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Abstract

Is it feasible to train cross-subject classifiers to decode the cognitive
states of human subjects based on functional Magnetic Resonance Imag-
ing (fMRI) data observed over a single time interval? If so, these trained
classifiers could be used as virtual sensors to detect cognitive states that
apply across multiple human subjects. This problem is relevant to ex-
perimental research in cognitive science and to diagnosis of mental pro-
cesses in patients with brain injuries. The biggest obstacle to training
inter-subject classifiers on fMRI data is anatomical variability among
subjects. We describe two approaches to overcoming this difficulty. The
first approach takes advantage of the anatomically defined Region of In-
terest (ROI) as a basis for spatially abstracting the data, and the second
one transforms the data from different subjects into Talairach-Tournoux
coordinates. In particular, we present two fMRI case studies in which we
have successfully trained cross-subject classifier to distinguish cognitive
states such as (1) whether the human subject is looking at a picture or a
sentence describing that picture, and (2) whether the subject is reading
an ambiguous or unambiguous sentence.

1 Introduction

The study of human brain function has received a tremendous boost in recent years from
the advent of fMRI, a brain imaging method that dramatically improves our ability to ob-
serve correlates of neural brain activity in human subjects at high spatial resolution (several
millimeters), across the entire brain. This fMRI technology offers the promise of revolu-
tionary new approaches to studying human cognitive processes, provided we can develop
appropriate data analysis methods to make sense of this huge volume of data. A typical
twenty-minute fMRI session with a single human subject produces a series of three di-
mensional brain images each containing approximately 15,000 voxels, collected once per
second, yielding tens of millions of data observations.�
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Since its advent, fMRI has been used to conduct hundreds of studies that identify specific
regions of the brain that are activated on average when a human performs a particular
cognitive function (e.g., reading, mental imagery). The vast majority of this published
work reports descriptive statistics of brain activity, calculated by averaging together fMRI
data collected over multiple time intervals, in which the subject responds to repeated stimuli
of some type (e.g., reading a variety of words).

In our previous studies [7, 8, 9], we have successfully trained machine learning classifiers
to automatically decode the cognitive state of single human subjects, given just their fMRI
activity at a single time instant or time interval. We would like to extend those classifiers
to multiple subjects. This goal of training cross-subject classifiers to detect cognitive states
is important because such classifiers could provide the basis for new approaches to study-
ing human reasoning processes in both normal and abnormal populations. Put succinctly,
such classifiers would constitute virtual sensors of human subjects’ cognitive states, which
could be useful to scientists and clinicians across a range of cognitive science research and
diagnostic medical applications.

Besides its relevance to studying human cognition, it provides a case study of machine
learning in extremely high dimensional, noisy, sparse data settings. In our case studies we
encounter problems where the examples are described by 100,000 features, and where we
have less than a score, very noisy, training examples per class in each subject. Although
conventional wisdom might suggest classifier learning would be impossible in such extreme
settings, in fact we have found it is possible in this case, by design of appropriate feature
selection/abstraction and classifier training methods tuned to these problem characteristics.

This paper is organized as follows. We first provide a brief introduction to fMRI in Section
2, then present an overview of related work in Section 3, and the machine learning methods
we used in this paper are enumerated in Section 4. The two fMRI data sets we analyze
are described in Section 5 in which our previous results for single subject classifiers are
also summarized for comparison purpose. In Section 6, we describe and compare the two
methods we use to train cross-subject classifiers, and present our results.

2 Functional Magnetic Resonance Imaging

Functional Magnetic Resonance Imaging (fMRI) is a technique for obtaining three-
dimensional images related to activity in the brain through time. More precisely, fMRI
measures the ratio of oxygenated hemoglobin to deoxygenated hemoglobin in the blood
with respect to a control baseline, at many individual locations within the brain. It is widely
believed that blood oxygen level is influenced by local neural activity, and hence this blood
oxygen level dependent (BOLD) response is generally taken as an indicator of neural ac-
tivity.

