics in data preprocessing stage so that edges are clustered, or by co-
clustering (e.g., see [121]). The preprocessing for edge clustering need to be done
only once; however, they can be used by every iteration of various application of
GIM-V. So we have two variants of GIM-V: GIM-V CL, which is GIM-V BASE
with clustered edges, and GIM-V BL-CL, which is GIM-V BL with clustered
edges. Be aware that clustered edges is only useful when combined with block
encoding. If every element is treated separately, then clustered edges don’t help
anything for the performance of GIM-V.

Figure 5.2: Clustered vs. non-clustered adjacency matrices for two isomorphic
graphs. The edges are grouped into 2 by 2 blocks. The left graph uses only 3
blocks while the right graph uses 9 blocks.

5.4.4 GIM-V DI: Diagonal Block Iteration

As mentioned in Section 5.4.2, the main bottleneck of GIM-V is its shuffling
and disk I/O steps. Since GIM-V iteratively runs Algorithm 5.4.1 and 5.4.1, and
each Stage requires disk IO and shuffling, we could decrease running time if we
decrease the number of iterations.

In HCC, it is possible to decrease the number of iterations. The main idea
is to multiply diagonal matrix blocks and corresponding vector blocks as much
as possible in one iteration. Remember that multiplying a matrix and a vector
corresponds to passing node ids to one step neighbors in HCC. By multiplying
diagonal blocks and vectors until the contents of the vectors do not change in one
iteration, we can pass node ids to neighbors located more than one step away. This
is illustrated in Figure 5.3.

We see that in Figure 5.3 (c) we multiply Bi,i with vi several times until vi

do not change in one iteration. For example in the first iteration v0 changed from



Figure 5.3: Propagation of component id(=1) when block width is 4. Each el-
ement in the adjacency matrix of (a) represents a 4 by 4 block; each column in
(b) and (c) represents the vector after each iteration. GIM-V DL finishes in 4
iterations while GIM-V BL requires 8 iterations.

{1,2,3,4} to {1,1,1,1} since it is multiplied to B0,0 four times. GIM-V DI is
especially useful in graphs with long chains.

The upper bound of the number of iterations in HCC DI with chain graphs are
determined by the following theorem.

Theorem 9 (Upper bound of iterations in HCC DI) In a chain graph with length
m, it takes maximum 2 ∗ dm/be − 1 iterations in HCC DI with block size b.

Proof 10 The worst case happens when the minimum node id is in the beginning
of the chain. It requires 2 iterations(one for propagating the minimum node id
inside the block, another for passing it to the next block) for the minimum node id
to move to an adjacent block. Since the farthest block is dm/be−1 steps away, we
need 2 ∗ (dm/be − 1) iterations. When the minimum node id reached the farthest
away block, GIM-V DI requires one more iteration to propagate the minimum
node id inside the last block. Therefore, we need 2∗(dm/be−1)+1 = 2∗dm/be−1
iterations.



5.4.5 GIM-V NR: Node Renumbering

In HCC, the minimum node id is propagated to the other parts of the network
within at most d steps, where d is the diameter of the network. If the node with
the minimum id(which we call ‘minimum node’) is located at the center of the
network, then the number of iterations is small, close to d/2. However, if it is
located at the boundary of the network, then the number of iteration can be close to
d. Therefore, if we preprocess the edges so that the minimum node id is swapped
to the center node id, the number of iterations and the total running time of HCC
would decrease.

Finding the center node with the minimum radius could be done with the
HADI [80] algorithm. However, the algorithm is expensive for the pre-processing
step of HCC. Therefore, we instead propose the following heuristic for finding
the center node: we choose the center node by sampling from the highest-degree
nodes. This heuristic is based on the fact that nodes with large degree have small
radii [80]. Moreover, computing the degree of very large graphs is trivial in
MAPREDUCE and could be performed quickly with one job.

After finding a center node, we need to renumber the edge file to swap the
current minimum node id with the center node id. The MAPREDUCE algorithm
for this renumbering is shown in Algorithm 5.4.5. Since the renumbering requires
only filtering, it can be done with a Map-only job.



5.4.6 Analysis
We analyze the time and space complexity of GIM-V. In the theorems below, M
is the number of machines.

Theorem 10 (Time Complexity of GIM-V) One iteration of GIM-V takes O(V +E
M

log V +E
M

)
time.

Proof 11 The running time is dominated by the sorting time for V +E
M

records,
which is O(V +E

M
log V +E

M
).

Theorem 11 (Space Complexity of GIM-V) GIM-V requires O(V +E) space.

Proof 12 We assume the value of the elements of the input vector v is constant.
Then the theorem is proved by noticing that the maximum storage is required at
the output of Stage1 mappers which requires O(V + E) space up to a constant.

5.5 Performance and Scalability
We do experiments to answer following questions:

Q1 How does GIM-V scale up?

Q2 Which of the proposed optimizations(block multiplication, clustered edges,
and diagonal block iteration, node renumbering) gives the highest perfor-
mance gains?

The graphs we used in our experiments at Section 5.5 and 5.6 are described in
Table 5.1 1.

We run PEGASUS in M45 HADOOP cluster by Yahoo! and our own cluster
composed of 9 machines. M45 is one of the top 50 supercomputers in the world
with 1.5 Pb total storage and 3.5 Tb memory. For the performance and scalability
experiments, we used synthetic Kronecker graphs [100] since we can generate
them with any size, and they are one of the most realistic graphs among synthetic
graphs.

1 Wikipedia: http://www.cise.ufl.edu/research/sparse/matrices/
Kronecker, DBLP: http://www.cs.cmu.edu/∼pegasus
YahooWeb, LinkedIn: released under NDA.
Flickr, Epinions, patent: not public data.



Name Nodes Edges Description
YahooWeb 1,413 M 6,636 M WWW pages in 2002
LinkedIn 7.5 M 58 M person-person in 2006

4.4 M 27 M person-person in 2005
1.6 M 6.8 M person-person in 2004
85 K 230 K person-person in 2003

Wikipedia 3.5 M 42 M doc-doc in 2007/02
3 M 35 M doc-doc in 2006/09

1.6 M 18.5 M doc-doc in 2005/11
Kronecker 177 K 1,977 M synthetic

120 K 1,145 M synthetic
59 K 282 M synthetic
19 K 40 M synthetic

WWW-Barabasi 325 K 1,497 K WWW pages in nd.edu
DBLP 471 K 112 K document-document
flickr 404 K 2.1 M person-person
Epinions 75 K 508 K who trusts whom

Table 5.1: Order and size of networks.

5.5.1 Results

We first show how the performance of our method changes as we add more ma-
chines. Figure 5.4 shows the running time and performance of GIM-V for PageR-
ank with Kronecker graph of 282 million edges, and size 32 blocks if necessary.

In Figure 5.4 (a), for all of the methods the running time decreases as we add
more machines. Note that clustered edges(GIM-V CL) didn’t help performance
unless it is combined with block encoding. When it is combined, however, it
showed the best performance (GIM-V BL-CL).

In Figure 5.4 (b), we see that the relative performance of each method com-
pared to GIM-V BASE method decreases as number of machines increases. With
3 machines (minimum number of machines which HADOOP ‘distributed mode’
supports), the fastest method(GIM-V BL-CL) ran 5.27 times faster than GIM-V
BASE. With 90 machines, GIM-V BL-CL ran 2.93 times faster than GIM-V
BASE. This is expected since there are fixed component(JVM load time, disk
I/O, network communication) which can not be optimized even if we add more
machines.



(a) Running time vs. Machines(b) Performance vs. Machines(c) Running time vs. Edges

Figure 5.4: Scalability and Performance of GIM-V. (a) Running time decreases
quickly as more machines are added. (b) The performance(=1/running time)
of ’BL-CL’ wins more than 5x (for n=3 machines) over the ’BASE’. (c) Every
version of GIM-V shows linear scalability.

Next we show how the performance of our methods changes as the input size
grows. Figure 5.4 (c) shows the running time of GIM-V with different number of
edges under 10 machines. As we can see, all of the methods scales linearly with
the number of edges.

Next, we compare the performance of GIM-V DI and GIM-V BL-CL for HCC

in graphs with long chains. For this experiment we made a new graph whose
diameter is 17, by adding a length 15 chain to the 282 million Kronecker graph
which has diameter 2. As we see in Figure 5.5, GIM-V DI finished in 6 iteration
while GIM-V BL-CL finished in 18 iteration. The running time of both methods
for the first 6 iterations are nearly same. Therefore, the diagonal block iteration
method decrease the number of iterations while not affecting the running time of
each iteration much.

Finally, we compare the number of iterations with/without renumbering. Fig-
ure 5.6 shows the degree distribution of LinkedIn. Without renumbering, the min-
imum node has degree 1, which is not surprising since about 46 % of the nodes
have degree 1 due to the power-law behavior of the degree distribution. We show
the number of iterations after changing the minimum node to each of the top 5
highest-degree nodes in Figure 5.7. We see that the renumbering decreased the
number of iterations to 81 % of the original. Similar results are observed for the
Wikipedia graph in Figure 5.8 and 5.9. The original minimum node has degree 1,
and the number of iterations decreased to 83 % of the original after renumbering.



Figure 5.5: Comparison of GIM-V DI and GIM-V BL-CL for HCC. GIM-V DI
finishes in 6 iterations while GIM-V BL-CL finishes in 18 iterations due to long
chains.

5.6 GIM-V At Work

In this section we use PEGASUS for mining very large graphs. We analyze con-
nected components, diameter, and PageRank of large real world graphs. We show
that PEGASUS can be useful for finding patterns, outliers, and interesting obser-
vations.

5.6.1 Connected Components of Real Networks

We used the LinkedIn social network and Wikipedia page-linking-to-page net-
work, along with the YahooWeb graph for connected component analysis. Fig-
ure 5.10 show the evolution of connected components of LinkedIn and Wikipedia
data. Figure 5.11 show the distribution of connected components in the YahooWeb
graph. We have following observations.

Power Law Tails in Connected Components Distributions We observed
power law relation of count and size of small connected components in Fig-
ure 5.10(a),(b) and Figure 5.11. This reflects that the connected components in
real networks are formed by processes similar to Chinese Restaurant Process and
Yule distribution [113].

Stable Connected Components After Gelling Point In Figure 5.10(a), the
distribution of connected components remain stable after a ‘gelling’ point[107] at
year 2003.We can see that the slope of tail distribution do not change after year
2003. We observed the same phenomenon in Wikipedia graph in Figure 5.10 (b).
The graph show stable tail slopes from the beginning, since the network were



Figure 5.6: Degree distribution of LinkedIn. Notice that the original minimum
node has degree 1, which is highly probable given the power-law behavior of the
degree distribution. After the renumbering, the minimum node is replaced with a
highest-degree node.

already mature in year 2005.

Absorbed Connected Components and Dunbar’s number In Figure 5.10(a),
we find two large connected components in year 2003. However it became merged
in year 2004. The giant connected component keeps growing, while the second
and the third largest connected components do not grow beyond size 100 until
they are absorbed to the giant connected component in Figure 5.10 (a) and (b).
This agrees with the observation[107] that the size of the second/third connected
components remains constant or oscillates. Lastly, the maximum connected com-
ponent size except the giant connected component in the LinkedIn graph agrees
well with Dunbar’s number[54], which says that the maximum community size in
social networks is roughly 150.

Anomalous Connected Components In Figure 5.11, we found two outstand-
ing spikes. In the first spike at size 300, more than half of the components have
exactly the same structure and they were made from a domain selling company
where each component represents a domain to be sold. The spike happened be-
cause the company replicated sites using the same template, and injected the dis-
connected components into WWW network. In the second spike at size 1101,
more than 80 % of the components are porn sites disconnected from the giant
connected component. By looking at the distribution plot of connected compo-
nents, we could find interesting communities with special purposes which are
disconnected from the rest of the Internet.



Figure 5.7: Number of iterations vs. the minimum node of LinkedIn, for con-
nected components. Di represents the node with i-th largest degree. Notice that
the number of iterations decreased by 19 % after renumbering.

Figure 5.8: Degree distribution of Wikipedia. Notice that the original minimum
node has degree 1, as in LinkedIn. After the renumbering, the minimum node is
replaced with a highest-degree node.

5.6.2 PageRank scores of Real Networks

We analyzed the PageRank scores of the nodes of real graphs, using PEGASUS.
Figure 5.12 and 5.13 show the distribution of the PageRank scores for the Web
graphs, and Figure 5.14 shows the evolution of PageRank scores of the LinkedIn
and Wikipedia graphs. We have the following observations.

Power Laws in PageRank Distributions In Figure 5.12, 5.13, and 5.14,
we observe power-law relations between the PageRank score and the number of
nodes with such PageRank. Pandurangan et. al.[117] observed such a power-
law relationship for a 1.69 million network. Our result is that the same obser-
vation holds true for about 1,000 times larger network with 1.4 billion pages



Figure 5.9: Number of iterations vs. the minimum node of Wikipedia, for con-
nected components. Di represents the node with i-th largest degree. Notice that
the number of iterations decreased by 17 % after renumbering.

snapshot of the Internet. The top 3 highest PageRank sites for the year 2002 are
www.careerbank.com, access.adobe.com, and top100.rambler.ru.
As expected, they have huge in- degrees (from ≈70K to ≈70M).

