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Abstract. Automatic health monitoring helps enable independent living for the
elderly by providing specific information to caregivers. In this paper we use sim-
ple binary sensors in a Bayesian framework to provide simultaneous room-level
location estimation and rudimentary activity recognition (ambulation). Results
from experiments using a Bayes filter and simple data association are demon-
strated. We discuss several improvements, including a particle filter approach to
the data association problem and the Monte Carlo EM algorithm for online pa-
rameter learning, and demonstrate results from a simulated environment.

1 Introduction

In 2002 national health expenditures were estimated at US$1.5 trillion, or almost 15
percent of the GDP [55]. About 1 in 5 Americans have some kind of disability, and 1
in 10 have a severe disability [35]. People aged 65 and older are the fastest growing
segment of the US population and by 2030 over 4 million Americans will be over the
age of 85 [5]. Over 20% of people 85 and over have a limited capacity for independent
living [19], and as a result they require continuous monitoring and daily care. Automatic
health monitoring of the elderly and those with disabilities can improve the accuracy
of pharmacologic interventions, track illness progression, and lower caregiver stress
levels [17]. Additionally, [51] has shown that movement patterns alone are an important
indicator of cognitive function, depression, and social involvement among people with
Alzheimer’s disease.

The basic goals of ubiquitous computing are aligned with the needs of automatic
health monitoring. They include identifying people, tracking people as they move, and
knowing what activities people are engaged in. More challenging goals include rec-
ognizing when people deviate from regular patterns of behavior and predicting future
behavior. Much current work on aware environments, including our own, has focused
on implementing machine vision and auditory systems to do these tasks [4].

This research uses state-of-the-art machine learning techniques to exploit many
“simple” sensors in order to automatically recognize human activity. Existing sensor
infrastructures, particularly those employed by security systems, are used to provide
automatic recognition of human behavior. These new abilities come at minimal pri-
vacy, monetary, and computational cost, and could be used on a large scale in homes
and businesses. We examine the utility of applying anonymous, binary sensors such




as motion detectors, contact switches, break-beam sensors, and pressure mats to auto-
matic activity recognition and room-level tracking. We show that such sensors can tell
us which rooms are occupied, count the occupants in a room, identify the occupants,
track occupant movements, and recognize occupant activities.

2 Related Work

Over the last several years much effort has been put into developing and employing a
variety of sensors to solve key problems in the ubiquitous computing domain, includ-
ing camera networks for people tracking [54, 12,47], as well as cameras and micro-
phones for activity recognition [16,37]. Wearable sensors have been used for health
monitoring [33], the facilitation of group meetings [25], memory augmentation [46],
and augmented reality [48].

People tracking in particular has been approached via a variety of sensors, including
cameras, laser range finders, wireless networks, RFID (Radio frequency identification)
badges, and infrared or ultrasound badges [1, 3,9, 16, 30, 38,22, 47]. See [24] for a sur-
vey of location estimation techniques. Cost of sensors and sensor acceptance are pivotal
issues, especially in the home. Many people are uncomfortable living with cameras and
microphones. Laser scanning devices are anonymous, but costly and have limited range.
We find that people are often unwilling, forget, change clothes too often, or are not suf-
ficiently clothed when at home to wear a badge, beacon, set of markers, or RF tag.
Elderly individuals are often very sensitive to small changes in environment [13], and
a target population of institutionalized Alzheimer’s patients frequently strip themselves
of clothing, including any wearable sensors [14]. A distributed network of many low
cost sensors has several advantages over co-located sensors on a single platform (e.g.,
wearable sensors). The total coverage may be much larger and redundancy may ex-
ist between overlapping sensors. Also, sensor networks are more robust against failure
or loss of individual components. We have chosen to explore a set of sensors that are
already present in many homes as part of security systems. These sensors are cheap,
computationally inexpensive, and do not have to be continuously worn or carried. We
aim for room level tracking, as our sensors do not provide the higher spatial resolution
of other types of tracking systems.

Combining anonymous sensors and sensors that provide identification information
for people or object tracking is an open problem. The goal is to determine if a newly ob-
served object is the same as a previously observed object. In Al this problem is known
as object identification. The solution offered by [42] has been applied to tracking auto-
mobile traffic using cameras, extending the technique introduced by [26] to accommo-
date many sensors. Neither approach deals well with sensor noise. In the multi-target
tracking community the problem is well known as data association. Bayesian tech-
niques, particularly particle filters, have been introduced as effective solutions to this
problem [6,31,27]. In a recent experiment [21], a particle filter implementation used
laser range finders and infrared badges to track six people simultaneously in an office
environment for 10 minutes. The range finders provided anonymous, high granularity
coordinates while the badge system identified occupants. This research uses a similar
particle filter approach to solve the data association problem. However, we use a single




ID sensor and rely upon individual motion and activity models to resolve ambiguity.
Data collected over the long-term provides an ever-improving model of the unique pat-
terns of each occupant. Motion and activity models can identify occupants in lieu of
additional ID-sensors.