An fMRI scanner measures the value of the fMRI signal (BOLD response) at all the points
in a three dimensional grid (or image), covering part of the brain. In the two studies de-
scribed in this paper, a three dimensional image is captured every 0.5 or 1.5 seconds. We
refer to the cells within an image as voxels (volume elements). The voxels in a typical
fMRI study have a volume of a few tens of cubic millimeters, and a three dimensional
image typically contains tens of thousands of voxels, 10,000 to 15,000 of which contain
cortical matter and are thus of interest. While the spatial resolution of fMRI is dramati-
cally better than that provided by earlier brain imaging methods, each voxel nevertheless
contains on the order of hundreds of thousands of neurons.

The temporal response of the fMRI BOLD signal is smeared over several seconds. Given
an impulse stimulus such as a flash of patterned light, the fMRI BOLD response increases
to a maximum after approximately four to five seconds, typically returning to baseline



Figure 1: Typical fMRI data for a selected set of voxels in the cortex, from a two-
dimensional image plane through the brain.

levels after another five to ten seconds. To illustrate this, a small portion of fMRI data is
illustrated in Figure 1.

3 Related Work

While there has been little work on our specific problem of training classifiers to decode
cognitive states across multiple subjects, there are several papers describing work with
closely related goals. For example, Haxby et al. showed that different patterns of fMRI
activity are generated when a human subject views a photograph of a face versus a house,
versus a shoe, versus a chair [3]. While they did not specifically use these discovered
patterns to classify subsequent single-event data, they did report that by dividing the fMRI
data for each photograph category into two samples, they could automatically match the
data samples related to the same category. Others (Wagner et al.) reported that they have
been able to predict whether a verbal experience will be remembered later, based on the
magnitude of activity within certain parts of left prefrontal and temporal cortices during
that experience [11].

Our previous studies [7, 8, 9] demonstrated the feasibility of training classifiers to dis-
criminate cognitive states of a human subject in several case studies. We also extended our
classifiers across multiple subjects and across different contexts. This paper not only covers
the conclusions in [9], but also includes our latest experimental results about cross-subject
classifiers.

In addition to work on fMRI, there has been related recent work applying machine learning
methods to data from other devices measuring brain activity. For example, Blankertz et al.
described experiments training classifiers for single trial EEG data [1].



4 Approaches

This section briefly describes our approach to training classifiers, evaluating them, and
selecting features. In our experiments all voxel activity values were represented by the
percent difference from their mean value during fixation (rest) conditions.

4.1 Learning Method

In this paper we explore the use of machine learning methods to approximate classification
functions of the following form���

fMRI-sequence � 	�

����������	������ CognitiveState

where fMRI-sequence[ 	 
 ����������	 � ] is the sequence of fMRI images from 	 
 to 	 � collected
during a contiguous time interval and where CognitiveState is the set of cognitive states to
be discriminated.

We explored a number of classifier training methods, including:� Gaussian Naive Bayes (GNB). We assume each feature is independent to each
other, and Gaussian distributed given the class label (see, for instance, [6]).� Support Vector Machine (SVM). We use a linear kernel Support Vector Machine
(see, for instance, [2]).� k Nearest Neighbor(kNN). We use � Nearest Neighbor with a Euclidean distance
metric, considering values of 1, 3, and 5 for � (see, for instance, [6]).

4.2 Results Evaluation

Trained classifiers are evaluated by their cross-validated classification accuracy when learn-
ing Boolean-valued classification functions. More precisely, we generally employ � -fold
cross-validation, where � is equal to the number of subjects in the corresponding study. In
the following, we will call it Leave one subject out cross validation. In particular, for each
subject we trained a classifier on the other ��� � subjects, measured the accuracy on the held
out subject, and then calculated the mean accuracy over all held out subjects. Note that in
our evaluation procedure, the competing classes are always balanced since we have equal
numbers of examples of different classes in each subject. Our previous study [9] showed
that imbalance between classes will greatly influence the performance of classifiers in the
fMRI realm where the data are high dimensional and sparse.