PageRank and the Gelling Point In the LinkedIn network (see Figure 5.14
(a)), we see a discontinuity for the power-law exponent of the PageRank distri-
bution, before and after the gelling point at year 2003. For the year 2003 (up to
the gelling point), the exponent is 2.15; from 2004 (after the gelling point), the
exponent stabilizes around 2.59. Also, the maximum PageRank value at 2003 is
around 10−6, which is 1

10
of the maximum PageRank from 2004. This behavior is

explained by the emergence of the giant connected component at the gelling point:
Before the gelling point, there are many small connected components where no
outstanding node with large PageRank exists. After the gelling point, several
nodes with high PageRank appear within the giant connected component. In the
Wikipedia network (see Figure 5.14 (b)), we see the same behavior of the network
after the gelling point. Since the gelling point is before year 2005, we see that the
maximum PageRank-score and the slopes are similar for the three graphs from
2005.

5.6.3 Diameter of Real Network
We analyzed the diameter and radius of real networks with PEGASUS. Figure 5.15
shows the radius plot of real networks. We have following observations:

Small Diameter For all the graphs in Figure 5.15, the average diameter was
less than 6.09. This means that the real world graphs are well connected.



(a) Connected Components of LinkedIn (b) Connected Components of Wikipedia

Figure 5.10: The evolution of connected components. (a) The giant connected
component grows for each year. However, the second largest connected compo-
nent do not grow above Dunbar’s number(≈ 150) and the slope of the tail remains
constant after the gelling point at year 2003. (b) . As in LinkedIn, notice the
growth of giant connected component and the constant slope for tails.

Constant Diameter over Time For LinkedIn graph, the average diameter was
in the range of 5.28 and 6.09. For Wikipedia graph, the average diameter was in
the range of 4.76 and 4.99. Note that the diameter do not monotonically increase
as network grows: they remain constant or shrinks over time.

Bimodal Structure of Radius Plot For every plot, we observe bimodal shape
which reflects the structure of these real graphs. The graphs have one giant con-
nected component where majority of nodes belong to, and many smaller con-
nected components whose size follows power law. Therefore, the first mode is at
radius zero which comes from one-node components; second mode(e.g., at radius
6 in Epinion) comes from the giant connected component.

5.7 Conclusions
In this paper we proposed PEGASUS, a graph mining package for very large
graphs using the HADOOP architecture. The main contributions are followings:

• We identified the common, underlying primitive of several graph mining op-
erations, and we showed that it is a generalized form of a matrix-vector mul-



Figure 5.11: Connected Components of YahooWeb. Notice the two anomalous
spikes which are far from the constant-slope tail.

Figure 5.12: PageRank distribution of YahooWeb. The distribution follows power
law with exponent 2.30.

tiplication. We call this operation Generalized Iterative Matrix-Vector mul-
tiplication and showed that it includes the diameter estimation, the PageR-
ank estimation, RWR calculation, and finding connected-components, as
special cases.

• Given its importance, we proposed several optimizations (block-multiplication,
diagonal block iteration, node renumbering etc) and reported the winning
combination, which achieves more than 5 times faster performance to the
naive implementation.

• We implemented PEGASUS and ran it on M45, one of the 50 largest su-
percomputers in the world (3.5 Tb memory, 1.5Pb disk storage). Using
PEGASUS and our optimized Generalized Iterative Matrix-Vector multipli-



Figure 5.13: PageRank distribution of WWW-Barabasi. The distribution follows
power law with exponent 2.25.

cation variants, we analyzed real world graphs to reveal important patterns
including power law tails, stability of connected components, and anoma-
lous components. Our largest graph, “YahooWeb”, spanned 120Gb, and is
one of the largest publicly available graph that was ever studied.

Other open source libraries such as HAMA (Hadoop Matrix Algebra) [2] can
benefit significantly from PEGASUS. One major research direction is to add to
PEGASUS an eigensolver, which will compute the top k eigenvectors and eigen-
values of a matrix. Another directions includes tensor analysis on HADOOP

([93]), and inferences of graphical models in large scale.



(a) PageRanks of LinkedIn (b) PageRanks of Wikipedia

Figure 5.14: The evolution of PageRanks.(a) The distributions of PageRanks fol-
lows power-law. However, the exponent at year 2003, which is around the gelling
point, is much different from year 2004, which are after the gelling point. The
exponent increases after the gelling point and becomes stable. Also notice the
maximum PageRank after the gelling point is about 10 times larger than that be-
fore the gelling point due to the emergence of the giant connected component. (b)
Again, the distributions of PageRanks follows power-law. Since the gelling point
is before year 2005, the three plots shows similar characteristics: the maximum
PageRanks and the slopes are similar.



Figure 5.15: Radius of real graphs. X axis: radius. Y axis: number of nodes.
(Row 1) LinkedIn from 2003 to 2006. (Row 2) Wikipedia from 2005 to 2007.
(Row 3) DBLP, flickr, Epinion. Notice that all the radius plots have the bimodal
structure due to many smaller connected components(first mode) and the giant
connected component(second mode).





Chapter 6

Two heads better than one: Pattern
Discovery in Time-evolving
Multi-Aspect Data

6.1 Introduction

Data streams have received attention in different communities. In the standard
stream model, each value is associated with a (timestamp, stream-ID) pair. How-
ever, the stream-ID itself may have some additional structure. For example, it may
be decomposed into (location-ID, type) ≡ stream-ID. We call each such compo-
nent of the stream model an aspect. The number of discrete values each aspect
may take is called its dimensionality, e.g., a location aspect has dimensionality 2,
where the individual dimensions are longitude and latitude. Figure 6.1 illustrates
the structure within a stream model. This additional structure should not be ig-
nored in data exploration tasks since it may provide additional insights. Motivated
by the idea that the typical “flat-world” view may not be sufficient. How should
we summarize such high dimensional and multi-aspect streams? Some of the re-
cent developments are along these lines such as Dynamic Tensor Analysis [142]
and Window-based Tensor Analysis [141], which incrementalize the standard of-
fline tensor decompositions such as Tensor PCA (Tucker 2) and Tucker. However,
existing literature adopts the same model for all aspects. Specifically, PCA-like
operation is performed on each aspect to project data onto maximum variance sub-
spaces. Yet, different aspects have different characteristics, which often require
different models. For example, maximum variance summarization is good for

111



Figure 6.1: A stream model contains multiple aspects such as time, location, and type.
Each aspect has a dimensionality, which indicates the number of discrete values it may
take.
correlated streams such as correlated readings on sensors in a vicinity; time and
frequency based summarizations such as Fourier and wavelet analysis are good
for the time aspect due to the temporal dependency and seasonality. In this paper,
we propose a 2-heads Tensor Analysis (2Heads) to allow more than one model or
summarization scheme on dynamic tensors. In particular, 2Heads adopts a time-
frequency based summarization, namely wavelet transform, on the time aspect
and a maximum variance summarization on all other aspects. As shown in exper-
iments, this hybrid approach provides a powerful mining tool to study dynamic
tensors, and also outperforms all the others in both space and speed.

Contributions Our proposed approach, 2Heads, provides a general framework
of mining and compression for multi-aspect streams. 2Heads has the following
key properties:

• Multi-model summarization: It engages multiple summarization schemes
on various aspects of dynamic tensors.

• Streaming scalability: It is fast, incremental and scalable for the streaming
environment.

• Error Guarantee: It can efficiently compute the approximation error based
on the orthogonality property of the models.

• Space efficiency: It provides an accurate approximation which achieves very
high compression ratios (over 20:1), on all real-world data in our experi-
ments.

We demonstrate the efficiency and effectiveness of our approach in discovering
and tracking the key patterns and compressing dynamic tensors on real environ-
mental sensor data.



6.2 Related Work

Tensor Mining: Vasilescu and Terzopoulos [157] introduced the tensor singu-
lar value decomposition for face recognition. Xu et al. [165] formally presented
the tensor representation for principal component analysis and applied it for face
recognition. Kolda et al. [91] apply PARAFAC on Web graphs to generalize the
hub and authority scores for Web ranking through term information. Acar et al. [3]
applied different tensor decompositions, including Tucker, to the problem of dis-
cussion in online chatrooms. Chew et al [35] uses PARAFAC2 to study the multi-
language translation probem. J.-T. Sun et al. [144] used Tucker to analyze Web
site click-through data. J. Sun et al. [142, 141] have written a pair of papers on
dynamically updating a Tucker approximation, with applications ranging from
text analysis to environmental and network modeling. All the aforementioned
methods share a common characteristic: they assume one type of model for all
modes/aspects.

Wavelet: The discrete wavelet transform (DWT) [41] has been proved to be
a powerful tool for signal processing, like time series analysis and image analysis
[125].

Wavelets have an important advantage over the Discrete Fourier transform
(DFT): they can provide information from signals with both periodicities and oc-
casional spikes (where DFT fails). Moreover, wavelets can be easily extended
to operate in a streaming, incremental setting [66] as well as for stream mining
[120]. However, none of them work on high-order data as we do.

6.3 Background

Principal Component Analysis:
PCA finds the best linear projections of a set of high dimensional points to

minimize least-squares cost. More formally, given n points represented as row
vectors xi|ni=1 ∈ RN in an N dimensional space, PCA computes n points yi|ni=1 ∈
Rr (r � N ) in a lower dimensional space and the factor matrix U ∈ RN×r such
that the least-squares cost e =

∑n
i=1 ‖xi −Uyi‖22 is minimized.1

Discrete Wavelet Transform: The key idea of wavelets is to separate the
input sequence into low frequency part and high frequency part and to do that
recursively in different scales. In particular, the discrete wavelet transform (DWT)

1Both x and y are row vectors.



over a sequence x ∈ RN gives a N wavelet coefficients which encode the averages
(low frequency parts) and differences (high frequency parts) at all lgN+1 levels.

(a) (b)

Figure 6.2: Example: (a) Haar wavelet transform on x = (1, 2, 3, 3)T. The wavelet
coefficients are highlighted in the shaded area. (b) the same process can be viewed as
passing x through two filter banks.

In the matrix presentation, the analysis step is

b = Ax (6.1)

where x ∈ RN is the input vector, b ∈ RN consists of the wavelet coefficients. At
i-th level, the pair of low- and high-pass filters, formally called filter banks, can
be represented as a matrix, say Ai. For the Haar wavelet example in Figure 6.2,
the first and second level filter banks A1 and A0 are the following, where r = 1√

2
:

A1 =


r r

r r
r −r

r −r

 A0 =


r r
r −r

1
1


The final analysis matrix A is a sequence of filter banks applied on the input

signal, i.e., A = A0A1. Conversely, the synthesis step is x = Sb. Note that
synthesis is the inverse of analysis, S = A−1. When the wavelet is orthonormal
like Haar wavelet, Daubechies, the synthesis is simply the transpose of analysis,
i.e., S = AT.

Multilinear Analysis: A tensor of order M closely resembles a data cube with
M dimensions. Formally, we write an M -th order tensor as X ∈ RN1×N2×···×NM

where Ni (1 ≤ i ≤ M ) is the dimensionality of the i-th mode (“dimension” in
OLAP terminology).

Matricization The mode-d matricization of an M -th order tensor X ∈ RN1×N2×···×NM

is the rearrangement of a tensor into a matrix by keeping index d fixed and flatten



the other indices. Therefore, the mode-d matricization X(d) is in RNd×(
Q

i6=d Ni).
The mode-d matricization X is denoted as unfold(X, d) or X(d). Similarly, the in-
verse operation is denoted as fold(X(d)). In particular, we have X = fold(unfold(X, d)).

Mode Product The d-mode product of a tensor X ∈ Rn1×n2×···×nM with a ma-
trix A ∈ Rr×nd is denoted as X×d A which is defined element-wise as

(X×d A)i1...id−1jid+1...iM =

nd∑
id=1

xi1×i2×···×iM ajid

The process is equivalent to a three step procedure: first we matricize X along
mode-1, then we multiply it with U, and finally we fold the result back as a
tensor. In general, a tensor Y ∈ Rr1×···×rM can multiply a sequence of matrices
U(i)|Mi=1 ∈ Rni×ri as: Y×1 U1 · · ·×M UM ∈ Rn1×···×nM , which can be compactly

written as Y
M∏
i=1

×i
Ui. Furthermore, the notation for Y×1 U1 · · · ×i−1 Ui−1 ×i+1

Ui+1 · · · ×M UM (i.e. multiplication of all Ujs except the i-th) is simplified as
Y

∏
j 6=i

×j
Uj .

Tucker Decomposition Given a tensor X ∈ RN1×N2×···×NM , we can perform a
higher-order principal component analysis so that the tensor is decomposed into
a core tensor and a set of factor matrices. Formally, we can reconstruct X using a
sequence of mode products between the core tensor G ∈ RR1×R2×···×RM and the
matrices U(i) ∈ RNi×Ri|Mi=1. We use the following standard notation for Tucker
decomposition:

X = G

M∏
i=1

×i
U(i) ≡ JG ;U(i)|Mi=1K

We will refer to the decomposed tensor JG ;U(i)|Mi=1K as a Tucker Tensor. If a
tensor X ∈ RN1×N2×···×NM can be decomposed (even approximately), the storage
space can be reduced from

∏
NM

i=1 to
∏

RM
i=1 +

∑M
i=1(Ni ×Ri), see Figure 6.3.