There has been some research into using binary sensors for automatic health moni-
toring. For several years a group of researchers at the Tokyo Medical and Dental Uni-
versity have been instrumenting homes with sensors such as motion detectors and con-
tact switches to collect data for months at a time [39,41,40]. The raw data generated
during these experiments was made available to physicians, but has not been used for
machine learning applications such as automatic tracking, behavior recognition, or pat-
tern discovery. Researchers at the Medical Automation Research Center (MARC) at
the University of Virginia have used an array of motion detectors and contact switches
to attempt to detect activities of daily living (ADLs) [8]. They cluster sensor readings
into rough groups based on room, duration, and time of day and demonstrate that many
of the clusters correspond to ADLs. However, recognition and prediction of high-level
behavior such as ADLs and location estimation has not been described with this set of
simple sensors.

People tracking and activity recognition experiments typically occur in a laboratory
setting in a corporate or educational building [29, 12, 15]. Recently, there has been an
increase in the number of stand-alone instrumented home environments. [2], have built
a home ubiquitous computing laboratory for a variety of experiments. [28] purchased a
house and instrumented it with their own brand of generic, simple sensors for off-line
activity recognition. [23] have instrumented a house with ultrasound localization and
displays. [41] has instrumented real homes for months at a time. The Neural Network
House [38] used neural networks to negotiate between energy conservation and comfort.
None of these laboratories has had a permanent resident. Other groups, including our
own, have instrumented health care facilities for a variety of experiments [4, 8,36].
Our instrumented environment is unique in that we use cheap, oft-the-shelf sensors for
real-time, simultaneous tracking and activity recognition over a long period of time.
The specific applications explored by other groups are exciting and inspirational. Our
critical goals are to observe, recognize, and predict behavior, rather than to modify the
environment.

3 What Are We Trying To Sense?

Physicians and caretakers (including relatives) need certain information to enable elders
to live independently at home without being institutionalized. We wish to provide this
information at minimal cost and with minimal impact to the occupant’s life routine. The
automatic collection of this information, called automatic monitoring, is predominantly
composed of location and activity information. Below is a list of what we wish to
automatically recognize.

3.1 Location & Activity Information

— Occupancy. Determine if there is anyone in a room.




Counting. Determine how many people are in a room.

Individual Identification. Determine the identity of each person in the home.
Room-Level Tracking. Identify where each person is in the home.
Movement. Recognize whether ambulation is occurring.

4 Anonymous, Binary Sensors

We are concerned with people tracking and activity recognition of several people in a
home environment. In order to collect this information we must instrument the envi-
ronment with sensors. There are two critical issues at hand : (1) choice of sensors, and
(2) sensor placement. Ideally, the sensors we choose to use should offer solutions to the
following issues :

Invisible or Familiar. Sensors and monitoring systems should be invisible. Alter-

nately, devices should fit into familiar forms with familiar interfaces. They should

remain unobtrusive and require no change in activity or daily routine. Most people
are not interested in dealing with new devices without a large perceived benefit.

— Private. Sensor data alone should not provide information the user wishes to keep
private, especially identity. Alternately, sensitive information should never be stored
unless privacy can be guaranteed. It is equally important that sensors not be per-
ceived as invasive (as cameras and microphones frequently are).

— Economical. Sensors should be inexpensive and available off-the-shelf.

— Computation. Processing sensor data should require minimal computational re-
sources, ideally requiring nothing more than a contemporary desktop computer.

— Installation. Sensors should be easy to install. Wireless sensors can be simply
mounted to a surface, while wired sensors may require running cable to a cen-
tral location. We envision a system available off-the-shelf to be fully installed and
configured by a consumer.

— Maintenance. Sensors should be easy to replace and maintain. Sensors will be ne-
glected and should be robust to damage. Sensors which self-report their status are
ideal. Alternately, simple algorithms could determine whether sensors are function-
ing properly.

— Power. Sensors should require no external power or run as long as possible on

batteries. As a last resort the device may need to be plugged in or powered via the

data wiring.