4.3 Feature Selection

We explored a variety of methods for encoding an fMRI-sequence[ 	!
�����������	�� ] as input to
the classifier. In some cases, we encoded it as a vector of features, one for each voxel
at each time in this interval. This can be an extremely high dimensional feature vector,
consisting of hundreds of thousands of features given that a typical image contains 10,000
to 15,000 voxels, and a training example can include dozens of images. Therefore, it is
natural to consider feature selection methods to reduce the dimensionality of the data be-
fore training the classifier. We explored a variety of approaches to reducing the dimension
of this feature vector, including methods for feature selection, as well as methods that re-
place multiple feature values by their mean which help reduce the huge noise among fMRI
data. Two kinds of feature selection methods were studied, discriminability-based meth-
ods and activity-based methods. The first one greedily selects the voxels having highest
mutual information with the class labels, and the intuition behind the second one is that
it emphasizes choosing voxels with large signal-to-noise ratios, though it ignores whether



the feature distinguishes the target classes. Surprisingly, activity-based methods outper-
formed discriminability-based methods in most situations [9]. This paper will not discuss
discriminability-based methods. Those feature selection and feature abstraction methods
related to cross-subject classifiers are described as follows:� Average. We average all voxels in an ROI into a supervoxel.� ActiveAvg(n). For each ROI, we first select the " most active voxels, and then

average the selected voxels into a supervoxel.� Active(n). We select the " most active voxels in the whole brain.

For the task of training multiple subject classifiers, the first two will be used in the ROI map-
ping method since they are related to ROIs, and the last one will be used for the Talairach
transformation method. ROI mapping and Talairach transformation will be discussed in
detail in Section 6. In [9] we also designed many other activity-based methods. For in-
stance, RoiActive(n) selects the " most active voxels in each ROI. This kind of methods
were shown useful in training single subject classifiers, but currently there is no convincing
evidence that they could be used across subjects.

5 Case Studies

This section describes two case studies, as well as the results on single subject classifiers in
these studies (detailed in [9]). We will give the results about the multiple subject classifiers
in these studies in Section 6.

5.1 Sentence versus Picture Study

In this fMRI study [4], subjects performed a sequence of trials, during which they were first
shown a sentence and a simple picture, then asked whether the sentence correctly described
the picture. We used this data to explore the feasibility of training classifiers to distinguish
whether the subject is examining a sentence or a picture during a particular time interval.

In half of the trials the picture was presented first, followed by the sentence, which we will
refer to as SP data set. In the remaining trials, the sentence was presented first, followed
by the picture, which we will call PS data set. In either case, the first stimulus (sentence or
picture) was presented for 4 seconds, followed by a blank screen for 4 seconds. The second
stimulus was then presented for up to 4 seconds, ending when the subject pressed the mouse
button to indicate whether the sentence correctly described the picture. Finally, a rest or
fixation period of 15 seconds was inserted before the next trial began. Thus, each trial
lasted approximately 27 seconds. Pictures were geometric arrangements of the symbols # ,$ and/or $, such as

+
*

Sentences were descriptions such as “It is true that the star is below the plus.” Half of the
sentences were negated (e.g., “It is not true that the star is above the plus.”) and the other
half were affirmative sentences.

Thirteen subjects participated in this study, and each subject was presented a total of 40
trials as described above, interspersed with ten fixation periods. In each fixation period the
subject simply stared at a fixed point on the screen. fMRI images were collected every 0.5
seconds.

The learning task we consider here is to train a classifier to determine, given a particular
16-image interval of fMRI data, whether the subject was viewing a sentence or a picture



during this interval. In other words, we wish to learn a classifier of the following form:�%�
fMRI-sequence � 	�
&����������	�
('��)� �

Picture, Sentence �
where 	�
 is the time of stimulus (picture or sentence) onset. In this case 7 ROIs selected
to be most relevant by a domain expert are used in ROI mapping method. These 7 ROIs
contained a total of 1397 to 2864 voxels per subject, varying due to differences in brain
structure from one subject to another.