6.4 Problem Formulation
In this section, two problems addressed in this paper are formally defined: Static
2-heads tensor mining and Dynamic 2-heads tensor mining. To facilitate the dis-
cussion, we refer all aspects except for the time aspect as “spatial aspects.”



6.4.1 Static 2-heads tensor mining
In the static case, the data are represented as a single tensor D ∈ RW×N1×N2×···×NM .
Notice the first mode corresponds to the time aspect which is qualitatively differ-
ent from the spatial aspects. The mining goal is to compress the tensor D while
revealing the underlying patterns on both temporal and spatial aspects. More
specifically, we define the problem as the follows:

Problem 1 (Static tensor mining) Given a tensor D ∈ RW×N1×N2×···×NM , find
the Tucker tensor D̂ ≡ JG ;U(i)|Mi=0K such that 1) both the space requirement
of D̂ and the reconstruction error e =

∥∥∥D− D̂
∥∥∥

F
/ ‖D ‖F are small; 2) both

spatial and temporal patterns are reviewed through the process.

The central question is how to construct the suitable Tucker tensor, more specif-
ically, what model to be used on each mode. As we will show shortly, different
models on time and spatial aspects can serve much better for time-evolving appli-
cations.

The intuition of Problem 1 is illustrated in Figure 6.3. The mining operation
aims at compressing the original tensor D and revealing patterns. Both goals are
achieved through the specialized Tucker decomposition, 2-heads Tensor Analysis
(2Heads) as presented shortly in Section 6.5.1.

Figure 6.3: The input tensor D ∈ RW×N1×N2×···×NM (time-by-location-by-type)
is approximated by a Tucker tensor JG ;U(i)|2i=0K. Note that the time mode will
be treated differently to the rest as shown later.

6.4.2 Dynamic 2-heads tensor mining
In the dynamic case, the input data are evolving along time aspect. More specifi-
cally, given a dynamic tensor D ∈ Rn×N1×N2×···×NM , the size of time aspect (first
mode) n is increasing over time n→∞. In particular, n is the current time. In



another words, new slices along time mode are continuously arriving. To mine
the time-evolving data, a time-evolving model is required for space and running
time efficiency. In this paper, we adopt a sliding window model which is popular
in data stream processing.

Before we formally introduce the problem, two terms have to be defined:

Definition 3 (Time slice) A time slice Di of D ∈ Rn×N1×N2×···×NM is the i-th
slice along the time mode (first mode). In particular, Dn is the current slice.

Note that given a tensor D ∈ Rn×N1×N2×···×NM , every time slice is actually a
tensor with one less mode, i.e., Di ∈ RN1×N2×···×NM .

Definition 4 (Tensor window) A tensor window D(n,W ) consists of a set of the
tensor slices ending at time n with size W , or formally,

D(n,W ) ≡ {Dn−W+1, . . . ,Dn} ∈ RW×N1×N2×···×NM . (6.2)

Figure 6.4: Tensor window D(n,W ) consists of the most recent W time slices in
D. Dynamic tensor mining utilizes the old model for D(n−1,W ) to facilitate the
model construction for new window D(n,W ).

Figure 6.4 shows an example of tensor window. We now formalize the core
problem, Dynamic 2-heads Tensor Mining. The goal is to incrementally compress
the dynamic tensor while extracting spatial and temporal patterns and their corre-
lations. More specifically, we aim at incrementally maintaining a Tucker model
for approximating tensor windows.



Problem 2 (Dynamic 2-heads Tensor Mining) Given the current tensor window
D(n,W ) ∈ RW×N1×N2×···×NM and the old Tucker model for D(n− 1, W ), find the
new Tucker model D̂(n,W ) ≡ JG ;U(i)|Mi=0K such that 1)the space requirement of

D̂ is small 2)the reconstruction error e =
∥∥∥D− D̂

∥∥∥
F

is small (see Figure 6.4).
3)both spatial and temporal patterns are reviewed through the process.

6.5 Multi-model Tensor Analysis

6.5.1 Static 2 Heads Tensor Mining
Many applications as listed before exhibit strong spatio-temporal correlations in
the input tensor D. Strong spatial correlation is usually reflected in great benefit
on dimensionality reduction. For example, if all temperature measurements in a
building exhibit the same trend, PCA can compress the data into one principal
component (a single trend is enough to summarize the data). Strong temporal cor-
relation means periodic pattern and long-term dependency. This is better viewed
in the frequency domain through Fourier or wavelet transform.

Hence, we propose 2-Heads Tensor Analysis (2Heads), which combines both
PCA and wavelet approaches to compress the multi-aspect data by exploiting the
spatio-temporal correlation. The algorithm involves three steps:

• Spatial compression: we perform alternating minimization on all modes
except for time mode.

• Temporal compression: we perform discrete wavelet transform on the result
of spatial compression.

Spatial compression uses the idea of alternating least square (ALS) method on
all projection matrices except for time mode. More specifically, it initializes all
projection matrices to be identity matrix I; then it iteratively update the projection
matrices of every spatial mode until convergence. The results are the spatial core
tensor X ≡D

∏
i6=0

×i
U(i) and the projection matrices U(i)|Mi=1.

Temporal compression perform frequency-based compression (e.g., wavelet
transform) on the spatial core tensor X. More specifically, we obtain the spatio-
temporal core tensor G ≡ X ×0 U(0) where U(0) is the DWT matrix such as
the one shown in Figure 6.22. The entries in the core tensor G are the wavelet

2U(0) is never materialized but recursively computed on the fly.



coefficients. We then drop the small entries(coefficients) in G, result denoted as
Ĝ, such that the reconstruction error is just below the error threshold θ. Finally,
we obtain Tucker approximation D̂ ≡ JĜ ;U(i)|Mi=0K. The pseudo-code is listed
in Algorithm 6.5.1.

By definition, the error e =
∥∥∥D− D̂

∥∥∥2

F
/ ‖D ‖2F . It seems that we need to

construct the tensor D̂ and compute the difference between D and D̂ in order to
calculate the error e. Actually, the error e can be computed efficiently based on the
following theorem. Computational cost of Algorithm 6.5.1 comes from the mode
product and diagonalization, which is O(

∑M
i=1(W

∏
j<i Rj

∏
k≥i Nk +N3

i )). The
dominating factor is usually the mode product. Therefore, the complexity of Al-
gorithm 6.5.1 can be simplified as O(WM

∏M
i=1 Ni).

Theorem 12 (Error estimation) Given a tensor D and its Tucker approximation
described in 6.5.1, D̂ ≡ JG ;U(i)|Mi=0K, we have

e =

√
1−

∥∥∥ Ĝ
∥∥∥2

F
/ ‖D ‖2F (6.3)

where Ĝ is the core tensor after zero-out the small entries and the error estimation
e ≡

∥∥∥D− D̂
∥∥∥

F
/ ‖D ‖F .

Proof 13 See appendix.

6.5.2 Dynamic 2 Heads Tensor Mining

For the time-evolving case, the idea is to explicitly utilize the overlapping infor-
mation of the two consecutive tensor windows to update the co-variance matrices
C(i)|Mi=1. More specifically, given a tensor window D(n,W ) ∈ RW×N1×N2×···×NM ,
we aim at removing the effect of the old slice Dn−W and adding in that of the new
slice Dn.

This is hard to do because of the iterative optimization. Recall that the ALS
algorithm searches for the projection matrices. We approximate the ALS search
by updating projection matrices independently on each mode. This is similar to
high-order SVD [43]. This process can be efficiently updated by maintaining the
co-variance matrices on each mode.



More formally, the co-variance matrix along the ith mode is as follows:

C
(i)
old =

[
X
D

]T [
X
D

]
= XTX + DTD

where X is the matricization of the old tensor slice Dn−W and D is the matri-
cization of tensor window D(n−1,W−1) (i.e., the overlapping part of tensor window
D(n−1,W ) and D(n,W )). Similarly, C

(i)
new = DTD + YTY, where Y is the matri-

cization of the new tensor Dn. As a result, the update can be easily achieved as
follows:

C(i) ← C(i) −DN−W
T
(i)DN−W(i) + DN

T
(i)DN−W(i)

where DN−W(i)(DN(i)) is the mode-i matricization of tensor slice Dn−W (Dn).
The updated projection matrices are just the eigenvectors of the new co-variance

matrices. Once the projection matrices are updated, the spatio-temporal compres-
sion remains the same. One observation is that Algorithm 6.5.2 can be performed
in batches. The only change is to update co-variance matrices involving multi-
ple tensor slices. The batch update can significantly lower the amortized cost for
updating projection matrices as well as spatial and temporal compression.



6.5.3 Mining Guide

We now illustrate practical aspects concerning our proposed methods.
The goal of 2Heads is to find high correlated dimensions within the same

aspect and across different aspects, and monitor them over time.

Spatial correlation A projection matrix gives the correlation information among
dimensions for a single aspect. More specifically, the dimensions of the i-th as-
pect can be grouped based on their values in the columns of U(i). The entries with
high absolute values in a column of U(i) correspond to the important dimensions
in the same concept. The SENSOR type example shown in Table 6.1 correspond
to two concepts in the sensor type aspect — see Section 6.6.1 for details.

Temporal correlation Unlike spatial correlations that reside in the projection
matrices, temporal correlation is reflected in the core tensor. After spatial com-
pression, the original tensor is transformed into the spatial core tensor X — line
4 of Algorithm 2. Then temporal compression applies on X to obtain the (spatio-
temporal) core tensor G which consists of dominant wavelet coefficients of the
spatial core. By focusing the largest entry (wavelet coefficient) in the core tensor,
we can easily identify the dominant frequency components in time and space —
see Figure 6.6 for more discussion.



Correlations across aspects The interesting aspect of 2Heads is that the core
tensor Y provides indications on the correlations of different dimensions across
both spatial and temporal aspects. More specifically, a large entry in the core
means a high correlation between the corresponding columns in the spatial aspects
at specific time and frequency. For example, the combination of Figure 6.5(b), the
first concept of Table 6.1 and Figure 6.6(a) gives us the main trend in the data,
which is the daily periodic trend of the environmental sensors in a lab.

6.6 Experiment Evaluation

In this section, we will evaluate both mining and compression aspects of 2Heads
on real environment sensor data. We first describe the dataset, then illustrate our
mining observation on the real data in Section 6.6.1 and finally show some quan-
titative evaluation in Section 6.6.2.

The sensor data consists of voltage, humidity, temperature, and light intensity
at the 54 different locations in the Intel Berkeley Lab (see Figure 6.5(a)). It has
1093 timestamps, one for each 30 minutes. The dataset is a 1093× 54× 4 tensor
corresponding to 22 days of data.

6.6.1 Mining Case-studies

Here, we illustrate how 2Heads can reveal interesting spatial and temporal corre-
lations in sensor data.

Spatial Correlations The SENSOR dataset consists of two spatial aspects, namely,
the location and sensor types. Interesting patterns are revealed on both aspects.

For the location aspect, the most dominant trend is scattered uniformly across
all locations. As shown in Figure 6.5(b), the weights (the blue bars) on all loca-
tions have about the same height. For sensor type aspect, the dominant trend is
shown as the 1st concept in Table 6.1. It indicates that 1) the positive correlation
among temperature, light intensity and voltage level and 2) negative correlation
between humidity and the rest. This corresponds to the regular daily periodic pat-
tern: During the day, temperature and light intensity go up but humidity drops
because the A/C is on. During the night, temperature and light intensity drop but
humidity increases because A/C is off. The voltage is always positively correlated
with the temperature due to the design of MICA2 sensors.



(a) Lab floor map (b) SENSOR Concept 1 (c) SENSOR Concept 2

Figure 6.5: Spatial correlation: Blue bars indicate that positive weights of the
corresponding sensors and red bars indicate negative weights. (a) shows the floor
plan of the lab, where the numbers indicate the sensor locations. (b) shows the
distribution of the most dominant trend, which is more or less uniform. This
suggests that all the sensors follow the same pattern over time, which is the daily
periodic trend (see Figure 6.6 for more discussion) (c) shows the second most
dominant trend, which gives the negative weights to the bottom left corner and
positive weights to the rest. It indicates relatively low humidity and temperature
measurements because of the vicinity to the A/C.

Sensor-Type voltage humidity temperature light-intensity
concept 1 .16 -.15 .28 .94
concept 2 .6 .79 .12 .01

Table 6.1: SENSOR type correlation

The second strongest trend is shown in Figure 6.5(c) and the 2nd concept in
Table 6.1 for the location and type aspects, respectively. The red bars on Fig-
ure 6.5(c) indicate negative weights on a few locations close to A/C (mainly at
the bottom and left part of the room). This affects the humidity and temperature
patterns at those locations. In particular, the 2nd concept has a strong emphasis
on humidity and temperature, see the 2nd concept in Table 6.1.

Temporal Correlations Temporal correlation can be best described by frequency-
based methods such as wavelet. 2Heads provides a way to capture the global
temporal correlation that traditional wavelet cannot capture.