Sensors that are anonymous and binary satisfy many of these properties. Anony-
mous sensors satisfy privacy constraints because they do not directly identify the person
being sensed. Binary sensors, which simply report a value of zero or one at each time
step, satisfy computational constraints. Many anonymous, binary sensors exist in home
security systems. This helps with perceived privacy issues because they have become a
familiar sight in public buildings as well as private homes. These sensors are valuable
to the home security industry because they are economical, easy to install, require min-
imal maintenance and supervision, and are robust to damage. We choose them for the
same reasons, and because they already exist in many of our target environments. We
typically use a denser installation of sensors than in a home security system, however.




4.1 Sensor Properties

We introduce several sensor properties in order to choose a subset that simplifies our
problem as much as possible.

— Coverage. There is a volume of interaction around each sensor. This radius can
convey important information about occupant location. For instance, the motion
detector has a coverage of around ten square feet, or the size of an average room.
Break beam sensors cover a linear area. Contact switches and pressure mats must
be directly manipulated through a physical interaction with a physical object.

— Trigger. Different sensors are rriggered in different ways. We use this property to
determine whether an occupant is moving or not, by drawing a line between sen-
sors that are triggered actively and those triggered passively. We define “active” as
a person who is standing and moving their body. For instance, a motion detector is
most likely to trigger due to a person walking in a room. Negative information in-
dicates that when a motion detector does not fire with an occupant in the room that
the occupant is probably not moving. Contact switches specifically placed on doors
and drawers are manipulated only by active occupants. Break-beam sensors placed
in doorways are triggered by someone actively walking through a doorway. On the
other hand, pressure mats placed only in seating areas are triggered passively by
seated occupants that are staying put.

- Continuity. Different sensors require different types of contact in order to trigger.
Again, the type of contact can connote the location or activity of the occupant. Mo-
tion detectors are triggered occasionally (every few seconds) as occupants move
nearby. Contact switches change state as they are opened and closed. Break-beam
sensors and pressure mats trigger continuously while the beam is interrupted or suf-
ficient weight is applied.

4.2 Sensor Choice and Placement

There are many simple binary sensors to choose from. In fact, any sensor can be anony-
mous and binary with the proper thresholds. We chose four : motion detectors, contact
switches, break-beam sensors, and pressure mats. These four sensors have different
properties which, when exploited, can reveal a surprising amount of information. See
Figure 1. for an overview of a typically instrumented room.

— Motion detectors. We use wireless X10 Hawkeye motion detectors. They pro-
vide a binary indication of heat and movement (e.g., human presence) in an area.
X10 is a communications protocol that allows devices to communicate via existing
electrical wiring. Upon sensing motion a radio signal is sent to a receiver, which
transmits a unique signal over the powerline. This signal is collected by a CM11A
device attached to a computer. The detectors are attached to the ceilings in order
to maximize room coverage. The detectors are wireless, pet-resistant, require both
heat and movement to trigger, and run on battery power for over one year.




Fig. 1. Overview of typically instrumented kitchen. Grey squares represent contact switches, mo-
tion detectors, pressure mats, and break beam sensors.

Contact switches. These inexpensive magnetic contact switches indicate a closed
or open status. They are installed on every interior and exterior door, cabinet drawer,
and the refrigerator.

Pressure mats. We use these sensors to detect presence on chairs and couches. The
pressure mats are made of two metal screens separated by a piece of foam with
holes. The weight necessary for contact depends on the size and number of holes
cut into the foam layer.

Break-beam sensors. We use these sensors in groups of two to determine when an
occupant passes through a doorway, and in what direction. They work by generat-
ing a beam across a space and monitoring it when it is reflected back. While the
beam is interrupted the sensor changes state.

Radio Frequency Identification (RFID). Although anonymous sensors can be
used to maintain identity and location of occupants, at some point the identity must
be given. We use low frequency RFID to identify occupants entering and leaving the
environment. The system sends a modulated RF signal to an antenna, which ampli-
fies the signal, creating a small field near the front door. When the credit card sized
transponder or ’tag’ is in the field, an integrated circuit detects the signal and uses
its energy to send a unique identification signal. This signal is decoded and sent
to a computer via an RS-232 interface. The entire process takes less than 100ms
and multiple tags can be read simultaneously. Each occupant is given a unique tag;
upon recognition the tag will automatically unlock the front or back door, as well
as identify the occupant entering or leaving the environment.
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Fig. 2. Movement of two occupants through two rooms over time.

All sensors interface with an Intel Pentium IV 1.8 GHz desktop computer with
512MB ram. An expanded parallel port monitors contact switches and pressure mats,
a serial interface attached to a CM11A device monitors motion detector activity, and a
serial interface connects to the RFID reader.