In this study, note that we extract one sentence example and one picture example from each
trial, which is different from the Syntactic Ambiguity study where we get one example from
each trial (see Section 5.2). We found that the intensity of most voxels in affirmative trials is
lower than in negated trials although the response pattern is rather similar. The difference is
shown in Figure 2. It is natural to consider some procedure to make the data from different
trials become more similar. We employ the following normalization procedure1:*,+.- / + �10324" + / +03576 + / + �80329" + / +
where / + ’s and

*,+
’s are the data before and after normalization, respectively. This method

linearly re-scales the data of each voxel in each trial into [0, 1]. From Table 1, we can find
this simple procedure improves the accuracies of single subject classifiers in most cases.
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Figure 2: Intensity difference between affirmative trials and negated trials. The activity
value above is the mean activity of all subjects in SP data set. Solid lines denote affirma-
tive trials, and dashed lines denote negated trials. The plots actually show the activity of
supervoxels got by averaging all voxels in the corresponding ROIs.

The expected classification accuracy from random guessing in this case is 50%, given the
equal number of examples from both classes. Some average accuracies of single subject
classifiers in this study are summarized in Table 1.

5.2 Syntactic Ambiguity Study

In this fMRI study [5], subjects were presented with two types of ambiguous sentences and
two types of unambiguous sentences, and were asked to respond to a yes-no question about
the content of each sentence. Five normal subjects participated in this study. The questions
were designed to ensure that the subject was in fact processing the sentence. The learning
task for this study was to distinguish whether the subject was currently reading the least
ambiguous or the most ambiguous type of sentence. In the following, we refer to this study
as SA data set. An example of the most ambiguous type of sentence is “The experienced
soldiers warned about the dangers conducted the midnight raid.” An example of the least

1We tried some more complex procedures in order to avoid the influence of outliers. For example,
we use the 5% and 95% percentiles instead of maximum and minimum. The complex procedures did
not perform better.



Table 1: Average accuracies of single subject classifiers in the Sentence versus Picture
study. The accuracies within parenthesis are with normalization.

METHOD CLASSIFIER SP PS SP+PS
Average GNB 86.5% (90.6%) 72.5% (79.6%) 69.6% (66.5%)
Average SVM 87.7% (89.0%) 76.5% (83.7%) 69.2% (69.8%)
Average 1NN 82.1% (86.5%) 60.6% (61.9%) 62.8% (59.7%)
Average 3NN 85.2% (87.5%) 64.8% (69.2%) 64.6% (59.7%)
Average 5NN 84.0% (89.4%) 66.9% (74.6%) 65.9% (60.4%)

ActiveAvg(20) GNB 89.0% (95.4%) 76.0% (88.1%) 72.1% (75.4%)
ActiveAvg(20) 1NN 88.8% (94.4%) 71.2% (82.5%) 72.0% (71.2%)
ActiveAvg(20) 3NN 89.8% (95.4%) 75.4% (83.7%) 76.6% (73.2%)
ActiveAvg(20) 5NN 90.0% (95.0%) 76.7% (86.2%) 76.6% (73.2%)

Active(140) GNB 91.5% (96.9%) 80.0% (89.0%) 79.2% (84.3%)
Active(140) 1NN 87.3% (94.0%) 71.7% (83.5%) 79.2% (86.0%)
Active(140) 3NN 89.2% (96.0%) 76.9% (86.5%) 80.8% (87.0%)
Active(140) 5NN 87.9% (96.3%) 75.6% (86.9%) 79.1% (86.1%)

ambiguous type of sentence is “The experienced soldiers spoke about the dangers before
the midnight raid.”

Ten sentences of each of type were presented to each subject. Each sentence was presented
for 10 seconds. Next a question was presented, and the subject was given 4 seconds to
answer. After the subject answered the question, or 4 seconds elapsed, an “X” appeared on
the screen for a 12 second rest period. The scanner collected one image every 1.5 seconds.

We are interested here in learning a classifier that takes as input an interval of fMRI activity,
and determines which of the two types of sentence the subject is reading. We trained
classifiers of the form�%�

fMRI-sequence � 	�
!����������	�
:'��)� �
Ambiguous, Unambiguous �

where 	�
 is the image at which the sentence is first presented to the subject. In this case 4
ROIs considered to be most relevant by a domain expert are used in ROI mapping method.
These 4 ROIs contained a total of 1500 to 3508 voxels, depending on the subject.