Figure 6.6(a) shows the strongest tensor core stream of SENSOR dataset for
the first 500 timestamps and its scalogram of the wavelet coefficients. Large
wavelet coefficients (indicated by dark color) concentrate on low frequency part



0 50 100 150 200 250 300 350 400 450 500
−10

−5

0

5

10

15
original core

scalogram

le
v
e

l

time
50 100 150 200 250 300 350 400 450 500

1

2

3

4

5

6

0 50 100 150 200 250 300 350 400 450 500
−10

0

10

20

30

40

50
original core

scalogram

le
v
e

l

time
50 100 150 200 250 300 350 400 450 500

1

2

3

4

5

6

(a) SENSOR 1st period: “normal” (b) SENSOR last period: “low battery”

Figure 6.6: SENSOR time-frequency break-down on the dominant components:
Notice that the scalogram of (a) only has the low-frequency components (dark
color); but the scalogram of (b) has frequency penetration from 300 to 340 due to
the sudden shift

(levels 1-3), which correspond to the daily periodic trend in the normal operation.
Figure 6.6(b) shows the strongest tensor core stream of SENSOR dataset for

the last 500 timestamps and its corresponding scalogram. Notice large coefficients
penetrate all frequency levels from 300 to 350 timestamps due to the erroneous
sensor readings caused by low battery level of several sensors

Summary In general, 2Heads provides an effective and intuitive framework to
identify both spatial and temporal correlation, which no traditional methods in-
cluding Tucker and wavelet can do by themselves. Furthermore, 2Heads can track
the correlations over time. All the above examples confirmed the great value of
2Heads for mining real-world, high-order data streams.

6.6.2 Quantitative evaluation
In this section, we quantitatively evaluate the proposed methods in both space and
CPU cost.

Performance Metrics We use the following three metrics to quantify the min-
ing performance:
Approximation accuracy: This is the key metric that we use to evaluate the
quality of the approximation. It is defined as: accuracy = 1− relative SSE, where



relative SSE is defined as ‖D− D̂‖/‖D‖.
Space ratio: We use this metric to quantify the required space usage. It is defined
as the ratio of the size of the approximation D̂ and that of the original data D.
Note that the approximation D̂ is stored in the factorized forms, e.g., Tucker form
including core and projection matrices.
CPU time: We use the CPU time spent in computation as the metric to quan-
tify the computational expense. All the experiments are performed on the same
dedicated server with four 2.4GHz Xeon CPUs and 48GB memory.

Method Parameters Two parameters affect the quantitative measurements of
all the methods: window size is the scope of the model in time. For example,
window size = 500 means that a model will be built and maintained for most
recent 500 timestamps.
step size is the number of timestamps before a new model is constructed.

Methods for comparison The following four methods are compared in experi-
ments: Tucker: It performs Tucker2 decomposition on spatial aspects only.

Wavelets: It performs Daubechies-4 compression on every stream. For exam-
ple, 54×4 wavelet transforms are performed on Motes dataset since it has 54×4
stream pairs in Motes.

Static 2Heads: It is one of the proposed method in the paper. It uses PCA-like
summarization on spatial aspects and wavelet on temporal aspect. The computa-
tional cost is similar to the sum of Tucker and wavelet methods.

Dynamic 2Heads: It is the main practical contribution of this paper, due to
handling efficiently the Dynamic 2Heads Tensor Mining Problem.

Computational efficiency The computation time can be affected by two param-
eters: window size and step size.

In general the CPU time increases linearly as the window size as shown in
Figure 6.7(a).

Wavelets are faster than Tucker, because wavelets perform on individual streams,
while Tucker operates on all streams simultaneously. The cost of Static 2Heads is
roughly the sum of wavelets and Tucker decomposition, because it performs both
spatial and temporal compression in a straightforward manner.

Dynamic 2Heads performs the same functionality as Static 2Heads . But,
it is as fast as wavelets by exploiting the computational trick which avoids the
computational penalty that static-2Heads has.



200 400 600 800 1000
1

2

3

4

5

6

Window size

ti
m

e
 (

s
e

c
)

 

 

2Heads
Wavelet
Tucker

0 0.1 0.2 0.3 0.4 0.5
1.5

2

2.5

Elapsed time

C
P

U
 t
im

e
 (

s
e

c
)

 

 

sta−2Heads
dyn−2Heads

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

space ratio

ac
cu

ra
cy

 

 

2Heads
Wavelet
Tucker

(a) Window size (b) Step size (c) Space vs. Accuracy

Figure 6.7: a): (step size is 20% window size): but 2Heads is faster than Tucker
and is similar to wavelet. However, 2Heads reveals much more information than
wavelet and Tucker without incurring computational penalty. b): Step Size vs.
CPU time: (window size 500) Dynamic 2Heads requires much less computational
time than Static 2Heads. c): Space vs. Accuracy: 2Heads and wavelet requires
much smaller space to achieve high accuracy(e.g., 99%) than Tucker, which in-
dicates the importance temporal aspect. 2Heads is slightly better than wavelet
because it captures both spatial and temporal correlations. Wavelet and Tucker
only provide partial view of the data.

The computational cost of Dynamic 2Heads increases as the step size, because
the overlapping portion between two consecutive tensor windows decreases. De-
spite that, for all different step sizes, dynamic-2Heads requires much less CPU
time as shown in Figure 6.7(b).

Space efficiency The space requirement can be affected by two parameters: ap-
proximation accuracy and window size. For all methods, Static and Dynamic
2Heads give comparable results, therefore, we omit Static 2Heads in the follow-
ing figures.

Remember the fundamental trade-off between the space utilization and ap-
proximation accuracy. For all the methods, the more space, the better the approx-
imation. However, the scope between space and accuracy varies across different
methods. Figure 6.7(b) illustrates the accuracy as a function of space ratio for
both datasets.

2Heads achieves very good compression ratio and it also reveals spatial and
temporal patterns as shown in previous section.

Tucker captures spatial correlation but does not give a good compression since
the redundancy is mainly in time aspect. Tucker method does not provide a



smooth increasing curve as space ratio increases. First, the curve is not smooth
because Tucker can only add or drop one component/column including multiple
coefficients at a time unlike 2Heads and wavelets which allow to drop one co-
efficient at a time. Second, the curve is not strictly increasing because there are
multiple aspects, different configurations with similar space requirement can lead
to very different accuracy.

Wavelets give a good compression but do not reveal any spatial correlation.
Furthermore, the summarization is done on each stream, which cannot easily re-
veal global patterns such as the ones shown in Figure 6.6.

Summary Dynamic 2Heads is efficient in both space utilization and CPU time
compared to several all other methods including Tucker, wavelets and Static 2Heads
. Dynamic 2Heads is a powerful mining tool combining only strong points from
well studied methods while at the same time being computational efficient and
applicable to real world situations where data arrive constantly. Therefore, it is
as fast as wavelets, it reveals both spatial and temporal patterns as well as their
correlations and subsequently achieves good compression.

6.7 Conclusions
We focus on mining of time-evolving streams, when they are associated with mul-
tiple aspects, like sensor-type (temperature, humidity), and sensor-location (in-
door, on-the-window, outdoor). The main difference from old and recent tensor-
proposed analysis is that the time aspect needs special treatment, which tradi-
tional “one size fit all” type of tensor analysis ignores. Our proposed approach,
2Heads, addresses exactly this problem, by applying the most suitable models to
each aspect: wavelet-like for time, and PCA/tensor-like for the categorical-valued
aspects.

2Heads has the following key properties:

• Mining patterns: By combining the advantages of existing methods is able
to reveal interesting spatio-temporal patterns.

• Multi-model summarization: It engages multiple summarization schemes
on multi-aspects streams, which gives us a more powerful view to study the
high-order data, that traditional models cannot achieve.

• Error Guarantees: We proved that it can accurately (and quickly) measure
the approximation error, using the orthogonality property of the models.



• Streaming capability: 2Heads is fast, incremental and scalable for the stream-
ing environment.

• Space efficiency: It provides an accurate approximation which achieves very
high compression ratios (over 20:1 ratio), on the real-world datasets we used
in our experiments.

Finally, we illustrated the mining power of 2Heads through two case stud-
ies on real world datasets. We also performed its scalability through extensive
quantitative experiments. Future work includes exploiting alternative methods for
categorical aspects, such as Nonnegative Matrix Factorization.

6.8 Appendix
Theorem 13 (Error estimation)

Proof 14 Let us denote G and Ĝ as the core tensor before and after zero-outing
the small entries (G = D

∏
×i

U(i)).

e2 =

∥∥∥∥∥D− Ĝ

M∏
i=0

×i
U(i)T

∥∥∥∥∥
2

F

/ ‖D ‖2F def. of D̂

=

∥∥∥∥∥D

M∏
i=0

×i
U(i)T − Ĝ

∥∥∥∥∥
2

F

/ ‖D ‖2F unitary trans

=
∥∥∥G− Ĝ

∥∥∥2

F
/ ‖D ‖2F def. of G

=
∑

x

(gx − ĝx)
2/ ‖D ‖2F def. of F-norm

= (
∑

x

g2
x −

∑
x

ĝ2
x)/ ‖D ‖2F def. of Ĝ

= 1− ‖ ĝ ‖2F / ‖D ‖2F def. of F-norm



Chapter 7

MACH: Fast Randomized Tensor
Decompositions

7.1 Introduction

Numerous real-world problems involve multiple aspect data. For example fMRI
(functional magnetic resonance imaging) scans, one of the most popular neu-
roimaging techniques, result in multi-aspect data: voxels × subjects × trials ×
task conditions × timeticks. Monitoring systems result in three-way data, ma-
chine id × type of measurement × timeticks. The machine depending on the
setting can be for instance a sensor (sensor networks) or a computer (computer
networks). Large data volumes generated by personalized web search, are fre-
quently modeled as three way tensors, i.e., users × queries × web pages.

Ignoring the multi-aspect nature of the data by flattening them in a two-way
matrix and applying an exploratory analysis algorithm, e.g., singular value de-
composition (SVD) ([76]), is not optimal and typically hurts significantly the per-
formance (e.g., [158]). The same holds in the case of applying e.g., SVD on
different 2-way slices of the tensor as observed by [94]. On the contrary, multi-
way data analysis techniques succeed in capturing the multilinear structures in the
data, thus achieving better performance than the aforementioned ideas.

Tensor decompositions have found the last years many applications in different
scientific disciplines. Indicatively, computer vision and signal processing (e.g.,
[158, 111]), neuroscience (e.g., [20]), time series anomaly detection ((e.g., [143]),
psychometrics (e.g., [156]), chemometrics (e.g., [137]), graph analysis (e.g., [89,
140]), data mining (e.g., [146]). Two recent surveys of tensor decompositions and

129



their applications are [90],[5], with a wealth of references on the topic.
Two broad families of decompositions are used in the multiway analysis, each

with its own characteristics: the canonical decomposition (parallel factor analy-
sis), a.k.a. CANDECOMP (PARAFAC) [28, 72], and the Tucker family of decom-
positions [156]. In this chapter, we focus on the latter. The Tucker decomposition
can be thought of as the generalization of the Singular Value Decompositions
(SVD) to the multiway case. Even if there exist algorithms which cast the Tucker
decomposition as a nonlinear optimization problem (e.g., [131], [4]), currently in
practice the approach followed is the Alternating Least Squares, which involves
the computationally expensive SVD. To speed up tensor decompositions, random-
ized algorithms [53, 106] have appeared in the recent years. This family of ran-
domized algorithms are generalizations of fast low rank approximation methods
[48, 105, 52], adapted appropriately to the multiway case.

In this chapter we propose a simple randomized algorithm that speedups sig-
nificantly the Tucker decomposition while at the same time with guarantees re-
sults in an accurate estimate of the tensor decomposition. MACH, the proposed
method, can be applied both to “post-mortem” data analysis and to tensor streams
to perform data mining tasks such as network anomaly detection, and in general
the set of mining tasks which rely on the study of a low rank Tucker approxima-
tion. MACH is useful when the data does not fit into the memory and also in
tensor streams, such as computer monitoring systems, which was also was also
the main motivation behind this work. Specifically, one of the monitoring systems
of Carnegie Mellon University, monitors and uses data mining techniques to de-
tect failures. Currently, it monitors over 100 hosts in a prototype data center at
CMU. It uses the SNMP protocol and it stores the monitoring data in an mySQL
database. Mining anomalies in this system is performed using the SPIRIT method
and its extension in the multiway case, i.e., the two heads method which uses
a Tucker decomposition and treats the time aspect using wavelets [122, 75, 143].
Applying the aforementioned methods on the large volumes of data is a challenge.

It is worth outlining at this point that in many data mining applications pre-
serving a constant number of principal components almost the same is of high
practical value: a low rank approximation typically captures a significant propor-
tion of the variance in many real world processes and outliers can be detected by
examining their position relative to the subspace spanned by the PCs.

It is also worth noting that despite many cases where the formulated tensor
is sparse, i.e., few non zero elements as observed in [92], there exist real world
problems where the tensor is dense. As table 7.1 shows, for both monitoring
system we use in the experimental section 7.4, the resulting tensors are very dense.



This is the typical case in a monitoring system, since at timetick k we receive a
measurement j for machine i, resulting in a non zero in (i, j, k).

name Percentage of non-zeros
Sensor 85 %

Network Data [47]
Computer 81%

Network Data ([75])

Table 7.1: Tensors from monitoring system are typically dense.