5 People Tracking & Preliminary Activity Recognition

Room-level tracking provides occupancy, counting, and individual identification infor-
mation. There are two main problems when tracking multiple people, (1) where are the
people and, (2) which person is which? In the first problem observations are used to
update the location of each occupant. In the second problem, known as the data associ-
ation problem, identity of the occupants is estimated and anonymous observations are
assigned to the occupants most likely to have generated them.

Uncertainty occurs when several occupants share the same room and trigger the
same set of anonymous sensors. The tracker does not know which occupant triggered
which sensor (i.e., which data to associate with which occupant). In Figure 2 the oc-
cupants begin in separate rooms. Eventually, occupant A enters the same room as B.
Without further information, the identity of each occupant is uniform after A exits the
shared room. There are several ways to reduce this ambiguity :

— Increase the number of ID sensors. The simplest approach solves the problem
by using sensors that identity occupants outright. Unfortunately, ID sensors fail to
satisfy the requirements for our domain (see Section 4.1).

— Increase the sensor granularity. The more sensors there are, the smaller the prob-
ability that multiple occupants will share the same anonymous sensor. For example,
[49] tracks people with high granularity laser range finders; sensor collision does
not occur unless people occlude each other very closely. This problem has extra sig-
nificance for room level tracking with low granularity sensors. Clever sensor choice
and placement can maximize granularity. For example, placing contact switches out
of reach of pressure mats separates two occupants when one is seated and the other




opens a drawer.

— Learn individual movement patterns. Over time, motion models represent partic-
ular habits of select individuals. Specific models can help the tracker recover from
ambiguity as occupants follow regular habits (i.e., sitting in favorite chairs or sleep-
ing in their own beds). This could resolve the ambiguity in Figure 2. If occupant B
rarely enters room 1, person A is more likely to have left.

— Recognize activities. Activity recognition is performed alongside tracking, provid-
ing a novel method of recovery. Preliminary experiments model occupant ambula-
tion, which in turn helps predict occupant location. For example, if person B is not
moving and person A is moving, then person A is correctly identified as exiting
room 2.

5.1 Discrete Bayes Filter

Bayes filters estimate the state of a dynamic system from noisy sensor data in real
world domains [18]. The state commonly represents occupant location and sensors pro-
vide information about the state. A posterior probability distribution, called the belief,
describes the probability that the occupant is in each state. A Bayes filter updates the
posterior probability density over the state space at each time step, conditioned on the
data. They model systems over time through the Markov assumption that the current
state depends only on the previous state.

We estimate the state 2, = {z},2?,...,2M} of M occupants using the sensor mea-
surements collected so far z;.¢. At each time step we receive the status of many binary
sensors. The measurement z; =< e}, e?,...,eF > is a string of binary digits repre-
senting which sensors have triggered during time step ¢. We choose a non-metric (i.e.,
discrete) state representation due to low sensor granularity and limited computational
resources. Rooms provide a natural and intuitive discretization of possible occupant lo-
cations. Moving or not moving provides initial categories of activity. The update equa-
tion is analogous to the forward portion of the forward-backward algorithm used in
hidden Markov models (HMMs). See [44] for a detailed description of how HMMs
work.

p(xe|z1:6) o p(2e|zt) Z p(ze|ze—1)p(Te-1]21:0-1)- (1
Tp—1
The sensor model p(z|z:) represents the likelihood of measurement z; occurring
from state x;. The motion model p(x;|x¢_1) predicts the likelihood of transition from
the last state z;_; to the current state z;. Currently, a simplifying independence as-
sumption between occupants means that this motion model is factored as:

pailze-r) = [[ plaflaity) @

meM
In later work we intend to utilize two models, one for occupants that are alone and
another for occupants close to each other in an environment. This abstraction would




Fig. 3. A dynamic Bayes net describing tracking and activity recognition. Arcs indicate causal in-
fluences, with dotted arcs representing causality through time. Circles represent variables. Shaded
variables are directly observable, the rest are hidden.

avoid the exponential blow up resulting from joint models of combinations of specific
individuals. An interesting approach to this problem has been applied successfully to
tracking multiple interacting ants in [32].

In most location estimation applications the state space z € X is the range of possi-
ble occupant locations. We integrate activity recognition into our model, so the state of
an occupant m becomes xy* =< r{"*,a;"® >, where r € R denotes which room the oc-
cupant is in, and a € {MOVING,NOT MOVING} denotes occupant activity. This node
represents whether or not the occupant is moving; later work will integrate more activ-
ities. The dependencies involved are shown in a graphical model in Figure 3. The raw
sensor values (in the non-hidden binary node) are the only given information; the rest
must be inferred. These raw values are converted into four types of events and appear
as observations < e}, e?, ...,eF > in the z; node. Event generation is straightforward.
When a motion detector triggers a movement event is generated. Upon a state change
a contact switch evokes a manipulation event. While a pressure mat is depressed a sit
event is generated. When a pair of break beam sensors are triggered, depending upon
the order, an enter event is generated for the appropriate room.