Note that in this study, we actually want to distinguish trials, so the normalization method
in previous section will have no effect. Given the equal number of ambiguous and unam-
biguous trials, the expected accuracy from random guessing is again 50%. Some average
accuracies of single subject classifiers in this study are summarized in Table 2.

6 Experimental Results

Returning to our main question whether it is possible to train classifiers that apply across
multiple human subjects, including subjects beyond the training set, it is easy to see that the
biggest obstacle to inter-subject analysis of fMRI data is anatomical variability among sub-
jects. Different brains have different shapes and sizes, making it problematic to register the
many thousands of voxels in one brain to their precise corresponding locations in a second
brain. One common approach in neuroscience to this problem is to transform (geometri-
cally morph) fMRI data from different subjects into some standard anatomical space, such
as Talairach coordinates [10]. However, some feature selection and abstraction methods
used in our studies are already immune to anatomical variability. For example, by averag-
ing the voxels in a particular ROI into a supervoxel (and treating it as a single voxel ROI



Table 2: Average accuracies of single subject classifiers in the Syntactic Ambiguity study.
In this study, in order to improve accuracy, we experimented a lot of values of " for;=<�> 24?�@ ; ?BA)CD"FE and

;=<�> 24?�@�CG"FE . The results here are the best accuracy after we explored all
even numbers not larger than 50 and 200, respectively for

;=<H> 29?�@ ; ?IA�CG"FE and
;=<�> 24?�@�CG"FE .

The same settings apply when we train multiple subject classifiers.

METHOD CLASSIFIER AVERAGE ACCURACY
Average GNB 61.0%
Average SVM 63.0%
Average 1NN 54.0%
Average 3NN 64.0%
Average 5NN 60.0%

ActiveAvg( " ) GNB 68.0%
ActiveAvg( " ) SVM 71.0%
ActiveAvg( " ) 1NN 61.0%
ActiveAvg( " ) 3NN 60.0%
ActiveAvg( " ) 5NN 64.0%

Active( " ) GNB 72.0%
Active( " ) SVM 71.0%
Active( " ) 1NN 64.0%
Active( " ) 3NN 69.0%
Active( " ) 5NN 69.0%

afterwards), we can easily map one brain to another in terms of these anatomically defined
ROIs. Both methods are used to combine data from different subjects in our studies. ROI
mapping takes advantage of the anatomically defined ROI as a basis for spatially abstract-
ing the data, and Talairach transformation converts the data from different subjects into the
standard Talairach-Tournoux coordinates. Table 3 compares the upside and downside of
the two methods.

Table 3: ROI mapping versus Talairach transformation

ROI MAPPING TALAIRACH
Spatial resolution ROI of irregular shape 1-4 J mm J cubic voxel
Precision Usually decreases noise Introduces additional noise
Efficiency Deals with smaller data sets Deals with larger data sets
Complexity Very easy Extraordinarily complex
Background knowledge ROI definitions Anatomical landmarks

A second difficulty that arises when training multiple-subject classifiers is that the intensity
of fMRI response to a particular stimulus is usually different across subjects. We employ
the same normalization method described in Section 5.1 to linearly re-scale the data from
different subjects into the same range to partially address this issue. While there are many
inter-subject differences that cannot be addressed by this simple linear transformation, we
have found this normalization to be useful in the Sentence versus Picture study, but not in
the Syntactic Ambiguity study. As a result, we will not report our results with normalization
in Syntactic Ambiguity study.

In order to show the significancy of our results, we compute the 95% confidence intervals2

2In fact, under cross validation, we learn K classifiers, and the accuracy we reported is the average
accuracy of these K classifiers. So the size of the confidence interval we compute here is the upper



of the accuracies we got from training cross-subject classifiers. Assume that whether our
classifier classifies each test example correctly are i.i.d. Bernoulli(L ) distributed, so the
number of observed correct classifications / will follow a Binomial( ".�DL ) distribution,
where " is the number of test examples. Let ML -ON � be the observed accuracy. Thus,P @ - Q

Var C!MLRE -TS Var U / "WV -YX LZC(�[�3LRE"\P @ - X MLZC:�[�TML)E"] 	RC!ML)E - C!ML �^�B� _B` \P @I�aMLb#c�B� _B` \P @�E
The lowest accuracies that could be regarded as significant depend on specific studies be-
cause there are different numbers of examples in different studies, as shown in Table 4.