The main contributions of this chapter are summarized as in the following:

• MACH, a randomized algorithm to compute the Tucker decomposition of a
tensor X .

• The following theorem, which is our main theoretical result.

Theorem 14 Let X ∈ RI1×I2×...×Id a d-mode tensor. Let In ≥ 76, I2
n ≤∏d

j=1 Ij for n = 1 . . . d,

α = max
j

∏d
m=1 Im

Ij

, b = max
i1,...,id

|Xi1,...,id |

For p ≥ (8logα)4

α
let X̂ ∈ RI1×I2×...×Id whose entries are independently

distributed as: X̂i1,...,id =
Xi1,...,id

p
with probability p, otherwise 0. Let

Ĝ, A(1), . . . , A(1) be the (R1, . . . , Rd) Higher Order Singular Value Decom-
position of X̂ , where A(m) is a Im × Rm matrix for m = 1 . . . d and
Ĝ the core tensor R1 × . . . × Rd, Rm ≤ Im. With probability at least∏d

i=1(1− exp(−19
∑d

k=1,k 6=i log Ik)) the following holds:

||X − X̂ || ≤ 4b
d∑

m=1

√
Ri

p

∏d
k=1 Ik

Ij

(7.1)

• Experiments on monitoring systems, where we demonstrate the success of
our proposed algorithm.



The outline of the chapter is the following: in Section 7.2 we briefly present
the necessary theoretical background, in Section 7.3 we describe and analyze the
proposed method and in Section 7.4 we present the experimental results. We
conclude in Section 7.5.

7.2 Background
In this section we present briefly the background behind tensors and low rank
approximations. Table 7.2 shows the symbols and the abbreviations we use and
their explanation.

Symbol Definition and Description
d number of modes
Ij dimensionality of j-th mode
X ,Y , . . . ∈ RI1×...×Id d-mode tensor (calligraphic)
A, U, . . . ∈ Rm×n matrices (upper case)
α, β, ai,j, xi1,...,id scalars (lower case)
×n mode-n product
HOOI Higher Order Orthogonal

Iteration [99]
HOSVD Higher Order Singular

Value Decomposition [42]

Table 7.2: Symbols

7.2.1 Tensors

Historical Remarks Tensors traditionally have been used in physics (e.g., stress
and strain tensors). After Einstein presented the theory of general relativity tensor
analysis became popular. Tucker introduced tensor analysis in psychometrics
[156] (Tucker family). Harshman [72] and Carrol and Chang [28] independently
proposed the canonical decomposition of a tensor (CANDECOMP family). These
two families of decompositions come with different names, see [90]. The differ-
ence between them is visualized for a three way tensor in figure 7.2.1. In the
following we will focus on Tucker decompositions.



Figure 7.1: CANDECOMP/PARAFAC and Tucker tensor decompositions.

Tensor Concepts Let X ∈ RI1×I2×...×Id be a multiway array. We will call X
a tensor, i.e., we will use the terms multiway array and tensor interchangeably.
The order of a tensor is the number of dimensions, also known as ways, modes
or aspects and is equal to d for tensor X . The dimensionality of the j-th mode is
equal to Ij .

The norm of tensor X is defined to be the square root of the sum of all entries
of the tensor squared, i.e.,

||X || =

√√√√ I1∑
j1=1

I2∑
j2=1

. . .

Id∑
jd=1

x2
j1,...,jd

(7.2)

As we see the norm of a tensor is the straight-forward generalization of the Frobe-
nius norm of a matrix (2 modes) to N modes.

The inner product of two tensors with the same number of modes and equal
dimensionality per mode, X ,Y ∈ RI1×I2×...×Id , is defined by the following equa-
tion:

〈X, Y 〉 =

I1∑
j1=1

I2∑
j2=1

. . .

Id∑
jd=1

xj1,...,jd
yj1,...,jd

(7.3)

Observe that equation 7.2 can equivalently be written as ||X || =
√
〈X, X〉 A

tensor fiber (slice) is a one (two)-dimensional fragment of a tensor, obtained by
fixing all indices but one (two). For more details on tensor fibers and slices, see
[90].



Matricization along mode k, results in a Ik×
∏d

j=1,j 6=k Ij matrix. The (i1, . . . , id)

element is mapped to (ik, j) where j = 1 +
∑d

q=1,q 6=k(iq − 1)Jq where Jq =∏q−1
m=1,m6=k Im. Figure 7.2.1 shows the concept of matricization for a three-way

tensor. The operation of matricization naturally introduces the concept of a vec-
tor containing ranks (R1, . . . , Rd): Ri is equal to the rank of the X(i), the matrix
resulting by the matricization of the tensor X along the i-th mode.

Figure 7.2: Matricization of a three-way I1× I2× I3, I3 = 3, tensor along the first
mode. The three slices are denoted with different color.

The n-mode product of X with a matrix M ∈ RJ×In is denoted by X ×n M
and is a tensor of size I1 × I2 × . . . In−1 × J × In+1 × . . . Id. Specifically,

(X ×n M)i1...in−1jin+1...id =
In∑

in=1

xi1...in−1jin+1...idmjin (7.4)

Some important facts concerning n-mode products, is the following:

X ×m A×n B = X ×n B ×m A, m 6= n (7.5)

The importance of this equation lies in the fact that the order of execution of
the tensor matrix products does not play any role, as long as the multiplications
are along different modes. When we multiply a tensor and two matrices along the
same mode the following equation holds:

X ×m A×m B = X ×m (BA) (7.6)

Furthermore, if UUT = I then ||A×n U || = ||A||.



The rank R of the d-way tensor X is the minimum number of d-linear compo-
nents to fit X exactly, i.e.,:

X =
R∑

m=1

c(1)
m ◦ c(2)

m ◦ . . . ◦ c(d)
m (7.7)

where c
(j)
1 , . . . , c

(j)
R are the R components for the j-th mode and ◦ denotes

the tensor product. Even if the above generalization is a straightforward gener-
alization of the rank of a matrix, the concept of the tensor rank is special. For
example, for a matrix A ∈ R2×2 the column rank Rc and the row rank Rr are
equal Rc = Rr = r to the matrix rank r. Furthermore, r ≤ 2. However for a
tensor X ∈ R2×2×2 the rank can be 2 or 3 [95]. Therefore the word rank can have
different meanings: a) The individual rank, i.e., for a specific instance of a tensor
what is R? b) The typical rank is the rank that we almost surely observe. For
example for 2 × 2 × 2 tensors the typical rank is {2, 3}. c) Vector of dimensions
(R1, . . . , Rd). The value of Ri is equal to the rank of the matricized version X(i)

of the tensor.
Consider figure 7.2.1, which depicts a three mode tensor X ∈ RI1×I2×I3 . The

PARAFAC/CANDECOMP model is given by equation 7.8, whereas the Tucker
model is given by equation 7.9.

Xijk =
R∑

r=1

αirbjrcqrλr + eijk (7.8)

Xijk =
P∑

p=1

Q∑
q=1

R∑
r=1

αipbjqckrgpqr + eijk (7.9)

Few brief remarks on the above two models: a) In terms of the fit, the Tucker
family is at least as good as the PARAFAC/CANDECOMP since as we see from
the above equations, the PARAFAC model can be viewed as a restrictive Tucker
model, where the core tensor G is superdiagonal, i.e., gpqr 6= 0 only if p = q = r.
However, it is worth noting that better fit is not necessarily optimal (see [137],
Ch.7) b) The Tucker model does not result in unique solutions since it has rota-
tional freedom. Typically one chooses a solution that satisfies a certain criterion,
as the all-orthogonality core tensor: 〈G(m, :, :), G(n, :, :)〉 = 〈G(:, m, :), G(:, n, :)〉 =
〈G(:, :, m), G(:, :, n)〉 = 0 when m 6= n ([42]). c) Basic concepts as the unique-
ness of the canonical tensor decomposition, degeneracy of the rank, border rank



were not discussed here. A good reference is the [90] and the related references
therein.

In the following we focus on the Tucker family. Compressing n out of the d
modes of a tensor results in a Tucker-n decomposition ([85]). For example, for a
three mode tensor we can have the Tucker1, Tucker2 and Tucker3 decomposition.
In the following we discuss algorithms for the Tucker3 decomposition and briefly
state some facts about Tucker2 and Tucker1 decompositions. Generalization to d
modes is straightforward.

Tucker3 Algorithms The algorithm which should be used to compute the Tucker3
decomposition of a tensor depends on whether or not the data is noise free. In the
former case, an exact, closed form solution exists, whereas in the latter case the
alternating least squares algorithm (ALS) is frequently used. However, it is worth
noting that even in cases where there is noise in the data, the closed form solution
a.k.a. as HOSVD [90, 42] is satisfactory in practice [103].

Let X ∈ RI1×I2×I3 and (R1, R2, R3) the vector containing the desired ap-
proximation ranks along each mode. In the case of noise-free data, the algorithm
matricizes the tensor along each mode and computes the Rk top left singular vec-
tors k = 1, 2, 3. Let Ak be the Ik × Rk matrix containing in its columns those
vectors. The core tensor is computed with the following equation:

G = X ×1 AT
1 ×2 AT

2 ×3 AT
3 (7.10)

In the case of noise in the data, one performs the alternating least squares al-
gorithm. To solve the nonlinear optimization problem that tries to optimize the fit
of the low rank approximation with respect to the original tensor, one converts the
problem into a linear one, by “fixing” all modes but one and optimizing along that
mode. This method is also known as Higher Order Orthogonal Iteration (HOOI).
This procedure is continued until some stopping criterion is met, i.e., ε improve-
ment in terms of fit.

7.2.2 SVD and Fast Low Rank Approximation
Any matrix A ∈ Rm×n can be written as a sum of rank 1 matrices, i.e., A =∑r

i=1 σiuiv
T
i , where ui, i = 1 . . . r (left singular vectors) and vi, i = 1 . . . r (right

singular vectors) are orthonormal and the singular values are ordered in decreasing
order σ1 ≥ . . . ≥ σr > 0. Here r is the rank of A. We denote with Ak the k-rank
approximation of A, i.e., Ak =

∑k
i=1 σiuiv

T
i . Among all matrices C ∈ Rm×n



of rank at most k, Ak is the one that minimizes ||A − C||F ([76]). Since the
computational cost of the SVD is high, O(min (m2n, n2m)) for the full SVD
approximation algorithms that give a close to the optimal solution Ak have been
developed. Frieze, Kannan and Vempala showed in a breakthrough paper [63] that
an approximate SVD can be computed by a randomly chosen submatrix of A. It is
remarkable that the complexity does not depend at all on m, n. Their Monte-Carlo
algorithm with probability at least 1− δ outputs a matrix Â of rank at most k that
satisfies the following equation:

||A− Â||2F ≤ ||A− Ak||2F + ε||A||2F (7.11)

Drineas et al. in [51] showed how to find such a low rank approximation in
O(mk2) time. A lot of work has followed on this problem. Here, we present
the results of Achlioptas-McSherry [7] which are used in our work1. The main
theorem that is of interest to us is theorem 15.

Theorem 15 (Achlioptas-McSherry [7]) Let A be any m×n matrix where 76 ≤
m ≤ n and let b = maxij |Aij|. For p ≥ (8 log n)4/n. Let Â be a random
m × n matrix whose entries are independently distributed, with Âij = Aij/p
with probability p and 0 with probability 1 − p. Then with probability at least
1-exp(19(log n)4), the matrix N = A− Â satisfies the following two equations:

||Nk||2 < 4b

√
n

p
(7.12)

||Nk||F < 4b

√
nk

p
(7.13)

Randomized Tensor Algorithms As already discussed, the most computation-
ally expensive step for the Tucker decomposition is the SVD part. To alleviate this
cost, two randomized algorithms which select columns according to a biased prob-
ability distribution for tensor decompositions [53] have been proposed, extending
the results of [48]and [52] to the multiway case and TensorCUR [106], the exten-
sion of the CUR method [105] in n-modes. Roughly speaking, the bounds proved
are of the form 7.11.

1We call our proposed method MACH, to acknowledge the fact that it is based on the
Achlioptas-McSherry work.



7.3 Proposed Method

(a) (b) (c)

Figure 7.3: (a) Top approximate Principal Component (PC) of the “machine-id”
mode using the sampling MACH method vs. the exact PC. The PC was com-
puted using a Tucker3 decomposition of the three-way tensor machine id x type
of measurement x timeticks, formulated by data from the CMU monitoring system
[75]. MACH used approximately 10% of the original data. Pearson’s correlation
coefficient is shown in the inset, and is almost equal to the ideal value 1. Such
PCs are of high practical value since they are used in outlier detection algorithms
[75, 122, 143]. (b) Exact PC for the time aspect (c) Approximate PC using MACH.
Pearson’s correlation coefficient for the two time series equals 0.9772, again close
to the ideal value 1.