Equation 1 describes the Bayes filter update using all observations up to the current
time step zp.;. Higher accuracy is usually obtained off-line by using past and future
information at each time step. This is commonly known as smoothing. Smoothing pro-
vides higher accuracy for off-line purposes, such as a daily summary of movement
activity [53]. The update equation is analagous to the backward portion of the forward-
backward algorithm.
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5.2 Data Association

Each sensor measurement z; is composed of I binary valued events 2, =< e}, e?, ..., eF

The goal is to assign these events to the occupants that generated them. An assignment
matrix 6, of size [ExM] indicates these assignments. For instance, 6 (4, j) is 1 if event
e} belongs to occupant j. For each occupant m € M a new observation 2]" is generated
using the original measurement z; and the assignment matrix ;. Each measurement z;"
is used by a Bayes filter to update the posterior of occupant m.

In our domain data association can become a severe problem. In an environment
with m occupants and k sensors, there are m* possible assignments. There could easily
be hundreds of cheap sensors monitoring several occupants, resulting in too many data
assignments to enumerate (e.g., 5!°°). Several classical approaches to data association
exist in the multiple target tracking literature. In preliminary experiments we limited
tracking to up to three occupants with around fifty sensors, and settled on a simple
approach called the nearest neighbor standard filter (NNSF) [7]. NNSF uses only the
closest observation to any given state to perform the measurement update step. Unfor-
tunately, this approach requires exhaustive enumeration of every possible association.
To cope, we use pruning and gating to eliminate less likely hypotheses. For instance,
it is impossible for one occupant to set off sensors in more than one room during one
time step. It also helped that in our experiments we limited the number of occupants to
three, and multiple sensors were rarely triggered at the same time.

There are several classical data association methods, see [45] for a survey. Another
method is the joint probability data association (JPDA). It estimates the states by a sum
over all the association hypotheses weighted by the probabilities from the likelihood.
The most general method is called multi hypothesis tracking (MHT), which calculates
every possible association hypothesis over time. These approaches are feasible for room
level tracking in a small environment for a few occupants, but become computationally
intractable for simultaneous tracking and activity recognition with many sensors and
people. Particle filters have been introduced as a solution to this problem, and in the
next section we introduce a particle filter approach to data association adapted to our
system.

5.3 Off-line Parameter Learning

The easiest way to train model parameters is to use information gathered when only
a single occupant is home (as indicated by the RFID sensor). While a person is home
alone we can assume that any sensor readings are generated by that person. In this way,
models can be trained through simple counting. Note that this method, used in prelim-
inary experiments, ignores a significant amount of training data because occupants are
often home together. It also fails to learn the difference between how people behave
alone versus in the presence of others. We discuss solutions to these problems in the
next section.
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Fig.4. (a) Active / inactive state representation. (b) The probability of being in an active state
recedes as a full minute of sensor non-readings accumulate. The slope is learned for each room,
and is more gradual for hallways and steeper for bedrooms.

Modeling the behavior of individual occupants can increase accuracy and reduce
ambiguity. Individual behavior is represented in transitions between rooms and activi-
ties. These are the most important probabilities to learn, although each must be initial-
ized generically.

— p(r¢|re—1,ac—1) is the probability of transition to a room given the previous room
and whether the occupant was moving or not. A generic set of transition proba-
bilities is gathered by running a simple diagnostic exercise. First, each sensor is
assigned to the correct room by hand. Next, a single occupant walks through the
entire environment, manipulating every door and drawer and walking through every
doorway. This provides the set of contiguous rooms. For occupants that are moving
the transition probabilities between contiguous rooms are set uniformly. Static oc-
cupants can not transition to new rooms and probabilities are set much lower. See
Figure 4a for an example transition between a kitchen and living room.

- p(at|lai—1,r¢—1) models the probability that the occupant is moving given the pre-
vious room and whether the occupant was moving during the last time step. This
models individual behavior: (1) each occupant has a different amount of activity in
each room, (e.g., some people take shorter showers). (2) each room is associated
with certain activities (e.g., hallways have more walking and bedrooms less). These
probabilities are initialized uniformly. See Figure 4b for an example.