Table 4: The lowest accuracies that are significantly better than random guessing

SP PS SP+PS SA
# of examples 520 520 1040 100
Lowest accuracy 54.3% 54.3% 53.1% 59.7%

6.1 ROI Mapping

The results of multiple subject classifiers using the ROI mapping method in the two studies
are presented in Table 5 and Table 6. For the Sentence versus Picture study, the results
shown in Table 5 are highly significant compared to the 50% accuracy expected of random
guessing, indicating that it is indeed possible to train a classifier to capture significant
subject-independent regularities in brain activity that are sufficiently strong to detect single-
interval cognitive states in human subjects outside the training set.

Table 5: The accuracies of cross-subject classifiers in the Sentence versus Picture study
using ROI mapping. The accuracies within parenthesis are with normalization.

METHOD CLASSIFIER SP PS SP+PS
Average GNB 81.7% (88.8%) 68.1% (82.3%) 71.5% (74.3%)
Average SVM 79.8% (86.5%) 70.4% (77.1%) 70.8% (75.3%)
Average 1NN 79.4% (84.8%) 64.6% (73.8%) 65.6% (63.7%)
Average 3NN 82.9% (86.5%) 65.8% (75.8%) 67.5% (67.3%)
Average 5NN 85.4% (88.7%) 67.9% (78.7%) 68.7% (68.3%)

ActiveAvg(20) GNB 84.2% (92.5%) 69.6% (87.3%) 68.4% (72.8%)
ActiveAvg(20) 1NN 84.8% (91.5%) 64.2% (83.8%) 67.4% (66.0%)
ActiveAvg(20) 3NN 86.9% (93.1%) 66.5% (86.2%) 69.0% (71.5%)
ActiveAvg(20) 5NN 87.1% (93.8%) 68.8% (87.5%) 70.6% (72.0%)

An obvious trend in Table 5 is that the accuracies with normalization in SP or PS are much
better than the full SP+PS data set. The explanation for this improvement is that the clas-
sification task is easier here than when using the full data – in the full data examples come
from a greater diversity of temporal contexts, and the effects of these different contexts

bound of the size of the true confidence interval of the average accuracy, which could be shown easily
using Lagrangian method. See a proof in Appendix.



can remain apparent for several seconds due to the temporally delayed BOLD response.
Also, the accuracies in SP are better than in PS, which is consistent with the trend in Ta-
ble 1. We conjecture that this phenomenon occurs because making a mental picture of a
sentence’s semantic content is easier than extracting and mentally rehearsing a semantic
sentence from a picture, therefore making it harder to separate the two cognitive states in
PS. Another conjecture is that the cognitive state of the subjects and the way they respond
to a new sentence may be influenced when they have just seen a picture which they expect
to compare to the upcoming sentence [7].

Comparing Table 1 with Table 5, we can find another interesting apparent trend that the
accuracy on the left out subject for the multiple subject classifiers is often very close to
the average accuracy of the single subject classifiers, and in several cases it is statistically
significantly better than the corresponding single subject classifiers. This result is surpris-
ingly positive, and it means that the accuracy of this multiple subject classifier, when tested
on new subjects outside the training set, is comparable to the average accuracy achieved
when training on data from the test subject itself. Presumably this better performance by
the multiple subject classifier can be explained by the fact that it is trained using an order
of magnitude more training examples, from twelve subjects rather than one. The decrease
in the sparsity of the training set after combining data from different subjects greatly com-
pensates for the variability among subjects. Solving the imbalance between the number of
features and examples plays a crucial rule in training classifiers in the field of fMRI data
analysis.