The proof of theorem 14 follows:

Proof 15 Let E = X − X̂ . By the definition of HOSVD and the properties of the
n-mode product we have: X̂ = X ×1 A(1)A(1)T . . . ×d A(d)A(d)T . By using the
triangular inequality for a norm and the fact that Pi = A(i)A(i)T for i = 1, . . . , d
is a projection matrix Pi = P 2

i , we have the following:
||E|| = ||X − X ×1 A(1)A(1)T . . . ×d A(d)A(d)T || = ||X − X ×d A(d)A(d)T +

X ×d A(d)A(d)T −X ×1 A(1)A(1)T . . .×d A(d)A(d)T || ≤ ||X −X ×d A(d)A(d)T ||+
||(X − X ×1 A(1)A(1)T . . . ×d−1 A(d−1)A(d−1)T ) ×d A(d)A(d)T || ≤ ||X − X ×d

A(d)A(d)T ||+ ||X − X ×1 A(1)A(1)T . . .×d−1 A(d−1)A(d−1)T ||
Applying for i = 1 . . . (d − 1) the same procedure the right hand term of the

right hand side of the inequality, we get that the norm of the residuals tensor E
satisfied the following equation:
||E|| ≤

∑d
i=1 ||X − X ×d A(d)A(d)T || =

∑d
i=1 ||X(i) − X̂(i)||

This follows from the fact that the norm of a tensor does not change by matri-
cization and from the orthonormality properties of the left singular vectors. Now,



Figure 7.4: Principal component for the “type of measurement” aspect for the In-
tel Lab Berkeley sensor network [47]. Ids 1 to 4 correspond to voltage, humidity,
temperature and light intensity. As we observe, the PC captures the correlations
between those types and MACH succeeds with p=0.1 in preserving them accu-
rately.

using theorem 15 we further bound each of the d terms in the summation. Specif-
ically, given our conditions In ≥ 76, I2

n ≤
∏d

j=1 Ij and α = maxj

Qd
m=1 Im

Ij
,

we assure that the assumptions of theorem 15. Furthermore, observe that b =
maxi1,...,id |Xi1,...,id | is the maximum for every matricized version of our tensor.
Thus we obtain the following:

||E|| ≤ 4b
∑d

m=1

√
Ri

p

Qd
k=1 Ik

Im

Remarks (1) Theorem 14 suggests algorithm 1, MACH-HOSVD. The algo-
rithm takes as input a tensor X ∈ RI1×...×Id and a vector containing the desired
ranks of approximation along each mode (R1, . . . , Rd). MACH tosses a coin for
each non-zero entry Xi1,...,id of the tensor with probability p of keeping it and
1 − p for zeroing it. In case of keeping it, we reweigh it, i.e., Xi1,...,id ←

Xi1,...,id

p
.

(2) Frequently small Ri’s result in a satisfactory approximation of the original
tensor. The sparsification process we propose due to its simplicity is easily par-
allelizable and can easily be adapted to the streaming case [75] by tossing a coin
each time a new measurement arrives. (3) Picking the optimal p in a real world
application can be hard, especially in the context we are interested in, i.e., moni-
toring systems, where data is constantly arriving. Another potential problem are
the assumptions of the theorem which may be violated. Fortunately, this does
not render MACH algorithm useless. On the contrary, picking a constant p even



for small tensors which do not satisfy the conditions of the theorem result turns
out to be accurate enough to perform data analysis. Furthermore, constant factor
speedups and space savings are significant in many real-world applications. (4)
The expected speedup depends on the under-the-hood method to find the top k
singular vectors of a matrix. Lanczos method [69] is such a method. Recently,
approximation algorithms approximate the k-rank approximation of a matrix in
linear time [129]. Thus, if such a fast algorithm is used, the expected speedup is
1
p
. (5) Theorem 14 refers to the HOSVD of a tensor. We can apply the same

idea to the HOOI. This results in algorithm 2. We do not analyze the performance
of algorithm 2 here, since it would require the analysis of the convergence of the
alternating least squares method which does not exist yet. As we will show in the
experimental section 7.4, MACH-HOOI gives satisfactory results.

Algorithm 8 MACH-HOSVD
Require: X ∈ RI1×...×Id

Require: (R1, . . . , Rd)
Require: p
{MACH}
for each Xi1,...,id , ij = 1 . . . Ij toss a coin with probability p of keeping it.
if success then
Xi1,...,id ←

Xi1,...,id

p

else
Xi1,...,id ← 0

end if{HOSVD}
for i = 1 to d do

A(i) ← Ri leading left singular vectors of X(i)

end for
G ← X ×1 A(1)T ×2 A(2)T . . .×d A(d)T

return G, A(1), . . . , A(d)

7.4 Experiments

Experimental Setup We used the Tensor Toolbox [15], which contains MAT-
LAB implementations of the HOSVD and the HOOI. Our experiments ran in a
2GB RAM, Intel(R) Core(TM)2 Duo CPU at 2.4GHz Ubuntu Linux machine.



Algorithm 9 MACH-HOOI
Require: X ∈ RI1×...×Id

Require: (R1, . . . , Rd)
Require: p
{MACH}
for each Xi1,...,id , ij = 1 . . . Ij toss a coin with probability p of keeping it.
if success then
Xi1,...,id ←

Xi1,...,id

p

else
Xi1,...,id ← 0

end if
{HOOI}
initialize A(k) ∈ RIk×Rk for k = 1 . . . d using HOSVD
repeat

for i = 1 to d do
Y ← X ×1 A(1)T . . .×i−1 A(i−1)T ×i+1 A(i+1)T . . .×d A(d)T

A(i) ← Ri leading left singular vectors of Y(i)

end for
until fit stops improving or maximum number of iterations is reached
G ← X ×1 A(1)T ×2 A(2)T . . .×d A(d)T

return G, A(1), . . . , A(d)

Table 7.3 describes the datasets we use. The motivation of our method as al-
ready mentioned, is to provide a practical algorithm for tensor decompositions
which involve streams, such as monitoring systems. It is also worth noting that
the assumptions of theorem 14 do not hold. Nonetheless, results are close to ideal.
Finally, in this section we report experimental results for the MACH-HOOI. The
reason is that Tucker decompositions using alternating least squares are used in
practice more than the HOSVD and also, they have already been successfully ap-
plied to the real world problems we consider in the following [143]. The results
for HOSVD are consistently same or better than the results we report in this sec-
tion.

7.4.1 Monitoring computer networks
As already mentioned in Section 7.1, a prototype monitoring system in Carnegie
Mellon University uses data mining techniques successfully [122, 75, 143] to spot



Figure 7.5: Principal component for the time aspect using MACH with p=0.1.
Daily periodicity appears to be the dominant latent factor for the time aspect.

name I1 × I2 × I3

Sensor 54-by-4-by 5385
Network Data ([47])

Intemon 100-by-12-by-10080
Data ([75])

Table 7.3: Dataset summary. The third aspect is the time aspect.

anomalies and detect correlations among different types of measurements and ma-
chines. Analyzing and applying these techniques on large amounts of data how-
ever is a challenge. A natural way to model this type of data is a three-way tensor,
i.e., machine id×type of measurement×time. The data on which we apply MACH
is a tensor X ∈ R100×12×10080. The first aspect is the “machine id” aspect and the
second is the “type of measurement” aspect (bytes received, unicast packets re-
ceived, bytes sent, unicast packets sent, unprivileged CPU utilization, other CPU
utilization, privileged CPU utilization, CPU idle time, available memory, number
of users, number of processes and disk usage). The third aspect is the time aspect.
Figure 7.3(a) plots the Principal Component (PC) of the “machine id” aspect af-
ter performing a Tucker3 decomposition using MACH versus the exact PC. Our
sampling approach thus kept approximately the 10% of the original data. As the
figure shows, the results are close to ideal and similar results hold for the other
few top PCs. Specifically, Pearson’s correlation coefficient is 0.99, close to the
ideal 1 which is the perfect linear correlation between the exact and the approx-
imate top PC. This fact is important since these PCs can be used to find outlier
machines, which ideally would be the machines that face a functionality problem.



0.9 0.9

(a) SENSOR Concept 1 (b) SENSOR Concept 1 using MACH

Figure 7.6: (a) shows the distribution of the most dominant trend, (b) shows
the distribution of the most dominant trend, using MACH algorithm with p=0.1.
Pearson’s correlation coefficient equals 0.93, and thus the qualitative analysis of
the dominant sensor/spatial correlations remains unaffected by the sparsification.
Colored bars indicate positive weights of the corresponding sensors. As suggested
in [143], e values assigned to the sensors are more or less uniform suggesting that
the dominant trend is strongly affected by the daily periodicity.

Figures 7.3(b), 7.3(c) show the exact top and the MACH PC for the time aspect.
Pearson’s correlation coefficient is equal to 0.98. We observe that there is no clear
periodic pattern in this time series. The important fact is that MACH using only
10% of the data, results in a good approximation. This is of significant practical
value and can be used also in conjunction with DTA [142] to perform dynamic
tensor analysis in larger time windows.

7.4.2 Environmental Monitoring

In this application we use data from the Intel Berkeley Research Lab sensor net-
work [47]. The data is collected from 54 Mica2Dot sensors which measure at
every timetick humidity, temperature, light and voltage.

It has been shown in [143] that tensor decompositions along with a wavelet
analysis can efficiently capture anomalies in the network, i.e., battery outage as
well as spatial and measurement correlations. In this section we show that a ran-



dom subset about 10% of the initial data volume suffices to perform the same
analysis as if we had used the whole tensor.

Figure 7.4 shows the correlations revealed by the the principal component for
the “type of measurement” aspect. As we observe, voltage, temperature and light
intensity are positively correlated, whereas at the same time the latter types of
measurement are negatively correlated with humidity. This is because during the
day, temperature and light intensity go up but humidity drops because the air con-
ditioning system is on. Similarly , during the night, temperature and light intensity
go down but humidity increases because the air conditioning system is off. Fur-
thermore, the positive correlation between voltage and temperature is due to the
design of MICA2 sensors. As we observe again, MACH gives the same qualitative
analysis by examining the principal component. Pearson’s correlation coefficient
is close to the ideal value 1. Figure 5 shows the principal component for the time
aspect. A periodic pattern is apparent and corresponds to the daily periodicity.
Performing a Tucker2 decomposition as suggested by [143] and plotting the fiber
of the core tensor corresponding to the principal components of the tensor for the
“sensor id” and “measurement type” mode, the results are again close to ideal.
Figure 7.6(a) shows the principal component for the “sensor id” aspect using the
exact Tucker decomposition and Figure 7.6(b) using MACH with p=0.1. The top
component captures spatial correlations and MACH preserves them with a ran-
dom subset of size approximately 10% of the original data. Pearson’s correlation
coefficient is equal to 0.93.

7.4.3 Discussion

The above experiments show MACH results in a good approximation of the de-
sired low rank Tucker approximation of a tensor. Similar result hold for the other
few top principal components and for the HOSVD. As already mentioned, the
above applications were selected since it has already been shown by previous
work that Tucker decompositions and SVD can detect anomalies and correlations.
Thus, the main goal of this section is -rather than introducing new applications-
to show that keeping a small random subset of the tensor can give good results.
Speedups due to the small size of the two datasets and the implementation was
less than the expected 10× (running fact C code for the sparsification and then
applying the tensor toolbox resulted in 2-3× faster performance). However, as the
size of the tensor grows bigger the speedup should become apparent. Choosing
the best possible p is an issue. We use a constant p, i.e., p=10% in our experi-



ments2. Constant p’s are of significant practical value in such settings where it
is not clear how one should set p to sparsify the underlying tensor optimally. For
“post-mortem” data analysis, one can try setting lower values for p according to
theorem 14.

7.5 Conclusions
Tensor decompositions are useful in many real world problems. Here we fo-
cused on the Tucker decompositions. We proposed a simple randomized algo-
rithm MACH which is easily parallelizable and adapted to online streaming sys-
tems since it simply tosses a coin for each entry of the tensor. Specifically, our
contributions include:

• A new algorithm MACH, which keeps a small percentage of the entries of a
tensor, and still produces an accurate low rank approximation of the tensor.
We performed a theoretical analysis of the algorithm in Theorem 14 and of
its speedup in Section 7.3.

• An experimental evaluation of MACH on two real world datasets, both gen-
erated from a monitoring system, where we showed that for constant values
of p excellent performance.

This algorithm will be incorporated in the PEGASUS library, a graph and
tensor mining system for handling large amounts of data using Hadoop, the open
source version of MapReduce [44].

2For both applications that value of p, gives excellent results. If we set p=5% for the first
application results get significantly worse whereas for the second results remain good.

145



146



Bibliography

[1] Hadoop information. http://hadoop.apache.org/.

[2] Hama website. http://incubator.apache.org/hama/.

[3] E. Acar, S. A. Çamtepe, M. S. Krishnamoorthy, and B. Yener. Modeling
and multiway analysis of chatroom tensors. In ISI, pages 256–268, 2005.

[4] E. Acar, T. G. Kolda, and D. M. Dunlavy. An optimization approach for fit-
ting canonical tensor decompositions. Technical Report SAND2009-0857,
Sandia National Laboratories, 2009.

[5] E. Acar and B. Yener. Unsupervised multiway data analysis: A literature
survey. TKDE, 21(1):6–20, 2009.

[6] D. Achlioptas and F. McSherry. Fast computation of low rank matrix ap-
proximation. In STOC, 2001.

[7] D. Achlioptas, F. McSherry, and F. M. Fast computation of low rank matrix
approximations, 2001.

[8] C. C. Aggarwal, Y. Xie, and P. S. Yu. Gconnect: A connectivity index for
massive disk-resident graphs. PVLDB, 2009.