The perceptual model p(z;|z;), can be broken down to p(z¢|rt,a:). This models
the probability of observing a set of sensor measurements given the location of the
occupant and whether or not the occupant is moving. Thoughtful sensor choice and
placement make this a straightforward calculation. In preliminary experiments these
probabilities are fixed beforehand and are the same for every occupant. We incorpo-
rate a set of common-sense rules regarding (1) occupant location (e.g., must be in the
same room as the sensor to trigger it), (2) sensor placement (e.g., occupant can not trig-
ger both a contact switch and a pressure mat) and (3) occupant activity (e.g., must be
moving to trigger a break beam sensor) into an ideal measurement.
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Model Initialization:
1. Initialize model parameters with generic values.
2. Use data collected off-line to update the models of each occupant.

Tracking
1. Initialize the Bayes filter for occupants in range of the RFID reader.

2. Given an observation z; use NNSF to find the best assignment matrix 6;.
3. Use 0; and z; to generate z;" form € M.

4. Update each Bayes filter with each new observation z{".

Repeat

Table 1. Bayes Filter approach.

See Table 1 for a summary of this approach.

5.4 Experiments - Real Data

Experiments were conducted using data generated by one to three occupants in an
instrumented environment over the course of several months. The instrumented three
story house contained twenty separate rooms, is 2824 square feet, and is home to two
males, one female, a dog, and a cat. The house contained one RFID reader, twenty four
motion detectors, and twenty four contact switches. In this experiment we did not use
break beam sensors or pressure mats, although they are included in later simualted data.
Detailed public information on the house can be referenced at the Allegheny County
Real Estate web site [20].

In the first experiment one person moved through the house. The occupant ulti-
mately visited every sensor (including doors, drawers, and the refrigerator) and moved
with varying speed and direction. The occupant conducted several common tasks, such
as making a sandwich in the kitchen and pausing to use the computer in the study. The
tracker used a motion model trained for the occupant being tracked with previously
collected data. There were 1288 sensor readings from a 2 day period. Accuracy was
98.2%.

In the second experiment two occupants moved through the house according to a
pre-planned script. The two occupants enter the front door thirty seconds apart and
move throughout the house for fifteen minutes while following a script. At some point
during this time each occupant visits every room in the house, including the other occu-
pant’s bedroom. After approximately fifteen minutes the two meet in the living room.
One occupant then moves to his bedroom and then returns to the living room. Next, the
other occupant visits his own room and then returns. The tracker used two individual
motion models for the two occupants. The data consists of 225 sensor readings, span-
ning thirty three minutes and fourteen seconds. 219 of 225 were classified correctly,
corresponding to over 98% of the total running time of the experiment. The tracker was
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Fig. 5. Results of tracking experiment based on the number of occupants at home during ex-
periment, with sleeping periods present and removed. Results do not include the time when no
occupants were at home.

incorrect for 66 seconds. We scripted two ambiguous situations when two occupants
share one anonymous sensor and then separate. In both instances, when the occupant ar-
rived at his bedroom door the system recovered. In another experiment in which generic
motion models were used one recovery was predicted correctly and the other not.

We measured tracker performance in the real world over a five day period for all
occupants. The tracker used individual motion models for the three occupants. There
were no guests during this period. To gauge performance we had to hand-label the data.
To make hand-labeling feasible we gathered additional information from eight wireless
keypads. The keypads have one button for each of the three occupants. During that week
when anyone entered a room with a keypad, they pushed the button corresponding to
their name. The wireless keypads were placed on the front door, the kitchen, the living
room, the study, the downstairs bathroom, the upstairs bathroom, and each of the two
bedrooms. They acted as road signs to help the human labeler disambiguate the data
stream and correctly label the movements and identity of each occupant. There were
approximately 2000 sensor readings each day for a total of 10441 readings. On average
there was one occupant at home 13% of the time, two occupants home 22% of the
time, and all three occupants home for 65% of the time. Note that each night every
occupant slept in the house. On the whole, the tracker correctly classified 84.6% of the
experiment. There was no significant difference in accuracy between occupants. The
tracker was accurate 85.3% of the time for one occupant, 82.1% for two occupants, and
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86.4% for three occupants. Accuracy for three occupants drops to 73.7% when sleeping
periods are removed. See Figure 5.

6 Improvements

Particle filters can approximate the Bayes filter and solve tracking and data association
problems. The key idea is to sample possible states and data associations via particle
filtering and choose the one with maximum likelihood. The particle filter maintains a
variety of hypotheses regarding the identity of each occupant, with each particle repre-
senting a hypothesis of occupant identities, locations, and activities. The data associa-
tion problem can quickly become intractable as more occupants and sensors are added,
so the approximation provided by particle filter methods becomes crucial.