Table 6: The accuracies of cross-subject classifiers in the Syntactic Ambiguity study using
ROI mapping

METHOD CLASSIFIER ACCURACY
Average GNB 58.0%
Average SVM 54.0%
Average 1NN 56.0%
Average 3NN 57.0%
Average 5NN 58.0%

ActiveAvg( " ) GNB 64.0%
ActiveAvg( " ) SVM 65.0%
ActiveAvg( " ) 1NN 64.0%
ActiveAvg( " ) 3NN 69.0%
ActiveAvg( " ) 5NN 62.0%

In the Syntactic Ambiguity study (Table 6), although not all accuracies are significantly
better than expected from a random classifier, 50%, no accuracy here is lower than 50%.
Unlike the Sentence versus Picture study, the number of examples is much less in this study,
hence the imbalance between the number of features and examples becomes much worse.
For the same reason, even the single subject classifier accuracy (see Table 2) is not com-
parable to the ones in the Sentence versus Picture study. We also found that these results
are quite sensitive to the particular selection of learning method and feature selection. The
cognitive states defined in this study might be too subtle to tell them apart easily3. Al-
though we cannot draw strong conclusions from the results we got in this study, it provides
modest additional support for the feasibility of training multiple subject classifiers using
ROI mapping.

3This experiment is equivalent to distinguishing affirmative and negated trials in the Sentence
versus Picture study where we were unable to separate them using classifiers [9].
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Figure 3: Threshold selection after Talairach transformation. Plot (a) and (b) show the func-
tional data of two subjects (Syntactic Ambiguity study) in Talairach space in sagittal view.
The scanning bands differ significantly in these two subjects. Plot (c) is the curve of the
number of voxels left as the intensity threshold changes. Plot (d) provides the intersection
of the selected voxels in all subjects using threshold 500 in Talairach space.

6.2 Talairach Transformation

This section will focus on the Syntactic Ambiguity study only4. Talairach transformation
converts the data from different subjects, through a number of interpolations, into the stan-
dard Talairach space which is a box containing the brain. The voxels outside of the brain
which should have zero activity are completely useless. We can set some threshold to ex-
clude them out. Furthermore, as shown in Figure 3, focusing on Plot (a) and (b), we can
find that the scanning bands in different subjects do not overlap exactly. This means that
we cannot directly combine the data from different subjects after Talairach transformation.

4In the Sentence versus Picture study, we have gotten satisfactory results using the ROI mapping
method, and we have some technical difficulties in doing Talairach transformation for this study (see
[4] for details).



Otherwise, at some voxels, the activity values are very close the true values in some sub-
jects, but they are zeros in other subjects because these voxels are out of the scanning bands
in those subject and actually did not get measured. In response to this discrepancy, we raise
the threshold to exclude the voxels out of the intersection of the scanning bands although
they are in the brain. In Plot (c), the curve shows that we begin to go into the intersection
of the scanning bands of all subjects when the threshold is raised to around 500. Using
threshold 500, the selected voxels are displayed in Plot (d). The voxels left have an activity
value above 500 in all subjects. In total, 5449 voxels are finally selected each having a vol-
ume 4mm d 4mm d 4mm. The results in this section are based upon the data set consisting
of these 5449 voxels.

We trained multiple subject classifiers on the whole data set (5449 voxels) and the best
accuracy produced was 59% using SVM. Note that the severe imbalance between number
of features and examples (5449 d 16 versus 100). It is natural to employ the feature selection
methods used in training single subject classifiers to reduce the number of features because
we treat the data as if they were from the same subject. The only difference is that in
this case we have no ROI information to use in some abstraction operation5. Here, we
mainly explored

;e<H> 29?7@�CD"FE (described in Section 4). The results, shown in Table 7, are
all significantly better than random guessing. In contrast to Table 2, the accuracy of this
multiple subject classifier again is comparable to the average accuracy of single subject
classifier.

Table 7: The accuracies of cross-subject classifiers in the Syntactic Ambiguity study using
Talairach transformation.

METHOD CLASSIFIER ACCURACY
Active( " ) GNB 63.0%
Active( " ) SVM 67.0%
Active( " ) 1NN 60.0%
Active( " ) 3NN 60.0%
Active( " ) 5NN 62.0%

Comparing the results in Table 6 with the ones in Table 7, we find that either method is not
significantly better the other one. Thus, we cannot draw any conclusion regarding which
method is better based upon our experimental results.