[9] G. Aggarwal, M. Data, S. Rajagopalan, and M. Ruhl. On the streaming
model augmented with a sorting primitive. Proceedings of FOCS, 2004.

[10] N. Alon and S. Joel. The Probabilistic Method. Wiley Interscience, New
York, second edition, 2000.

[11] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximat-
ing the frequency moments. In STOC ’96: Proceedings of the twenty-eighth

147



annual ACM symposium on Theory of computing, pages 20–29, New York,
NY, USA, 1996. ACM.

[12] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximat-
ing the frequency moments, 1996.

[13] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cy-
cles. Algorithmica, 17(3):209–223, 1997.

[14] B. Awerbuch and Y. Shiloach. New connectivity and msf algorithms for
ultracomputer and pram. ICPP, 1983.

[15] B. W. Bader and T. G. Kolda. Efficient MATLAB computations with sparse
and factored tensors. Technical Report SAND2006-7592, Sandia National
Laboratories, Albuquerque, NM and Livermore, CA, 2006.

[16] D. A. Bader and K. Madduri. A graph-theoretic analysis of the human
protein-interaction network using multicore parallel algorithms. Parallel
Comput., 2008.

[17] Z. Bar-Yosseff, R. Kumar, and D. Sivakumar. Reductions in streaming al-
gorithms, with an application to counting triangles in graphs. In SODA
’02: Proceedings of the thirteenth annual ACM-SIAM symposium on Dis-
crete algorithms, pages 623–632, Philadelphia, PA, USA, 2002. Society for
Industrial and Applied Mathematics.

[18] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient semi-streaming
algorithms for local triangle counting in massive graphs. In Proceedings of
ACM KDD, Las Vegas, NV, USA, August 2008.

[19] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient semi-streaming
algorithms for local triangle counting in massive graphs. In KDD, 2008.

[20] C. F. Beckmann and S. M. Smith. Tensorial extensions of independent
component analysis for multisubject fmri analysis. Neuroimage, 2005.

[21] A. A. Benczúr and D. R. Karger. Randomized approximation schemes for
cuts and flows in capacitated graphs. CoRR, cs.DS/0207078, 2002.

[22] K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla. On syn-
opses for distinct-value estimation under multiset operations. SIGMOD,
2007.

148



[23] B. Bollobas. Random Graphs. Cambridge University Press, 2001.

[24] S. Brin and L. Page. The anatomy of a large-scale hypertextual (web)
search engine. In Proc. 7th International World Wide Web Conference
(WWW7)/Computer Networks, pages 107–117, 1998. Published as Proc.
7th International World Wide Web Conference (WWW7)/Computer Net-
works, volume 30, number 1-7.

[25] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. Graph structure in the web. Computer Networks
33, 2000.

[26] L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and
C. Sohler. Counting triangles in data streams. In PODS ’06: Proceedings of
the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 253–262, New York, NY, USA, 2006. ACM.

[27] L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and
C. Sohler. Counting triangles in data streams. In PODS ’06: Proceedings of
the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 253–262, New York, NY, USA, 2006. ACM.

[28] J. Carroll and J.-J. Chang. Analysis of individual differences in multidimen-
sional scaling via an n-way generalization of eckart-young decomposition.
Psychometrika, 1970.

[29] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou. Scope: easy and efficient parallel processing of massive data
sets. VLDB, 2008.

[30] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos. Fully
automatic cross-associations. In KDD, 2004.

[31] M. Charikar, S. Chaudhuri, R. Motwani, and V. Narasayya. Towards esti-
mation error guarantees for distinct values. PODS, 2000.

[32] C. Chen, X. Yan, F. Zhu, and J. Han. gapprox: Mining frequent approxi-
mate patterns from a massive network. ICDM, 2007.

[33] J. Chen, O. R. Zaiane, and R. Goebel. Detecting communities in social
networks using max-min modularity. SDM, 2009.

149



[34] J. Cheng, J. X. Yu, B. Ding, P. S. Yu, and H. Wang. Fast graph pattern
matching. ICDE, 2008.

[35] P. A. Chew, B. W. Bader, T. G. Kolda, and A. Abdelali. Cross-language
information retrieval using parafac2. In KDD, pages 143–152, New York,
NY, USA, 2007. ACM Press.

[36] F. Chung, L. Lu, and V. Vu. Eigenvalues of random power law graphs.
Annals of Combinatorics, 7(1):21–33, June 2003.

[37] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions
in empirical data. SIAM Review, 51:661, 2009.

[38] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. In STOC ’87: Proceedings of the nineteenth annual ACM
conference on Theory of computing, pages 1–6, New York, NY, USA, 1987.
ACM.

[39] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The
MIT Press, 1990.

[40] S. Daruru, N. M. Marin, M. Walker, and J. Ghosh. Pervasive parallelism
in data mining: dataflow solution to co-clustering large and sparse netflix
data. In KDD, 2009.

[41] I. Daubechies. Ten Lectures on Wavelets. Capital City Press, Montpelier,
Vermont, 1992. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA.

[42] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular
value decomposition. SIAM J. Matrix Anal. Appl, 21:1253–1278, 2000.

[43] L. De Lathauwer, B. D. Moor, and J. Vandewalle. A multilinear singular
value decomposition. SIAM Journal on Matrix Analysis and Applications,
21(4):1253–1278, 2000.

[44] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters.

[45] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. OSDI ’04, pages 137–150, December 2004.

150



[46] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. OSDI, 2004.

[47] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and W. Hong.
Model-driven data acquisition in sensor networks. In VLDB ’04, pages
588–599, 2004.

[48] A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. Matrix approx-
imation and projective clustering via volume sampling. In SODA, 2006.

[49] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigen-
vectors a multilevel approach. IEEE TPAMT, 2007.

[50] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-
clustering. In The Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 03), Washington, DC, Au-
gust 24-27 2003.

[51] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering in
large graphs and matrices. In SODA ’99, pages 291–299, 1999.

[52] P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo algorithms
for matrices ii: Computing a low-rank approximation to a matrix. SIAM J.
on Computing, 2004.

[53] P. Drineas and M. W. Mahoney. A randomized algorithm for a tensor-based
generalization of the singular value decomposition. In Linear Algebra and
its Applications, 2005.

[54] R. Dunbar. Grooming, gossip, and the evolution of language. Harvard
Univ Press, October 1998.

[55] J.-P. Eckmann and E. Moses. Curvature of co-links uncovers hidden the-
matic layers in the world wide web. PNAS, 99(9):5825–5829, April 2002.

[56] P. Erdős and A. Rényi. On random graphs. Publicationes Mathematicae,
1959.

[57] T. Falkowski, A. Barth, and M. Spiliopoulou. Dengraph: A density-based
community detection algorithm. Web Intelligence, 2007.

151



[58] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships
of the internet topology. In SIGCOMM, pages 251–262, 1999.

[59] I. J. Farkas, I. Derenyi, A.-L. Barabasi, and T. Vicsek. Spectra of ”real-
world” graphs: Beyond the semi-circle law. Physical Review E, 64:1, 2001.

[60] J.-A. Ferrez, K. Fukuda, and T. Liebling. Parallel computation of the diam-
eter of a graph. In HPCSA, 1998.

[61] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base
applications. Journal of Computer and System Sciences, 1985.

[62] A. Frieze, R. Kannan, and S. Vempala. Fast monte-carlo algorithms for
finding low-rank approximations. In In Proceedings of the 39th Annual
IEEE Symposium on Foundations of Computer Science, pages 370–378,
1998.

[63] A. Frieze, R. Kannan, and S. Vempala. Fast monte-carlo algorithms for
finding low-rank approximations. J. ACM, 51(6):1025–1041, 2004.

[64] Z. Füredi and J. Komlós. The eigenvalues of random symmetric matrices.
Combinatorica, 1(3):233–241, 1981.

[65] M. N. Garofalakis and P. B. Gibbon. Approximate query processing: Tam-
ing the terabytes. VLDB, 2001.

[66] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. One-pass
wavelet decompositions of data streams. IEEE Transactions on Knowledge
and Data Engineering, 15(3):541–554, 2003.

[67] R. G. Godsil C.D. Algebraic Graph Theory. Springer, 2001.

[68] G. Golub and C. Van Loan. Matrix Computations. JohnsHopkinsPress,
Baltimore, MD, second edition, 1989.

[69] G. H. Golub and C. F. Van Loan. Matrix computations (3rd ed.). Johns
Hopkins University Press, Baltimore, MD, USA, 1996.

[70] J. Greiner. A comparison of parallel algorithms for connected components.
Proceedings of the 6th ACM Symposium on Parallel Algorithms and Archi-
tectures, June 1994.

152



[71] R. L. Grossman and Y. Gu. Data mining using high performance data
clouds: experimental studies using sector and sphere. KDD, 2008.

[72] R. Harshman. Foundations of the parafac procedure: Models and con-
ditions for an ”exploratory” multimodal factor analysis. UCLA Working
Papers in Phonetics, 1970.

[73] P. Hintsanen and H. Toivonen. Finding reliable subgraphs from large prob-
abilistic graphs. PKDD, 2008.

[74] D. Hirschberg, A. Chandra, and D. Sarwate. Computing connected compo-
nents on parallel computers. Communications of the ACM, 22(8):461–464,
1979.

[75] E. Hoke, J. Sun, J. D. Strunk, G. R. Ganger, and C. Faloutsos. Intemon:
Continuous mining of sensor data in large-scale self-* infrastructures. ACM
SIGOPS Operating Systems Review, 40(3), 2003.

[76] R. Horn and C. R. Johnson. Matrix Analysis. pub-CAMBRIDGE, 1985.

[77] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. In STOC ’77:
Proceedings of the ninth annual ACM symposium on Theory of computing,
pages 1–10, New York, NY, USA, 1977. ACM.

[78] D. J. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.

[79] H. Jowhari and M. Ghodsi. New streaming algorithms for counting trian-
gles in graphs. In COCOON, pages 710–716, 2005.

[80] U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec. Ra-
dius plots for mining tera-byte scale graphs: Algorithms, patterns, and ob-
servations. SIAM International Conference on Data Mining, 2010.

[81] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale graph
mining system - implementation and observations. ICDM, 2009.

[82] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning for irreg-
ular graphs. SIAM Review, 41(2):278–300, 1999.

[83] Y. Ke, J. Cheng, and J. X. Yu. Top-k correlative graph mining. SDM, 2009.

153



[84] N. S. Ketkar, L. B. Holder, and D. J. Cook. Subdue: Compression-based
frequent pattern discovery in graph data. OSDM, August 2005.

[85] H. Kiers. Some procedures for displaying results from three-way methods.
Journal of chemometrics, 2000.

[86] J. H. Kim and V. H. Vu. Concentration of multivariate polynomials and its
applications. Combinatorica, 20(3):417–434, 2000.

[87] J. Kleinberg. Authoritative sources in a hyperlinked environment. In Proc.
9th ACM-SIAM Symposium on Discrete Algorithms, 1998. Also appears as
IBM Research Report RJ 10076, May 1997.

[88] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer
Programming. Addison-Wesley, Reading, Massachusetts, second edition,
10 Jan. 1981.

[89] T. Kolda and B. Bader. The TOPHITS model for higher-order web link
analysis. In SDM Workshops, 2006.

[90] T. G. Kolda and B. W. Bader. Tensor decompositions and applications.
SIAM Review, 51(3), September 2009. In press.

[91] T. G. Kolda, B. W. Bader, and J. P. Kenny. Higher-order web link analysis
using multilinear algebra. In ICDM, 2005.

[92] T. G. Kolda and J. Sun. Scalable tensor decompositions for multi-aspect
data mining. In ICDM 2008, pages 363–372, December 2008.

[93] T. G. Kolda and J. Sun. Scalable tensor decompsitions for multi-aspect data
mining. ICDM, 2008.

[94] P. M. Kroonenberg. Applied Multiway Data Analysis. Wiley, 2008.

[95] J. B. Kruskal. Rank, decomposition, and uniqueness for 3-way and n-way
arrays. pages 7–18, 1989.

[96] M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse
graph. SIAM Data Mining Conference, 2004.

[97] R. Lämmel. Google’s mapreduce programming model – revisited. Science
of Computer Programming, 70:1–30, 2008.

154



[98] M. Latapy. Main-memory triangle computations for very large (sparse
(power-law)) graphs. Theor. Comput. Sci., 407(1-3):458–473, 2008.

[99] L. D. Lathauwer, B. D. Moor, and J. Vandewalle. On the best rank-1 and
rank-(r1,r2,. . .,rn) approximation of higher-order tensors. SIAM J. Matrix
Anal. Appl., 21(4):1324–1342, 2000.

[100] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, and C. Faloutsos. Realistic,
mathematically tractable graph generation and evolution, using kronecker
multiplication. PKDD, pages 133–145, 2005.

[101] J. Leskovec and C. Faloutsos. Scalable modeling of real graphs using kro-
necker multiplication. In ICML ’07: Proceedings of the 24th international
conference on Machine learning, pages 497–504, New York, NY, USA,
2007. ACM.

[102] J. Leskovec and E. Horvitz. Planetary-scale views on an instant-messaging
network, Mar 2008.