6.1 Data Association

A particle filter approach to data association appeared in [10] for an over the horizon
radar application. Particle filters use simulation to solve the data association problem of
assigning anonymous sensor readings to the appropriate occupants. They can approxi-
mate a large range of probability distributions, unlike Kalman filters which are limited
to Gaussian distributions. With resampling a sample set focuses on a narrow range of
hypotheses, becoming increasingly computationally efficient with resources gathered
on areas of state-space with high likelihood. The number of samples can be dynam-
ically adjusted according to available computational resources, so that particle filters
can be run in real-time. L

At each time step a set of N weighted samples S; = {s},w]} where j = 1...N is
generated from the current observation 2; and the set of samples from the previous time
step S¢—1. Each sample s] =< z7, 01 .+ > 1s composed of the current state of all oc-
cupants and the history of assignments. Occupant location and identity are gathered by
RFID upon entry and exit. During these time steps the assignment matrix 6, is updated
accordingly. When there is no ID sensor reading the sensors are assigned via sequential
importance sampling with re-sampling [18]. The following steps generate a sample s7:

— Sampling
Sample a state z}_; by drawing from the sample weights wi_, of the previous time
step. Recall that each state x;_; is composed of the location and activity of M oc-
cupants xt 1 = {zg )11, @ )lM
Use the sample z_, to sample a current state 2 from the motion model p(z;|z¢_1 ).
Recall that this motion model is calculated md_ependently for each occupant (3).

Sample a possible sensor assignment matrix 6 from p(6;|6;_1).

- Importance Sampling
Weight the sample s} by the importance factor :

wf =p(zelad, 0f) = ] plz ™) “4)

meM
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This is the likelihood of the assigned observations z;" given the state of each inde-
pendent occupant ;"""
— Re-sampling
Multiply or discard samples by drawing samples with replacement according to the
distribution defined through the importance weights wy.

This procedure approximates the Bayes filter update (1) using a sample based rep-
resentation [18].

6.2 On-line Parameter learning

This system uses a non-metric, room based location representation and a discrete set of
mutually exclusive activities. The result is a relatively small number of discrete states,
even when confounded with possible activities. This simplicity helps make unsuper-
vised learning of model parameters possible. It also invites an intuitive understanding
of how transitions occur between rooms.

In earlier experiments we trained parameters on data generated by occupants that
were home alone. This is because multiple occupants introduce uncertainty that could
detrimentally affect the accuracy of learned models. Training would be simple if we
knew the true location and activity of each occupant. A common method to minimize
this uncertainty is to use the Expectation-Maximization (EM) algorithm [11]. The EM
algorithm is an iterative approach to finding parameters that maximize a posterior den-
sity. The idea is to use current model parameters to estimate the expectations (E-step)
of the distribution. The model parameters are then updated (M-step) using the expecta-
tions from the E-step. The steps are repeated and in each iteration the model parameters
are improved. Eventually the algorithm converges to a local maximum.

The EM algorithm is applicable because of the discrete number of possible locations
and activities. A version of the EM algorithm called Monte Carlo EM [34, 52] takes
advantage of the set of particles representing the posterior. A similar approach was
used by [43] to learn the position of a traveler using GPS readings. In this version
both forward and backward updates are applied to the Bayes filter at each time step. At
each forward and backward step, the algorithm examines each particle and counts the
number of transitions between rooms and activities for each occupant. The counts are
normalized and then multiplied at the corresponding time slices. The learning algorithm
is introduced thoroughly for Monte Carlo HMMs in [50].

aj*(r¢, ar) is the number of particles in which occupant m is in room 7 and per-
forming activity a during the forward pass.

3" (r¢, a¢) is the number of particles in which occupant m is in room r and per-
forming activity a during the backwards pass.

Y1 (re, me—1,a¢—1) is the probability that occupant m will move from room r;_;
to room 7 in activity a;_q at time ¢ — 1.

07" (at,at—1,7¢—1) is the probability that occupant m will change from activity
a¢_1 to activity a; from room 7;_1 at time step ¢ — 1.
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A derivation [50] results in,

Vi1 (e, re—1,ap-1) < oty (Te—1, ap—1)p(re|re—1, ae—1) By (re, az—1) )

and

0 1(ag, ap—1,m—1) < oty (re—1, ap—1)p(aglag—1, re—1) B (re-1,ar) (6)

We update parameters as:

T m
—o Vimq (T, Te—1,a-1)
p(relre—1,ae-1) = || p(rtrity,at ) = ” - 2 =2 Vi (T, m,
meM meM Zt:? ZneNeighborofrtﬁl 7t—1(rtvrl—1,at—l)

)

and

T m
platlas-1,re-1) = [] pallafmy, ) = [] =5 D=2 071 (ar, Ge-1, 7e-1)
o meM 2t=2 2_r, e {(MOVING,NOTMOVING} Vie1(at; ae—1,7¢-1)
®)
See Table 2. for each step.