Table 8: The best accuracies in both case studies
CASE STUDY SINGLE AVERAGE ROI MAPPING TALAIRACH

SP 96.9% 93.8% NA
PS 89.0% 87.5% NA

SP+PS 87.0% 75.3% NA
SA 72.0% 69.0% 67.0%

7 Summary and Conclusions

The primary goal for this research was to determine whether it is feasible to use machine
learning methods to decode mental states across multiple subjects. The successful results
(summarized in Table 8) for two studies indicate that this is indeed feasible in a variety of

5We tried to cluster the voxels according to their geographic locations, but we did not get any
obvious clusters.



interesting cases. Furthermore, in the Sentence versus Picture study, we demonstrated that
it is possible to train a cross-subject classifier to operate over multiple contexts based on
SP+PS data set. However, it is important to note that while our empirical results demon-
strate the ability to successfully distinguish among a predefined set of states occurring at
specific times while the subject performs specific tasks, they do not yet demonstrate that
trained classifiers can reliably detect cognitive states occurring at arbitrary times while the
subject performs arbitrary tasks. While our current results may already be of use in cogni-
tive science research, we intend to pursue this more general goal in future work.

Two methods were explored to train cross-subject classifier based on fMRI data. ROI map-
ping abstracts fMRI data by using the mean fMRI activity in each of several anatomically
defined ROIs to map different brains in terms of ROIs. Talairach transformation provides
another way to match different brains at finer spatial level. Using these approaches, it was
possible to train classifiers to distinguish, e.g., whether the subject was viewing a picture
or a sentence describing a picture, and to apply these successfully to subjects outside the
training set. In most cases, the classification accuracy for subjects outside the training set
equalled or exceeded the accuracy achieved by training on data from just the single subject.
The results using two methods have no significant difference in the Syntactic Ambiguity
study.

We foresee many opportunities for future research toward machine learning methods for
decoding cognitive state from observed fMRI data. For example, it would be useful to
learn models of temporal behavior, in contrast to the work reported here which considers
only data at a single time interval. Machine learning methods such as Hidden Markov
Models and Dynamic Bayesian Networks appear relevant. A second research direction is
to develop learning methods that take advantage of data from multiple studies, in contrast
to the single study efforts described here. For instance, we have accumulated fMRI data
from over 800 human subjects in dozens of studies.
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Appendix: Upper Bound of the Size of Confidence Interval of Classifier Accuracy
under Cross Validation

The classifier M� we learned is an approximation of the true classification function
�

(de-
fined in Section 4.1). Under � -fold cross validation, we train a family of classifiers, i.e., �
classifiers, and we estimate the accuracy of learned classifiers with fhgji Prob k M� - �)l,m ,
where n is the distribution of training set under cross validation based on which we train
a classifier M� . In a two-way classification task, we assume the accuracy of our classifiers
on each fold is LRo , respectively. So, the accuracy ML we reported in this paper is defined as
follows:

ML - prqo�s 
 ML,o�



Suppose that " is the total number of examples and assume that �[tu�vq is binomial w � q �xL oxydistributed. To compute the variance of ML ,

Var C!ML)E -
Var z p qo�s 
 ML o� {- ��}| q~ o�s 
 Var CRML,o4E- ��}| q~ o�s 
 L,oaC��[�WLRoxE"Z�&��

Var C!ML)E - �"F� q~ o�s 
 ML o C(�[��ML o E
Consider the problem: to maximize the size of confidence interval of ML , i.e., to maximize�
Var C
MLRE subject to

pr�v���� tu vq - ML . Using Lagrangian method, let� CFML)

����������ML q E - �
Var C!ML)E�#�� prqo�s 
 ML,o�- �"F� q~ o�s 
 ML,o�C(�[��ML,o9E�# �� q~ o�s 
 MLRo� � CFML)

����������ML q E� ML,o - �����[ML o"F� # � � -j�ML o - ��"�#c��ML - �� q~ o�s 
 ML,o - ��"�#j�� - MLRo

In conclusion,
�

Var C
MLRE is maximized when ML o - ML , i.e., the size of confidence interval we
compute in the paper is the upper bound of the size of the actual confidence interval of ML .
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