[103] D. Luo, H. Huang, and C. Ding. Are tensor decomposition solutions
unique? on the global convergence of hosvd and parafac algorithms, 2009.

[104] J. Ma and S. Ma. Efficient parallel algorithms for some graph theory prob-
lems. JCST, 1993.

[105] M. W. Mahoney and P. Drineas. Cur matrix decompositions for improved
data analysis. Proceedings of the National Academy of Sciences, 2009.

[106] M. W. Mahoney, M. Maggioni, and P. Drineas. Tensor-cur decompositions
for tensor-based data. In KDD, 2006.

[107] M. Mcglohon, L. Akoglu, and C. Faloutsos. Weighted graphs and discon-
nected components: patterns and a generator. KDD, 2008.

[108] M. Mcpherson, L. S. Lovin, and J. M. Cook. Birds of a feather: Homophily
in social networks. Annual Review of Sociology, 27(1):415–444, 2001.

[109] M. Mihail and C. Papadimitriou. the eigenvalue power law, 2002.

[110] A. Mislove, M. Marcon, K. Gummadi, P. Druschel, and B. Bhattacharjee.
Measurement and analysis of online social networks. page 42, 2007.

155



[111] D. Muti and S. Bourennane. Survey on tensor signal algebraic filtering.
Signal Process., 87(2):237–249, 2007.

[112] M. E. J. Newman. The structure and function of complex networks. SIAM
Review, 45:167–256, 2003.

[113] M. E. J. Newman. Power laws, pareto distributions and zipf’s law. Con-
temporary Physics, (46):323–351, 2005.

[114] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a
not-so-foreign language for data processing. In SIGMOD ’08, pages 1099–
1110, New York, NY, USA, 2008.

[115] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. Anf: a fast and scalable tool
for data mining in massive graphs. KDD, pages 81–90, 2002.

[116] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu. Automatic multimedia
cross-modal correlation discovery. ACM SIGKDD, Aug. 2004.

[117] G. Pandurangan, P. Raghavan, and E. Upfal. Using pagerank to characterize
web structure. COCOON, August 2002.

[118] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala. Latent
semantic indexing: A probabilistic analysis. In PODS, 1998.

[119] C. H. Papadimitriou and M. Yannakakis. The clique problem for planar
graphs. Inf. Process. Lett., 13(4/5):131–133, 1981.

[120] S. Papadimitriou, A. Brockwell, and C. Faloutsos. Adaptive, hands-off
stream mining. VLDB, Sept. 2003.

[121] S. Papadimitriou and J. Sun. Disco: Distributed co-clustering with map-
reduce. ICDM, 2008.

[122] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery
in multiple time-series. In VLDB ’05, pages 697–708. VLDB Endowment,
2005.

[123] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. Dewitt, S. Madden, and
M. Stonebraker. A comparison of approaches to large-scale data analysis.
SIGMOD, June 2009.

156



[124] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data:
Parallel analysis with sawzall. Scientific Programming Journal, 2005.

[125] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numer-
ical Recipes in C. Cambridge University Press, 2nd edition, 1992.

[126] T. Qian, J. Srivastava, Z. Peng, and P. C. Sheu. Simultaneouly finding
fundamental articles and new topics using a community tracking method.
PAKDD, 2009.

[127] S. Ranu and A. K. Singh. Graphsig: A scalable approach to mining signif-
icant subgraphs in large graph databases. ICDE, 2009.

[128] T. Sarlos. Improved approximation algorithms for large matrices via ran-
dom projections. In FOCS ’06: Proceedings of the 47th Annual IEEE Sym-
posium on Foundations of Computer Science, pages 143–152, Washington,
DC, USA, 2006. IEEE Computer Society.

[129] T. Sarlos. Improved approximation algorithms for large matrices via ran-
dom projections. In FOCS ’06, pages 143–152, Washington, DC, USA,
2006. IEEE Computer Society.

[130] V. Satuluri and S. Parthasarathy. Scalable graph clustering using stochastic
flows: applications to community discovery. KDD, 2009.

[131] B. Savas and L.-H. Lim. Quasi-Newton methods on Grassmannians and
multilinear approximations of tensors. Submitted to SIAM Journal on Op-
timization, 2009.

[132] T. Schank. Algorithmic Aspects of Triangle-Based Network Analysis. Phd
in computer science, University Karlsruhe, 2007.

[133] T. Schank and D. Wagner. Finding, counting and listing all triangles in
large graphs, an experimental study. In WEA, pages 606–609, 2005.

[134] Y. Shiloach and U. Vishkin. An o(logn) parallel connectivity algorithm.
Journal of Algorithms, pages 57–67, 1982.

[135] N. Shrivastava, A. Majumder, and R. Rastogi. Mining (social) network
graphs to detect random link attacks. ICDE, 2008.

157



[136] B. P. Sinha, B. B. Bhattacharya, S. Ghose, and P. K. Srimani. A parallel
algorithm to compute the shortest paths and diameter of a graph and its vlsi
implementation. IEEE Trans. Comput., 1986.

[137] A. Smilde, R. Bro, and P. Geladi. Multi-way Analysis: Applications in the
Chemical Sciences. Wiley, 2004.

[138] D. A. Spielman and N. Srivastava. Graph sparsification by effective resis-
tances. Mar 2008.

[139] G. Strang. Linear Algebra and Its Applications. Academic Press, 2nd
edition, 1980.

[140] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu. Graphscope:
parameter-free mining of large time-evolving graphs. In KDD, 2007.

[141] J. Sun, S. Papadimitriou, and P. Yu. Window-based tensor analysis on high-
dimensional and multi-aspect streams. In Proceedings of the International
Conference on Data Mining (ICDM), 2006.

[142] J. Sun, D. Tao, and C. Faloutsos. Beyond streams and graphs: dynamic
tensor analysis. In KDD ’06, 2006.

[143] J. Sun, C. Tsourakakis, E. Hoke, C. Faloutsos, and T. Eliassi-Rad. Two
heads better than one: pattern discovery in time-evolving multi-aspect data.
Data Mining and Knowledge Discovery, 2008.

[144] J.-T. Sun, H.-J. Zeng, H. Liu, Y. Lu, and Z. Chen. Cubesvd: a novel ap-
proach to personalized web search. In WWW, pages 382–390, 2005.

[145] T. Tao and V. Vu. Additive Combinatorics. Cambridge Univ., 2006.

[146] J. tao Sun, H.-J. Zeng, H. Liu, and Y. Lu. Cubesvd: A novel approach to
personalized web search. In WWW, 2005.

[147] Thomas Schank and Dorothea Wagner . DELIS-TR-0043 - finding, count-
ing and listing all triangles in large graphs, an experimental study. techre-
port 0043, submitted, 2004.

[148] C. Tsourakakis. Fast counting of triangles in large real networks, without
counting: Algorithms and laws. In ICDM, 2008.

158



[149] C. Tsourakakis, P. Drineas, E. Michelakis, I. Koutis, and C. Faloutsos.
Spectral counting of triangles in power-law networks via element-wise
sparsification. In SODA ’02: Proceedings of the thirteenth annual ACM-
SIAM symposium on Discrete algorithms, 2009.

[150] C. E. Tsourakakis. Mach: Fast randomized tensor decompositions. CoRR,
abs/0909.4969, 2009.

[151] C. E. Tsourakakis. Counting triangles using projections. KAIS Journal,
2010.

[152] C. E. Tsourakakis, P. Drineas, E. Michelakis, I. Koutis, and C. Falout-
sos. Spectral counting of triangles in power-law networks via element-wise
sparsification. In ASONAM, pages 66–71, 2009.

[153] C. E. Tsourakakis, P. Drineas, E. Michelakis, I. Koutis, and C. Falout-
sos. Spectral counting of triangles in power-law networks via element-wise
sparsification and triangle based link recommendation. In ASONAM, 2010.

[154] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos. Doulion:
Counting triangles in massive graphs with a coin. KDD, 2009.

[155] C. E. Tsourakakis, M. N. Kolountzakis, and G. L. Miller. Approximate
triangle counting. Apr 2009.

[156] L. Tucker. Some mathematical notes on three-mode factor analysis. Psy-
chometrika, 1966.

[157] M. A. O. Vasilescu and D. Terzopoulos. Multilinear analysis of image
ensembles: Tensorfaces. In ECCV, 2002.

[158] M. A. O. Vasilescu and D. Terzopoulos. Multilinear analysis of image
ensembles: Tensorfaces. In ECCV, pages 447–460, 2002.

[159] J. S. Vitter. Faster methods for random sampling. Commun. ACM,
27(7):703–718, 1984.

[160] V. H. Vu. On the concentration of multi-variate polynomials with small
expectation, 1999.

[161] C. Wang, W. Wang, J. Pei, Y. Zhu, and B. Shi. Scalable mining of large
disk-based graph databases. KDD, 2004.

159



[162] N. Wang, S. Parthasarathy, K.-L. Tan, and A. K. H. Tung. Csv: Visualizing
and mining cohesive subgraph. SIGMOD, 2008.

[163] Y. Wang, D. Chakrabarti, C. Faloutsos, C. Wang, and C. Wang. Epidemic
spreading in real networks: An eigenvalue viewpoint. In In SRDS, pages
25–34, 2003.

[164] S. Wasserman and K. Faust. Social network analysis. Cambridge Univer-
sity Press, Cambridge, 1994.

[165] D. Xu, S. Yan, L. Zhang, H.-J. Zhang, Z. Liu, and H.-Y. Shum. Concurrent
subspaces analysis. In CVPR, 2005.

[166] X. Yan and J. Han. gspan: Graph-based substructure pattern mining.
ICDM, 2002.

[167] X. Yan, P. S. Yu, and J. Han. Graph indexing: A frequent structure-based
approach, 2004.

[168] C. H. You, L. B. Holder, and D. J. Cook. Learning patterns in the dynamics
of biological networks. In KDD, 2009.

[169] F. Zhu, X. Yan, J. Han, and P. S. Yu. gprune: A constraint pushing frame-
work for graph pattern mining. PAKDD, 2007.

160


	 Doulion: Counting Triangles in Massive Graphs with a Coin 
	Introduction
	Background and Related Work
	Triangle Counting algorithms
	MapReduce

	Proposed Method
	Algorithm
	Analysis of Doulion 
	Random Sampling
	A Pleasant Side-effect: Preserving the Epidemic Threshold
	Can we parallelize Doulion? 

	Experiments
	Experimental Setup
	Experimental Results

	Conclusions

	Triangle Sparsifiers
	Introduction
	Preliminaries
	Existing work
	Concentration of Boolean Polynomials

	Proposed Method
	Algorithm
	Analysis
	Discussion

	Experiments
	Experimental Setup
	Experimental Results

	Conclusions & Future Work

	Counting Triangles in Real-World Networks using Projections
	Introduction
	Related work
	Counting Triangles
	Singular Value Decomposition (SVD)

	Proposed Method
	Theorems and proofs
	Proposed algorithms
	Why is EigenTriangle successful?
	Lanczos method and Real-World Networks

	Experimental Results
	Experimental set up
	Total Triangle Counting
	Local Triangle Counting

	Theoretical Ramifications
	Counting Triangles via Fast SVD
	Kronecker graphs
	 Erdos-Rényi graphs

	Conclusions

	Fast Radius Plot and Diameter Computation for Terabyte Scale Graphs
	Introduction
	Preliminaries; Sequential Radii Calculation
	Definitions
	Computing Radius and Diameter

	Proposed Method
	HADI Overview
	HADI-naive in MapReduce
	 HADI-plain in MapReduce
	HADI-optimized in MapReduce

	Analysis and Discussion
	Time and Space Analysis
	HADI in parallel DBMSs

	Scalability of HADI
	Experimental Setup
	Running Time and Scale-up
	Effect of Optimizations

	Background
	Conclusions

	PEGASUS: Mining Peta-Scale Graphs
	Introduction
	Background and Related Work
	Proposed Method
	Main Idea
	GIM-V and PageRank
	GIM-V and Random Walk with Restart
	GIM-V and Diameter Estimation
	GIM-V and Connected Components

	Fast Algorithms for GIM-V
	GIM-V BASE: Naive Multiplication
	GIM-V BL: Block Multiplication
	GIM-V CL: Clustered Edges
	GIM-V DI: Diagonal Block Iteration
	GIM-V NR: Node Renumbering
	Analysis

	Performance and Scalability
	Results

	GIM-V At Work
	Connected Components of Real Networks
	PageRank scores of Real Networks
	Diameter of Real Network

	Conclusions

	 Two heads better than one: Pattern Discovery in Time-evolving Multi-Aspect Data
	Introduction
	Related Work
	Background
	Problem Formulation
	Static 2-heads tensor mining
	Dynamic 2-heads tensor mining

	Multi-model Tensor Analysis
	Static 2 Heads Tensor Mining
	Dynamic 2 Heads Tensor Mining
	Mining Guide

	Experiment Evaluation
	Mining Case-studies
	Quantitative evaluation

	Conclusions
	Appendix

	MACH: Fast Randomized Tensor Decompositions
	Introduction
	Background
	Tensors
	SVD and Fast Low Rank Approximation

	Proposed Method
	Experiments
	Monitoring computer networks
	Environmental Monitoring
	Discussion

	Conclusions