6.3 Simulated Experiments

We have conducted a series of simulated experiments using particle filters for data as-
sociation and online parameter learning. The simulator generates data from one motion
detector, contact switch, and pressure mat per room, as well as break beam sensor data
for doors between rooms. The number of rooms, occupants, and doorways can be spec-
ified via command line parameters.

Our experiments contained five rooms and from one to five occupants. Each occu-
pant was initialized with a random transition model, although all occupants obeyed the
contiguity of rooms. On average occupants were active (moving) 25% of the time. Each
simulated occupant was introduced to the environment from the same starting state and
identified correctly from this state, to imitate the RFID set up in the entry way of the
real house. Every experiment was run on one hour of activity in the simulated environ-
ment. The tracker used two methods to train parameters, (1) learning off-line given one
day of data generated by single occupants (OFFLINE), and (2) on-line via the Monte
Carlo EM algorithm (MCEM). We also show results with and without data association
(DA). When data association is turned off, every occupant receives every reading that
is generated. Results are in Figure 6.

The results for one occupant are nearly the same between all methods. In this case
data association has no impact because every reading already belongs to the same occu-
pant. The motion models have nearly identical performance as well, because with only
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Model Initialization:

1. Initialize model parameters with generic values.
E-step:

1. Generate N samples uniformly.
2. Forward filtering : for t = 2...T
(a) Generate N samples using the samples from the previous time step.
(b) Reweight each sample based on current observation z;.
(c) Multiply or discard samples based on their weights.
(d) For each occupant m count and store o™ (7, at)
3. Generate N samples uniformly.
4. Backward filtering : for ¢t = T'..1
(a) Calculate backward parameters p(7¢—1|re, at), p(at—1|ae, 7t)
(b) Generate N samples using the samples from existing samples using backward parameter
estimation.
(c) Reweight each sample based on current observation z;.
(d) Multiply or discard samples based on their weights.

(e) For each occupant m count and store 3;" (¢, a).
M-step:

1. Calculate v;™ and é;" using equations (5) and (6) and then normalize.
2. Update parameters using equations (7) and (8).

Repeat

Table 2. Monte Carlo EM approach

8 100.0% o e
b
E
8 90.0%
o
£ 30.0% —o— MCEM - DA
— e
- 70.0% —&— OFFLINE - DA
© —a— MCEM
% 60.0% —— QFFLINE
5 50.0%
(2]
[ 40.0%
o ’ 1 2 3 4

—o—MCEM - DA 99.3% 90.2% 78.6% 61.4% 52.2%

—8-OFFUINE - DA|  996% 940% 31.4% 67 2% 61.5%

—a—MCEM 99.6% 69.2% 53.6% 55.0% 40.4%

—— OFFLINE 99.4% 67.0% 59.9% 574% 53.5%

Number of Occupants

Fig. 6. Results of simulated experiments.
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one occupant they need not be discriminative. For more than one occupant these fac-
tors become more important. The tracker that uses motion models trained off-line has
the best performance. This is because it has the most accurate models, although in real
experiments this data is harder and slower to obtain (e.g., we must wait until occupants
are alone). Also, simulated occupants behave independently, which is not the case for
real data. The online learning approach stays competitive with offline models, although
accuracy falls off more as the number of occupants is increased. This is probably be-
cause the individual models become more difficult (and slower) to learn as interference
between occupants increases. Removing data association entirely significantly lowers
accuracy in all cases. The results are still better than we expected. Often, the problem
with giving every sensor reading to every occupant is that inactive occupants will be
influenced by the actions of other active occupants. In simulation the occupants were
active and inactive about the same amount of time, which could make the effect of false
positives less drastic. Also, because there were only five rooms, chance dictates that
more occupants will more often share rooms, and in turn the sensors in those rooms.

7 Conclusion

This research fills an important gap in existing research in ubiquitous computing. It
uses a sensory modality that has been largely ignored in favor of vision and audition to
explore simultaneous recognition of location and activity. The data is generated from
a permanent home setting, rather than a corporate setting or a temporary residential
setting. This research exploits advances in home security, specifically sensors which
are non-invasive, cheap, and easy to install and maintain, to introduce cost-effective
automatic health monitoring. Specifically, automatic monitoring could be used to help
our growing elderly population live independently longer.
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